CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance
Abstract
1. Introduction
2. Results and Discussion
2.1. The CO2 Capture Performance of Layered Double Hydroxide
2.2. The CO2 Capture Performance of CaO
2.3. Characterization of CaO-CaAl-LDO Composites
2.4. CO2 Capture Performance of As-Prepared CaO-CaAl-LDO Composites
3. Materials and Methods
3.1. Synthesis
3.2. Characterization of Samples
3.3. Evaluation of CO2 Adsorption Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. Int. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Li, R.; Chen, Q.; Wang, Q. Emerging topic identification in carbon capture utilization and storage (CCUS) for advancing climate action (SDG 13). Renew. Sustain. Energy Rev. 2025, 222, 115969. [Google Scholar] [CrossRef]
- Tardin-Coelho, R.; Bharadwaj, B.; Ashworth, P. Carbon capture utilisation and storage (CCUS) and public perceptions: A systematic literature review. Int. J. Greenh. Gas Control 2025, 145, 104393. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, P.; Xu, X. Carbothermal magnesium slag-derived self-stabilizing CaO-based sorbent for CO2 capture and its novel sintering-resistance mechanism. Fuel 2025, 397, 135461. [Google Scholar] [CrossRef]
- Sun, J.; Li, K.; Xiong, Y.; Li, X.; Zhang, X.; Sun, R.; Zhou, Z. Microtubule-structured, dolomite-derived CO2 sorbents synthesized by impregnated layer solution combustion for direct solar-driven calcium looping. Sep. Purif. Technol. 2025, 354, 128980. [Google Scholar] [CrossRef]
- Fu, R.; Hu, Y.; Liu, X.; He, H.; Yi, J. From zirconium-containing wastes to low-cost Na2ZrO3 sorbent for CO2 capture. Chem. Eng. J. 2025, 512, 162299. [Google Scholar] [CrossRef]
- Cai, L.; Yang, X.; Xue, H.; Zhang, Y. Tailoring of superior pyrophyllite-derived flake-structure Li4SiO4 sorbent for efficient cyclic high-temperature CO2 capture. Chem. Eng. J. 2025, 507, 160674. [Google Scholar] [CrossRef]
- Heidari, M.; Borhan Mousavi, S.; Rahmani, F.; Akbari Sene, R. Eco-friendly, sustainable and porous eggshell/tea waste-derived CaO nanoparticles as a high-temperature CO2 sorbent: Fabrication and textural/morphological evaluation. J. Ind. Eng. Chem. 2024, 134, 169–180. [Google Scholar] [CrossRef]
- Isnaini, M.D.; Jongsomjit, B.; Yip, A.C.K.; Phisalaphong, M. Waste-derived CaO from green mussel shells as a highly stabilized and superior sorbent for cyclic CO2 capture. Clean. Eng. Technol. 2025, 26, 100956. [Google Scholar] [CrossRef]
- Salaudeen, S.A.; Acharya, B.; Dutta, A. CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling. J. CO2 Util. 2018, 23, 179–199. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Zhang, S.; Zhang, D.; Shen, B.; Li, Z.; Ma, J.; Liu, L. Fabrication of robust CaO-based sorbent via entire utilization of MSW incineration bottom ash for CO2 capture. Sep. Purif. Technol. 2023, 307, 122795. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Z.; Sui, Z.; Liu, J.; Xiao, Y.; Wang, T.; Lei, Y.; Huang, J.-Y. Unveiling the dynamic thermal separation process of CO2 on the surface of calcium oxide: An ab-initio molecular dynamics study with experimental verification. Sep. Purif. Technol. 2024, 332, 125755. [Google Scholar]
- Wang, X.; Pan, Y.; Fan, W.; Guo, H.; Zhang, H. Fly ash-CaO sorbents prepared via hydration for CO2 capture in municipal solid waste incineration. J. Environ. Chem. Eng. 2025, 13, 115103. [Google Scholar] [CrossRef]
- Silaban, A. High-Temperature High-Pressure Carbon Dioxide Removal From Coal Gas. Diploma Thesis, Louisiana State University, Baton Rouge, LA, USA, 1993; pp. 1–307. [Google Scholar]
- Jiang, T.; Liu, Z.; Fang, Z.; Alassane Dramane, T.; Zhao, Y.; Wang, S.; Ma, X. Pelletizing and acid modifying of Zr-stabilized CaO-based sorbent for cyclic high-temperature CO2 capture. Sep. Purif. Technol. 2024, 344, 127309. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Wei, L.; Peng, M.; Li, Z.; Liu, C.; Liu, Q. Integrated CO2 capture and conversion by Cu/CaO dual function materials: Effect of in-situ conversion on the sintering of CaO and its CO2 capture performance. Carbon Capture Sci. Technol. 2024, 12, 100220. [Google Scholar] [CrossRef]
- Ge, Z.; Dou, B.; Wang, L.; Ding, Y.; Chen, H.; Xuan, Y. Calcium-looping based energy conversion and storage for carbon neutrality—The way forward. Carbon Neutrality 2022, 1, 35–67. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Y.; Liu, X.; Xia, W.; Huang, A.; Zong, J.; Wang, Z.; Qian, B.; Donat, F. One-step synthesis of CaO/CuO composite pellets for enhanced CO2 capture performance in a combined Ca/Cu looping process via a facile gel-casting technique. Sep. Purif. Technol. 2024, 328, 125057. [Google Scholar] [CrossRef]
- Zang, P.; Tang, J.; Tao, Y.; Zhang, H.; Wang, X.; Cui, L.; Chen, S.; Zhao, P.; Dong, Y. K2CO3-doped CaO-based sorbent for CO2 capture: Performance studies and promotion mechanisms. Chem. Eng. J. 2025, 505, 159233. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, h.; Wang, L.; Zhang, S.; Lin, X.; Chen, Q.; Chen, H. The role of oxygen vacancy in CaO-Ca12Al14O33 materials derived from hydrocalumite for enhanced CO2 capture cyclic performance. Chem. Eng. J. 2024, 481, 147955. [Google Scholar]
- Tiwary, S.; Saha, S.; Sahu, G.; Chavan, P.D.; Bhaumik, S.K. Infusion of Fly Ash/MgO in CaO-based sorbent for high-temperature CO2 capture: Precursor selection and its effect on uptake kinetics. Mater. Today Sustain. 2024, 27, 100933. [Google Scholar] [CrossRef]
- Zuo, S.; Sun, M.; Gong, W.; Tang, T.; Ye, X.; Liu, W.; Wong, N.H.; Xu, R.; Chen, G.; Yao, C.; et al. Preparation of amino-functionalized CoAl-LDH/palygorskite hierarchical composites for CO2 capture. Appl. Clay Sci. 2024, 262, 107625. [Google Scholar] [CrossRef]
- Xi, J.; Han, B.; Wang, B.; Fan, M.; Ling, L.; Zhang, R. Halogen-free CO2 cycloaddition with ethylene oxide on the Modified ZnxM-LDH Catalysts: The Influences of M Type, Zn/M ratio and defect type on catalytic performance. Sep. Purif. Technol. 2025, 374, 133676. [Google Scholar] [CrossRef]
- Pavlovic, M.; Huber, R.; Adok-Sipiczki, M.; Nardin, C.; Szilagyi, I. Ion specific effects on the stability of layered double hydroxide colloids. Soft Matter 2016, 12, 4024–4033. [Google Scholar] [CrossRef]
- Manohara, G.V. The effect of the layer-interlayer chemistry of LDHs on developing high temperature carbon capture materials. R. Soc. Chem. 2020, 49, 923–931. [Google Scholar] [CrossRef]
- Bhatta, L.K.G.; Subramanyam, S.; Chengala, M.D.; Olivera, S.; Venkatesh, K. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: A review. J. Clean. Prod. 2015, 103, 171–196. [Google Scholar] [CrossRef]
- Chaillot, D.; Bennici, S.; Brendlé, J. Layered double hydroxides and LDH-derived materials in chosen environmental applications: A review. Environ. Sci. Pollut. Res. 2021, 28, 24375–24405. [Google Scholar] [CrossRef]
- Taher, T.; Gusti Wibowo, Y.; Maulana, S.; Rahayu Palapa, N.; Rianjanu, A.; Lesbani, A. Facile synthesis of biochar/layered double oxides composite by one-step calcination for enhanced carbon dioxide (CO2) adsorption. Mater. Lett. 2023, 338, 134068. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Gao, Y.; Qiao, Y.; Zheng, Q.; Guo, Z.; Zhao, Y.; O’Hare, D.; Wang, Q. Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range. J. Mater. Chem. A 2014, 2, 18454–18462. [Google Scholar] [CrossRef]
- Zhao, F.; Zhu, B.; Wang, L.; Yu, J. Triethanolamine-modified layered double oxide for efficient CO2 capture with low regeneration energy. J. Colloid Interface Sci. 2024, 659, 486–494. [Google Scholar] [CrossRef]
- Jerome, M.P.; Alahmad, F.A.; Salem, M.T.; Tahir, M. Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: Fundamentals, recent advances, and challenges. J. Environ. Chem. Eng. 2022, 10, 108151. [Google Scholar] [CrossRef]
- Han, H.; Tang, L.; Wei, K.; Zhang, S.; Ma, X.; Ma, C.; Feng, S. Restructuring surface frustrated Lewis pairs of MgAl-LDH through isomorphous Co doping for accelerating photocatalytic CO2 reduction. Sep. Purif. Technol. 2025, 356, 129800. [Google Scholar] [CrossRef]
- Chang, P.-H.; Chang, Y.-P.; Lai, Y.-H.; Chen, S.-Y.; Yu, C.-T.; Chyou, Y.-P. Synthesis, characterization and high temperature CO2 capture capacity of nanoscale Ca-based layered double hydroxides via reverse microemulsion. J. Alloys Compd. 2014, 586, 498–505. [Google Scholar] [CrossRef]
- Chang, P.H.; Lee, T.J.; Chang, Y.P.; Chen, S.Y. CO2 sorbents with scaffold-like Ca-Al layered double hydroxides as precursors for CO2 capture at high temperatures. ChemSusChem 2013, 6, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, X.; Li, J.; Gao, X.; Zheng, J.; Chu, W. Hydrotalcite-derived Ni-LDO catalysts via new approach for enhanced performances in CO2 catalytic reduction. Fuel 2022, 324, 124491. [Google Scholar] [CrossRef]
- Leung, D.W.J.; Laney, K.R.; Kenyon, P.; Rees, N.H.; Buffet, J.-C.; Chen, C.; O’Hare, D. Optimising the acid–base ratio of Mg–Al layered double oxides to enhance CO2 capture performance: The critical role of calcination conditions. Dalton Trans. 2024, 53, 6200–6206. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Su, Q.; Chen, L.; Wu, J.; Meng, J. Preparation of Magnesium-Aluminum Hydrotalcite by Mechanochemical Method and Its Application as Heat Stabilizer in poly(vinyl chloride). Materials 2020, 13, 5223. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, X.; Wang, L.; Li, Q.; Xiong, R.; Zhang, Z.; Wu, B.; Yv, C.; Hu, X.; Li, S.; et al. Regulating crystal faces and pore size of layered double oxides for efficient phosphorus recovery from water. J. Water Process Eng. 2025, 75, 108033. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, S.; Yu, M.; Xie, C. Treatment of 1,3-dichloro-2-propanol wastewater using layered double oxides. Inorg. Chem. Commun. 2025, 179, 114747. [Google Scholar] [CrossRef]
- Seraj, S.; Azargohar, R.; Dalai, A.K. NiCo bimetallic catalysts supported on activated carbon/CaAl layered double hydroxide nanosheets for boosting hydrogen production via supercritical water gasification of spruce hydrochar pellets. Energy 2025, 321, 135390. [Google Scholar] [CrossRef]
- Chen, W.; Tang, Y.; Liu, H.; Tang, J.; Deng, J.; Sun, Z.; Ma, X. Preparation of nano-Al2O3 support CaO-based sorbent pellets by novel methods for high-temperature CO2 capture. J. Environ. Chem. Eng. 2024, 12, 114157. [Google Scholar] [CrossRef]
- Bian, K.; Guo, H.; Lai, Z.; Zhou, L.; Li, B.; Hao, J.; Zhang, H.; Peng, F.; Wang, M.; Xiong, L.; et al. Synergistic effect of carbon molecular sieve and alkali metal nitrate on promoting intermediate-temperature adsorption of CO2 over MgAl-layered double hydroxide. Sep. Purif. Technol. 2025, 358, 130263. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, T.; Zhang, J.; Lou, S.N.; Wang, S. A novel self-reactivated and stable MOF-derived Mg-doped CaO sorbent for high-temperature CO2 capture. Sep. Purif. Technol. 2025, 359, 130827. [Google Scholar] [CrossRef]
- Liu, X.; Shi, J.; He, L.; Ma, X.; Xu, S. Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature. Chin. J. Chem. Eng. 2017, 25, 572–580. [Google Scholar] [CrossRef]
- Geng, Y.-q.; Guo, Y.-x.; Fan, B.; Cheng, F.-q.; Cheng, H.-g. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification. J. Fuel Chem. Technol. 2021, 49, 998–1013. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, Q.; Louis, B.; Wang, Q. A facile Solvent/Nonsolvent Preparation of Sintering-Resistant MgO/CaO Composites for High-Temperature CO2 Capture. Energy Technol. 2018, 6, 2469–2478. [Google Scholar] [CrossRef]
- Hu, X.; Huang, L.; Zhao, C.; Wang, Q. Unveiling the impurity phase self-promoting mechanism in minerals-derived Li4SiO4 for enhanced CO2 capture performance. Chem. Eng. J. 2025, 519, 165029. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Sun, X.; Yao, S.; Zhang, X.; Liu, W. Li4SiO4 adsorbent derived from industrial biomass fly ash for high-temperature CO2 capture. Fuel 2023, 337, 126853. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, Y.; Memon, M.Z.; Fu, W.; Wu, Z.; Sheng, S.; Zhang, H.; Ji, G. The Effect of Na2ZrO3 Synthesis Method on the CO2 Sorption Kinetics at High Temperature. Carbon Capture Sci. Technol. 2022, 3, 100050. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, T.; Musyoka, N.M.; Huang, L.; Li, H.; Wang, L.; Wang, Q. Fabrication of structurally improved KNaTiO3 pellets derived from cheap rutile sand for high-temperature CO2 capture. Fuel 2023, 354, 129322. [Google Scholar] [CrossRef]
Samples | Specific Surface Areas m2/g | BJH Pore Diameter nm | BJH Pore Volume cm3/g |
---|---|---|---|
CaO | 7.90 | 5.16 | 0.036 |
CaO-Ca(NO3)2 | 3.07 | 0.55 | 0.0029 |
CaO-CaCO3 | 17.40 | 2.92 | 0.16 |
CaO-CaAc2 | 13.50 | 1.42 | 0.11 |
Samples | Specific Surface Areas m2/g | BJH Pore Diameter nm | BJH Pore Volume cm3/g |
---|---|---|---|
fresh CaO-CaAl-LDOs | 13.85 | 1.24 | 0.14 |
fresh CaO-MgAl-LDOs | 13.47 | 1.45 | 0.09 |
cycled CaO-CaAl-LDOs | 13.82 | 0.92 | 0.08 |
cycled CaO-MgAl-LDOs | 9.28 | 0.85 | 0.03 |
Samples | Modification Method | Stable Adsorption Capacity | Cycling Conditions | Reference |
Li4SiO4 | Perlite-derived Li4SiO4 | 5.2 mmol/g | 100/100% CO2 | [47] |
Li4SiO4 | Fly ash-derived Li4SiO4 | 7.7 mmol/g | 7/15% CO2 | [48] |
Na2ZrO3 | Wet mixing and heated drying | 4.3 mmol/g | 8/20% CO2 | [49] |
Na2ZrO3 | ZrSiO4-derived Na2ZrO3 | 2.5 mmol/g | 28/15 CO2 | [6] |
KNaTiO3 | Rutile sand-derived KNaTiO3 | 3.5 mmol/g | 100/100% CO2 | [50] |
CaO | LDO supported | 12.6 mmol/g | 30/100% CO2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, X.; Huang, L.; Yang, L. CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance. Molecules 2025, 30, 3290. https://doi.org/10.3390/molecules30153290
An X, Huang L, Yang L. CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance. Molecules. 2025; 30(15):3290. https://doi.org/10.3390/molecules30153290
Chicago/Turabian StyleAn, Xinghan, Liang Huang, and Li Yang. 2025. "CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance" Molecules 30, no. 15: 3290. https://doi.org/10.3390/molecules30153290
APA StyleAn, X., Huang, L., & Yang, L. (2025). CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance. Molecules, 30(15), 3290. https://doi.org/10.3390/molecules30153290