Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = CO2 reduction and water splitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3004 KiB  
Review
Research and Application of Ga-Based Liquid Metals in Catalysis
by Yu Zhang, Ying Xin and Qingshan Zhao
Nanomaterials 2025, 15(15), 1176; https://doi.org/10.3390/nano15151176 - 30 Jul 2025
Abstract
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid [...] Read more.
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid metal catalysts, with a focus on recent advances in their applications across electrocatalysis, thermal catalysis, photocatalysis, and related fields. In electrocatalysis, these catalysts exhibit potential for reactions such as electrocatalytic CO2 reduction, electrocatalytic ammonia synthesis, electrocatalytic hydrogen production, and the electrocatalytic oxidation of alcohols. As to thermal catalysis, these catalysts are employed in processes such as alkane dehydrogenation, selective hydrogenation, thermocatalytic CO2 reduction, thermocatalytic ammonia synthesis, and thermocatalytic plastic degradation. In photocatalysis, they can be used in other photocatalytic reactions such as organic matter degradation and overall water splitting. Furthermore, Ga-based liquid metal catalysts also exhibit distinct advantages in catalytic reactions within battery systems and mechano-driven catalysis, offering innovative concepts and technical pathways for developing novel catalytic systems. Finally, this review discusses the current challenges and future prospects in Ga-based liquid metal catalysis. Full article
Show Figures

Figure 1

23 pages, 4276 KiB  
Article
First-Principles Insights into Mo and Chalcogen Dopant Positions in Anatase, TiO2
by W. A. Chapa Pamodani Wanniarachchi, Ponniah Vajeeston, Talal Rahman and Dhayalan Velauthapillai
Computation 2025, 13(7), 170; https://doi.org/10.3390/computation13070170 - 14 Jul 2025
Viewed by 227
Abstract
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where [...] Read more.
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where the dopants are farther apart. The incorporation of Mo into anatase TiO2 resulted in a significant bandgap reduction, lowering it from 3.22 eV (pure TiO2) to range of 2.52–0.68 eV, depending on the specific doping model. The introduction of Mo-4d states below the conduction band led to a shift in the Fermi level from the top of the valence band to the bottom of the conduction band, confirming the n-type doping characteristics of Mo in TiO2. Chalcogen doping introduced isolated electronic states from Te-5p, S-3p, and Se-4p located above the valence band maximum, further reducing the bandgap. Among the examined configurations, Mo–S co-doping in Model 1 exhibited most optimal structural stability structure with the fewer impurity states, enhancing photocatalytic efficiency by reducing charge recombination. With the exception of Mo–Te co-doping, all co-doped systems demonstrated strong oxidation power under visible light, making Mo-S and Mo-Se co-doped TiO2 promising candidates for oxidation-driven photocatalysis. However, their limited reduction ability suggests they may be less suitable for water-splitting applications. The study also revealed that dopant positioning significantly influences charge transfer and optoelectronic properties. Model 1 favored localized electron density and weaker magnetization, while Model 2 exhibited delocalized charge density and stronger magnetization. These findings underscore the critical role of dopant arrangement in optimizing TiO2-based photocatalysts for solar energy applications. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

28 pages, 54702 KiB  
Article
Experimental and Numerical Assessment of Sustainable Concrete Using Recycled Concrete Powder (RCP) as a Partial Replacement for Cement
by Hafiz Asfandyar Ahmed and Waqas Arshad Tanoli
Materials 2025, 18(13), 3108; https://doi.org/10.3390/ma18133108 - 1 Jul 2025
Viewed by 389
Abstract
The demolition of structures generates waste that poses environmental, social, and economic challenges. This study explores the effects of incorporating recycled concrete powder (RCP) into concrete, using it as a cement substitute at levels of 0%, 20%, 25%, and 30%. We evaluated fresh [...] Read more.
The demolition of structures generates waste that poses environmental, social, and economic challenges. This study explores the effects of incorporating recycled concrete powder (RCP) into concrete, using it as a cement substitute at levels of 0%, 20%, 25%, and 30%. We evaluated fresh properties like workability and hardened properties such as dry density, water absorption, compressive, flexural, and split tensile strength, along with non-destructive parameters and microstructural features. The study found that substituting 20% of cement with RCP does not significantly impact mechanical properties, while higher substitutions (25% and 30%) have a slightly greater effect. Notably, 20% RCP substitution resulted in a 15–18% reduction in compressive strength over 7 to 28 days. However, it also led to a 20% decrease in CO2 emissions. A numerical analysis using nonlinear finite element analysis for flexural beam simulations further validated these results. Overall, the study promotes sustainable concrete solutions, achieving a balance between strength, environmental impact, and eco-efficiency in construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 5856 KiB  
Review
Advanced TiO2-Based Photoelectrocatalysis: Material Modifications, Charge Dynamics, and Environmental–Energy Applications
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Xiaodi Wang, Chunxue Yang, Chuanqi Shi and Junnan Ding
Catalysts 2025, 15(6), 542; https://doi.org/10.3390/catal15060542 - 29 May 2025
Cited by 1 | Viewed by 770
Abstract
This review presents a comprehensive overview of recent advances in TiO2-based photoelectrocatalysis (PEC), with an emphasis on material design strategies to enhance visible-light responsiveness and charge carrier dynamics. Key approaches—including elemental doping, defect engineering, heterojunction construction, and plasmonic enhancement—are systematically discussed [...] Read more.
This review presents a comprehensive overview of recent advances in TiO2-based photoelectrocatalysis (PEC), with an emphasis on material design strategies to enhance visible-light responsiveness and charge carrier dynamics. Key approaches—including elemental doping, defect engineering, heterojunction construction, and plasmonic enhancement—are systematically discussed in relation to their roles in modulating energy band structures and promoting charge separation. Beyond fundamental mechanisms, the review highlights the broad environmental and energy-related applications of TiO2-driven PEC systems, encompassing the degradation of persistent organic pollutants, microbial disinfection, heavy metal removal, photoelectrochemical water splitting for hydrogen production, and CO2 reduction. Recent progress in integrating PEC systems with energy harvesting modules to construct self-powered platforms is critically examined. Current limitations and future directions are also outlined to guide the rational development of next-generation TiO2-based photoelectrocatalytic systems for sustainable environmental remediation and solar fuel conversion. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

35 pages, 4832 KiB  
Review
Recent Progress in Designing Nanomaterial Biohybrids for Artificial Photosynthesis
by Sampathkumar Jeevanandham, Subramaniyan Ramasundaram, Natarajan Vijay, Tae Hwan Oh and Subramanian Tamil Selvan
Nanomaterials 2025, 15(10), 730; https://doi.org/10.3390/nano15100730 - 12 May 2025
Viewed by 860
Abstract
In natural photosynthesis, solar energy is utilized to convert water and CO2 into energy-rich compounds. However, in practice, the maximum quantum efficiency of natural photosynthesis is limited to 6.0%. Conversely, artificial photosynthesis (AP) systems utilize solar energy to convert CO2 into [...] Read more.
In natural photosynthesis, solar energy is utilized to convert water and CO2 into energy-rich compounds. However, in practice, the maximum quantum efficiency of natural photosynthesis is limited to 6.0%. Conversely, artificial photosynthesis (AP) systems utilize solar energy to convert CO2 into biosynthetic solar fuels and value-added chemicals. To mimic natural photosystems, AP integrates light-harvesting chemical catalysts with the enzyme-mediated biological catalysis occurring in microorganisms. Similar to solar energy-based optoelectronic power sources, AP has also been recognized as a promising option for reducing carbon emissions generated by the fossil fuel-based power sector. Typical quantum efficiency of AP is 5–10%; in some cases, it exceeds 20%. Recent advancements have focused on nanomaterial biohybrids (NBHs), combining nanomaterial-based photocatalysts/photosensitizers with microorganisms/enzymes for enhanced oxidation/reduction reactions. The synergistic interaction between nanomaterials and microorganisms, facilitated by their comparable size and tunable surface properties, enables improved solar energy absorption, charge separation, and conversion. NBHs offer a versatile platform for sustainable solar energy harvesting and conversion, overcoming the limitations of natural and fully abiotic photosynthesis systems. This review highlights recent breakthroughs in diverse platforms of sunlight and visible light-driven NBH-based AP systems for CO2 fixation, H2 production, water splitting, and value-added chemical synthesis. The synthesis strategies, operating mechanisms, and challenges are highlighted. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

11 pages, 5406 KiB  
Article
Designing Fe2O3-Ti as Photoanode in H-Type Double-Electrode Coupling Systems for Bidirectional Photocatalytic Production of H2O2
by Danfeng Zhang, Changwei An, Dandan Liu, Tong Liu, Te Wang and Min Wang
Molecules 2025, 30(9), 1908; https://doi.org/10.3390/molecules30091908 - 25 Apr 2025
Viewed by 380
Abstract
Developing high-efficiency photoelectrodes plays an important role in the photoelectrocatalytic generation of hydrogen peroxide (H2O2) in the photoelectrochemical (PEC) water splitting field. In this work, an innovative strategy was proposed, the synergistic photocatalytic production of H2O2 [...] Read more.
Developing high-efficiency photoelectrodes plays an important role in the photoelectrocatalytic generation of hydrogen peroxide (H2O2) in the photoelectrochemical (PEC) water splitting field. In this work, an innovative strategy was proposed, the synergistic photocatalytic production of H2O2 using a bidirectional photoanode–photocathode coupling system under visible-light irradiation. Fe2O3-Ti, as the photoanode, which was built by way of Fe2O3 loaded on Ti-mesh using the hydrothermal-calcination method, was investigated in terms of the suitability of its properties for PEC H2O2 production after optimization of the bias voltage, the type of electrolyte solution, and the concentration of the electrolyte. Afterwards, a H-type double-electrode coupling system with an Fe2O3-Ti photoanode and a WO3@Co2SnO4 photocathode was established for the bidirectional synergistic production of H2O2 under visible-light irradiation. The yield of H2O2 reached 919.56 μmol·L−1·h−1 in 2 h over −0.7 V with 1 mol·L−1 of KHCO3 as the anolyte and 0.1 mol·L−1 Na2SO4 as the catholyte (pH = 3). It was inferred that H2O2 production on the WO3@Co2SnO4 photocathode was in line with the 2e- oxygen reduction reaction (ORR) principle, and on the Fe2O3-Ti photoanode was in line with the 2e- water oxidation reaction (WOR) rule, or it was indirectly promoted by the electrolyte solution KHCO3. This work provides an innovative idea and a reference for anode–cathode double coupling systems for the bidirectional production of H2O2. Full article
Show Figures

Figure 1

46 pages, 2151 KiB  
Review
Advanced TiO2-Based Photocatalytic Systems for Water Splitting: Comprehensive Review from Fundamentals to Manufacturing
by Tarek Ahasan, E. M. N. Thiloka Edirisooriya, Punhasa S. Senanayake, Pei Xu and Huiyao Wang
Molecules 2025, 30(5), 1127; https://doi.org/10.3390/molecules30051127 - 28 Feb 2025
Cited by 1 | Viewed by 4602
Abstract
The global imperative for clean energy solutions has positioned photocatalytic water splitting as a promising pathway for sustainable hydrogen production. This review comprehensively analyzes recent advances in TiO2-based photocatalytic systems, focusing on materials engineering, water source effects, and scale-up strategies. We [...] Read more.
The global imperative for clean energy solutions has positioned photocatalytic water splitting as a promising pathway for sustainable hydrogen production. This review comprehensively analyzes recent advances in TiO2-based photocatalytic systems, focusing on materials engineering, water source effects, and scale-up strategies. We recognize the advancements in nanoscale architectural design, the engineered heterojunction of catalysts, and cocatalyst integration, which have significantly enhanced photocatalytic efficiency. Particular emphasis is placed on the crucial role of water chemistry in photocatalytic system performance, analyzing how different water sources—from wastewater to seawater—impact hydrogen evolution rates and system stability. Additionally, the review addresses key challenges in scaling up these systems, including the optimization of reactor design, light distribution, and mass transfer. Recent developments in artificial intelligence-driven materials discovery and process optimization are discussed, along with emerging opportunities in bio-hybrid systems and CO2 reduction coupling. Through critical analysis, we identify the fundamental challenges and propose strategic research directions for advancing TiO2-based photocatalytic technology toward practical implementation. This work will provide a comprehensive framework for exploring advanced TiO2-based composite materials and developing efficient and scalable photocatalytic systems for multifunctional simultaneous hydrogen production. Full article
(This article belongs to the Special Issue Design and Application Based on Versatile Nano-Composites)
Show Figures

Figure 1

50 pages, 9829 KiB  
Review
Substrate Engineering of Single Atom Catalysts Enabled Next-Generation Electrocatalysis to Power a More Sustainable Future
by Saira Ajmal, Junfeng Huang, Jianwen Guo, Mohammad Tabish, Muhammad Asim Mushtaq, Mohammed Mujahid Alam and Ghulam Yasin
Catalysts 2025, 15(2), 137; https://doi.org/10.3390/catal15020137 - 1 Feb 2025
Cited by 1 | Viewed by 2047
Abstract
Single-atom catalysts (SACs) are presently recognized as cutting-edge heterogeneous catalysts for electrochemical applications because of their nearly 100% utilization of active metal atoms and having well-defined active sites. In this regard, SACs are considered renowned electrocatalysts for electrocatalytic O2 reduction reaction (ORR), [...] Read more.
Single-atom catalysts (SACs) are presently recognized as cutting-edge heterogeneous catalysts for electrochemical applications because of their nearly 100% utilization of active metal atoms and having well-defined active sites. In this regard, SACs are considered renowned electrocatalysts for electrocatalytic O2 reduction reaction (ORR), O2 evolution reaction (OER), H2 evolution reaction (HER), water splitting, CO2 reduction reaction (CO2RR), N2 reduction reaction (NRR), and NO3 reduction reaction (NO3RR). Extensive research has been carried out to strategically design and produce affordable, efficient, and durable SACs for electrocatalysis. Meanwhile, persistent efforts have been conducted to acquire insights into the structural and electronic properties of SACs when stabilized on an adequate matrix for electrocatalytic reactions. We present a thorough and evaluative review that begins with a comprehensive analysis of the various substrates, such as carbon substrate, metal oxide substrate, alloy-based substrate, transition metal dichalcogenides (TMD)-based substrate, MXenes substrate, and MOF substrate, along with their metal-support interaction (MSI), stabilization, and coordination environment (CE), highlighting the notable contribution of support, which influences their electrocatalytic performance. We discuss a variety of synthetic methods, including bottom-up strategies like impregnation, pyrolysis, ion exchange, atomic layer deposition (ALD), and electrochemical deposition, as well as top-down strategies like host-guest, atom trapping, ball milling, chemical vapor deposition (CVD), and abrasion. We also discuss how diverse regulatory strategies, including morphology and vacancy engineering, heteroatom doping, facet engineering, and crystallinity management, affect various electrocatalytic reactions in these supports. Lastly, the pivotal obstacles and opportunities in using SACs for electrocatalytic processes, along with fundamental principles for developing fascinating SACs with outstanding reactivity, selectivity, and stability, have been highlighted. Full article
(This article belongs to the Special Issue Feature Review Papers in Electrocatalysis)
Show Figures

Figure 1

16 pages, 5414 KiB  
Article
3D NiCoW Metallic Compound Nano-Network Structure Catalytic Material for Urea Oxidation
by Zuoyuan Liang, Lang Yao, Yipeng Zhang, Sirong Li and Xuechun Xiao
Nanomaterials 2024, 14(22), 1793; https://doi.org/10.3390/nano14221793 - 7 Nov 2024
Cited by 1 | Viewed by 1242
Abstract
Urea shows promise as an alternative substrate to water oxidation in electrolyzers, and replacing OER with the Urea Oxidation Reaction (UOR, theoretical potential of 0.37 V vs. RHE) can significantly increase hydrogen production efficiency. Additionally, the decomposition of urea can help reduce environmental [...] Read more.
Urea shows promise as an alternative substrate to water oxidation in electrolyzers, and replacing OER with the Urea Oxidation Reaction (UOR, theoretical potential of 0.37 V vs. RHE) can significantly increase hydrogen production efficiency. Additionally, the decomposition of urea can help reduce environmental pollution. This paper improves the inherent activity of catalytic materials through morphology and electronic modulation by incorporating tungsten (W), which accelerates electron transfer, enhances the electronic structure of neighboring atoms to create a synergistic effect, and regulates the adsorption process of active sites and intermediates. NiCoW catalytic materials with an ultra-thin nanosheet structure were prepared using an ultrasonic-assisted NaBH4 reduction method. The results show that during the OER process, NiCoW catalytic materials have a potential of only 1.53 V at a current density of 10 mA/cm2, while the UOR process under the same conditions requires a lower potential of 1.31 V, demonstrating superior catalytic performance. In a mixed electrolyte of 1 M KOH and 0.5 M urea, overall water splitting also shows excellent performance. Therefore, the designed NiCoW electrocatalyst, with its high catalytic activity, provides valuable insights for enhancing the efficiency of water electrolysis for hydrogen production and holds practical research significance. Full article
Show Figures

Figure 1

12 pages, 2130 KiB  
Article
Superhydrophobic Surface Modification of a Co-Ru/SiO2 Catalyst for Enhanced Fischer-Tropsch Synthesis
by Pawarat Bootpakdeetam, Oluchukwu Virginia Igboenyesi, Brian H. Dennis and Frederick M. MacDonnell
Catalysts 2024, 14(9), 638; https://doi.org/10.3390/catal14090638 - 19 Sep 2024
Cited by 2 | Viewed by 1725
Abstract
Commercial silica support pellets were impregnated and calcined to contain cobalt oxide and ruthenium oxide for Fischer-Tropsch synthesis (FTS). The precatalyst pellets were split evenly into two groups, the control precatalyst (c-precat) and silylated precatalyst (s-precat), which were treated with 1H,1H, 2H, 2H-perfluorooctyltriethoxysilane [...] Read more.
Commercial silica support pellets were impregnated and calcined to contain cobalt oxide and ruthenium oxide for Fischer-Tropsch synthesis (FTS). The precatalyst pellets were split evenly into two groups, the control precatalyst (c-precat) and silylated precatalyst (s-precat), which were treated with 1H,1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOS) in toluene. The samples of powderized s-precat were superhydrophobic, as determined by the water droplet contact angle (>150°) and sliding angle (<1°). Thermal analysis revealed the PFOS groups to be thermally stable up to 400 °C and temperature programmed reduction (TPR) studies showed that H2 reduction of the cobalt oxide to cobalt was enhanced at lower temperatures relative to the untreated c-precat. The two active catalysts were examined for their FTS performance in a tubular fixed-bed reactor after in situ reduction at 400 °C for 16 h in flowing H2 to give the active catalysts c-cat and s-cat. The FTS runs were performed under identical conditions (255 °C, 2.1 MPa, H2/CO = 2.0, gas hourly space velocity (GHSV) 510 h–1) for 5 days. Each catalyst was examined in three runs (n = 3) and the mean values with error data are reported. S-cat showed a higher selectivity for C5+ products (64 vs. 54%) and lower selectivity for CH4 (11 vs. 17%), CO2 (2 % vs. 4 %), and olefins (8% vs. 15%) than c-cat. S-cat also showed higher CO conversion, at 37% compared to 26%, leading to a 64% increase in the C5+ productivity measured as g C5+ products per g catalyst per hour. An analysis of the temperature differential between the catalyst bed and external furnace temperature showed that s-cat was substantially more active (DTinitial = 29 °C) and stable over the 5-day run (DTfinal = 22 °C), whereas the attenuated activity of c-cat (DTinitial = 16 °C) decayed steadily over 3 days until it was barely active (DTfinal < 5 °C). A post-run surface analysis of s-cat revealed no change in the water contact angle or sliding angle, indicating that the FTS operation did not degrade the PFOS surface treatment. Full article
(This article belongs to the Special Issue Catalysis for Selective Hydrogenation of CO and CO2, 2nd Edition)
Show Figures

Figure 1

22 pages, 3955 KiB  
Review
Exploring the Multifaceted Potential of 2D Bismuthene Multilayered Materials: From Synthesis to Environmental Applications and Future Directions
by Amauri Serrano-Lázaro, Karina Portillo-Cortez, Aldo Ríos-Soberanis, Rodolfo Zanella and Juan C. Durán-Álvarez
Catalysts 2024, 14(8), 500; https://doi.org/10.3390/catal14080500 - 1 Aug 2024
Cited by 1 | Viewed by 2050
Abstract
Two-dimensional (2D) materials have emerged as a frontier in materials science, offering unique properties due to their atomically thin nature. Among these materials, bismuthene stands out due to its exceptional optical, electronic, and catalytic characteristics. Bismuthene exhibits high charge carrier mobility, stability, and [...] Read more.
Two-dimensional (2D) materials have emerged as a frontier in materials science, offering unique properties due to their atomically thin nature. Among these materials, bismuthene stands out due to its exceptional optical, electronic, and catalytic characteristics. Bismuthene exhibits high charge carrier mobility, stability, and a tunable bandgap (0.3–1.0 eV), making it highly suitable for applications in transistors, spintronics, biomedicine, and photocatalysis. This work explores the so far reported synthesis methods for obtaining 2D bismuthene, including bottom-up approaches like chemical vapor deposition and molecular beam epitaxy, and top-down methods such as liquid-phase exfoliation and mechanical exfoliation. Recent advancements in understanding 2D bismuthene structural phases, electronic properties modulated by spin-orbit coupling, and its potential applications in next-generation photocatalysts are also reviewed. As is retrieved by our literature review, 2D bismuthene shows great promise for addressing significant environmental challenges. For instance, in CO2 reduction, integrating bismuthene into 2D/2D heterostructures enhances electron transfer efficiency, thereby improving selectivity toward valuable products, such as CH4 and formic acid. In organic pollutant degradation, bismuth subcarbonate (Bi2O2CO3) nanosheets, obtained from 2D bismuthene, have demonstrated high photocatalytic degradation of antibiotics under visible light irradiation, due to their increased surface area and efficient generation of reactive species. Moreover, bismuthene-based materials exhibit potential in the photocatalytic water-splitting process for hydrogen production, overcoming issues associated with UV-light dependence and sacrificial agent usage. This review underscores the versatile applications of 2D bismuthene in advancing photocatalytic technologies, offering insights into future research directions and potential industrial applications. Full article
(This article belongs to the Special Issue Advances in Catalysis for a Sustainable Future)
Show Figures

Graphical abstract

14 pages, 4079 KiB  
Article
The Influence of Acetone on the Kinetics of Water Electrolysis Examined at Polycrystalline Pt Electrode in Alkaline Solution
by Aleksandra Adamicka, Tomasz Mikołajczyk, Mateusz Kuczyński and Bogusław Pierożyński
Catalysts 2024, 14(8), 488; https://doi.org/10.3390/catal14080488 - 30 Jul 2024
Cited by 1 | Viewed by 1558
Abstract
This study investigated the impact of acetone on the electrochemical behavior of polycrystalline platinum electrodes in 0.1 M NaOH solution, with respect to the kinetics of hydrogen and oxygen evolution reactions (HER and OER) and indirectly to the underpotential deposition of hydrogen (UPDH). [...] Read more.
This study investigated the impact of acetone on the electrochemical behavior of polycrystalline platinum electrodes in 0.1 M NaOH solution, with respect to the kinetics of hydrogen and oxygen evolution reactions (HER and OER) and indirectly to the underpotential deposition of hydrogen (UPDH). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were employed to analyze these processes for acetone concentrations ranging from 1.0 × 10−6 to 1.0 × 10−3 M. The addition of (CH3)2C=O enhanced the catalytic efficiency of alkaline water splitting, which was believed to be a result of a significant reduction in the surface tension phenomenon (due to mutual interaction of acetone and water molecules), thus considerably facilitating hydrogen bubble detachment from the Pt electrode. Key findings in this work are described with respect to facilitation of both the HER and the OER reactions’ kinetics by the presence of acetone (also undergoing Pt electroreduction over the potential range for UPDH) in the working solution, without an electrode surface poisoning effect. The latter implies significant opportunities for traces of organic additives into alkaline electrolyte to improve the industrial alkaline water electrolysis process. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

15 pages, 4840 KiB  
Article
(La1−xCax)MnO3−δ (x = 0, 0.2, 0.3, 0.4) Perovskites as Redox Catalysts in Chemical Looping Hydrogen Production Process: The Relation between Defect Chemistry and Redox Performance
by Moschos Moschos, Antigoni Evdou and Vassilios Zaspalis
Catalysts 2024, 14(7), 431; https://doi.org/10.3390/catal14070431 - 6 Jul 2024
Cited by 1 | Viewed by 1425
Abstract
The interaction between point defects in (La1−xCax)MnO3−δ (x = 0, 0.2, 0.3, 0.4) perovskites and their redox catalytic properties in a three-reactor chemical looping hydrogen production process is investigated. During the reduction step with CH4, the [...] Read more.
The interaction between point defects in (La1−xCax)MnO3−δ (x = 0, 0.2, 0.3, 0.4) perovskites and their redox catalytic properties in a three-reactor chemical looping hydrogen production process is investigated. During the reduction step with CH4, the behavior of the materials is extrinsically determined and strongly depends on the Ca content. At small oxygen deficiencies, CH4 becomes oxidized to CO2. As the deficiency increases, partial oxidation to CO and H2 at a molar ratio of approximately 2 is favored. During the water-splitting step, the dependency on the Ca content is much weaker since it is intrinsically determined by the Mn2+→Mn3+ oxidation with simultaneous annihilation of oxygen vacancies that are not required to compensate for the extra negative charge of the Ca dopant. Hydrogen productivities in the order of 13 cm3 (STP) H2/g solid could be achieved during the water-splitting step at 1000 °C. The materials exhibited reproducible catalytic behavior during 10 cycles of the complete three-step process and were found to retain their perovskite structure. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Graphical abstract

14 pages, 4595 KiB  
Article
Electronic-Structure-Modulated Cu,Co-Coanchored N-Doped Nanocarbon as a Difunctional Electrocatalyst for Hydrogen Evolution and Oxygen Reduction Reactions
by Liyun Cao, Rui Liu, Yixuan Huang, Dewei Chu, Mengyao Li, Guoting Xu, Xiaoyi Li, Jianfeng Huang, Yong Zhao and Liangliang Feng
Molecules 2024, 29(13), 2973; https://doi.org/10.3390/molecules29132973 - 22 Jun 2024
Viewed by 1270
Abstract
To alleviate the problems of environmental pollution and energy crisis, aggressive development of clean and alternative energy technologies, in particular, water splitting, metal–air batteries, and fuel cells involving two key half reactions comprising hydrogen evolution reaction (HER) and oxygen reduction (ORR), is crucial. [...] Read more.
To alleviate the problems of environmental pollution and energy crisis, aggressive development of clean and alternative energy technologies, in particular, water splitting, metal–air batteries, and fuel cells involving two key half reactions comprising hydrogen evolution reaction (HER) and oxygen reduction (ORR), is crucial. In this work, an innovative hybrid comprising heterogeneous Cu/Co bimetallic nanoparticles homogeneously dispersed on a nitrogen-doped carbon layer (Cu/Co/NC) was constructed as a bifunctional electrocatalyst toward HER and ORR via a hydrothermal reaction along with post-solid-phase sintering technique. Thanks to the interfacial coupling and electronic synergism between the Cu and Co bimetallic nanoparticles, the Cu/Co/NC catalyst showed improved catalytic ORR activity with a half-wave potential of 0.865 V and an excellent stability of more than 30 h, even compared to 20 wt% Pt/C. The Cu/Co/NC catalyst also exhibited excellent HER catalytic performance with an overpotential of below 149 mV at 10 mA/cm2 and long-term operation for over 30 h. Full article
(This article belongs to the Special Issue Battery Chemistry: Recent Advances and Future Opportunities)
Show Figures

Graphical abstract

38 pages, 22809 KiB  
Review
Nanoscale Cu2ZnSnSxSe(4−x) (CZTS/Se) for Sustainable Solutions in Renewable Energy, Sensing, and Nanomedicine
by Sayedmahdi Mohammadi, Navdeep Kaur and Daniela R. Radu
Crystals 2024, 14(5), 479; https://doi.org/10.3390/cryst14050479 - 19 May 2024
Cited by 1 | Viewed by 2679
Abstract
The importance and breadth of applications of the family of quaternary chalcogenides with the formula Cu2ZnSnSxSe(4−x) (CZTS/Se) where x = 0–4 are steadily expanding due to the tunable optoelectronic properties of these compounds and the Earth abundance of [...] Read more.
The importance and breadth of applications of the family of quaternary chalcogenides with the formula Cu2ZnSnSxSe(4−x) (CZTS/Se) where x = 0–4 are steadily expanding due to the tunable optoelectronic properties of these compounds and the Earth abundance of the elements in their composition. These p-type semiconductors are viewed as a viable alternative to Si, gallium arsenide, CdTe, and CIGS solar cells due to their cost effectiveness, Earth’s crust abundance, and non-toxic elements. Additionally, CZTS/Se compounds have demonstrated notable capabilities beyond solar cells, such as photoelectrochemical CO2 reduction, solar water splitting, solar seawater desalination, hydrogen production, and use as an antibacterial agent. Various routes have been explored for synthesizing pure CZTS/Se nanomaterials and significant efforts have been dedicated to reducing the occurrence of secondary phases. This review focuses on synthetic approaches for CZTS/Se nanomaterials, with emphasis on controlling the size and morphology of the nanoparticles and their recent application in solar energy harvesting and beyond, highlighting challenges in achieving the desired purity required in all these applications. Full article
(This article belongs to the Special Issue Semiconductor Nanocrystal Studies for Optoelectronic Applications)
Show Figures

Figure 1

Back to TopTop