Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,778)

Search Parameters:
Keywords = CO2 balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

24 pages, 1684 KiB  
Article
Beyond Assistance: Embracing AI as a Collaborative Co-Agent in Education
by Rena Katsenou, Konstantinos Kotsidis, Agnes Papadopoulou, Panagiotis Anastasiadis and Ioannis Deliyannis
Educ. Sci. 2025, 15(8), 1006; https://doi.org/10.3390/educsci15081006 - 6 Aug 2025
Abstract
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning [...] Read more.
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning environment. Rather than replacing the educator, HCAI serves as a tool that empowers both students and teachers, fostering critical thinking and autonomy in learning. This study investigates the potential for AI to become a collaborative partner that assists learning and enriches academic engagement. The research was conducted during the 2024–2025 winter semester within the Pedagogical and Teaching Sufficiency Program offered by the Audio and Visual Arts Department, Ionian University, Corfu, Greece. The research employs a hybrid ethnographic methodology that blends digital interactions—where students use AI tools to create artistic representations—with physical classroom engagement. Data was collected through student projects, reflective journals, and questionnaires, revealing that structured dialog with AI not only facilitates deeper critical inquiry and analytical reasoning but also induces a state of flow, characterized by intense focus and heightened creativity. The findings highlight a dialectic between individual agency and collaborative co-agency, demonstrating that while automated AI responses may diminish active cognitive engagement, meaningful interactions can transform AI into an intellectual partner that enriches the learning experience. These insights suggest promising directions for future pedagogical strategies that balance digital innovation with traditional teaching methods, ultimately enhancing the overall quality of education. Furthermore, the study underscores the importance of integrating reflective practices and adaptive frameworks to support evolving student needs, ensuring a sustainable model. Full article
(This article belongs to the Special Issue Unleashing the Potential of E-learning in Higher Education)
Show Figures

Figure 1

12 pages, 732 KiB  
Article
Gaming Against Frailty: Effects of Virtual Reality-Based Training on Postural Control, Mobility, and Fear of Falling Among Frail Older Adults
by Hammad S. Alhasan and Mansour Abdullah Alshehri
J. Clin. Med. 2025, 14(15), 5531; https://doi.org/10.3390/jcm14155531 - 6 Aug 2025
Abstract
Background/Objectives: Frailty is a prevalent geriatric syndrome associated with impaired postural control and elevated fall risk. Although conventional exercise is a core strategy for frailty management, adherence remains limited. Virtual reality (VR)-based interventions have emerged as potentially engaging alternatives, but their effects on [...] Read more.
Background/Objectives: Frailty is a prevalent geriatric syndrome associated with impaired postural control and elevated fall risk. Although conventional exercise is a core strategy for frailty management, adherence remains limited. Virtual reality (VR)-based interventions have emerged as potentially engaging alternatives, but their effects on objective postural control and task-specific confidence in frail populations remain understudied. This study aimed to evaluate the effectiveness of a supervised VR training program using the Nintendo Ring Fit Plus™ on postural control, functional mobility, and balance confidence among frail community-dwelling older adults. Methods: Fifty-one adults aged ≥65 years classified as frail or prefrail were enrolled in a four-week trial. Participants were assigned to either a VR intervention group (n = 28) or control group (n = 23). Participants were non-randomly assigned based on availability and preference. Outcome measures were collected at baseline and post-intervention. Primary outcomes included center of pressure (CoP) metrics—sway area, mean velocity, and sway path. Secondary outcomes were the Timed Up and Go (TUG), Berg Balance Scale (BBS), Activities-specific Balance Confidence (ABC), and Falls Efficacy Scale–International (FES-I). Results: After adjusting for baseline values, age, and BMI, the intervention group showed significantly greater improvements than the control group across all postural control outcomes. Notably, reductions in sway area, mean velocity, and sway path were observed under both eyes-open and eyes-closed conditions, with effect sizes ranging from moderate to very large (Cohen’s d = 0.57 to 1.61). For secondary outcomes, significant between-group differences were found in functional mobility (TUG), balance performance (BBS), and balance confidence (ABC), with moderate-to-large effect sizes (Cohen’s d = 0.53 to 0.73). However, no significant improvement was observed in fear of falling (FES-I), despite a small-to-moderate effect size. Conclusions: A supervised VR program significantly enhanced postural control, mobility, and task-specific balance confidence in frail older adults. These findings support the feasibility and efficacy of VR-based training as a scalable strategy for mitigating frailty-related mobility impairments. Full article
(This article belongs to the Special Issue Clinical Management of Frailty)
Show Figures

Figure 1

17 pages, 1152 KiB  
Article
PortRSMs: Learning Regime Shifts for Portfolio Policy
by Bingde Liu and Ryutaro Ichise
J. Risk Financial Manag. 2025, 18(8), 434; https://doi.org/10.3390/jrfm18080434 - 5 Aug 2025
Abstract
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties [...] Read more.
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties over short periods and maintaining sensitivity to sudden shocks in price sequences. PortRSMs also performs cross-asset regime fusion through hypergraph attention mechanisms, providing a more comprehensive state space for describing changes in asset correlations and co-integration. Experiments conducted on two different trading frequencies in the stock markets of the United States and Hong Kong show the superiority of PortRSMs compared to other approaches in terms of profitability, risk–return balancing, robustness, and the ability to handle sudden market shocks. Specifically, PortRSMs achieves up to a 0.03 improvement in the annual Sharpe ratio in the U.S. market, and up to a 0.12 improvement for the Hong Kong market compared to baseline methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

18 pages, 2365 KiB  
Article
Integrated Environmental–Economic Assessment of CO2 Storage in Chinese Saline Formations
by Wentao Zhao, Zhe Jiang, Tieya Jing, Jian Zhang, Zhan Yang, Xiang Li, Juan Zhou, Jingchao Zhao and Shuhui Zhang
Water 2025, 17(15), 2320; https://doi.org/10.3390/w17152320 - 4 Aug 2025
Abstract
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project [...] Read more.
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project in the Ordos Basin, eight full-chain carbon capture, utilization, and storage (CCUS) scenarios were analyzed. The results indicate that environmental and cost performance are primarily influenced by technology choices across carbon capture, transport, and storage stages. The scenario employing potassium carbonate-based capture, pipeline transport, and brine reinjection after a reverse osmosis treatment (S5) achieved the most balanced outcome. Breakeven analyses under three carbon price projection models revealed that carbon price trajectories critically affect project viability, with a steadily rising carbon price enabling earlier profitability. By decoupling CCUS from power systems and focusing on unit CO2 removal, this study provides a transparent and transferable framework to support cross-sectoral deployment. The findings offer valuable insights for policymakers aiming to design effective CCUS support mechanisms under future carbon neutrality targets. Full article
(This article belongs to the Special Issue Mine Water Treatment, Utilization and Storage Technology)
Show Figures

Figure 1

18 pages, 1351 KiB  
Review
Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis
by Jorge M. Vélez-Gutiérrez, Andrés Rojas-Jaramillo, Juan D. Ascuntar-Viteri, Juan D. Quintero, Francisco García-Muro San José, Bruno Bazuelo-Ruiz, Roberto Cannataro and Diego A. Bonilla
Appl. Sci. 2025, 15(15), 8641; https://doi.org/10.3390/app15158641 (registering DOI) - 4 Aug 2025
Abstract
Anterior cruciate ligament reconstruction (ACLR) results in prolonged muscle weakness, impaired neuromuscular control, and delayed return to sport. Cross-education (CE), unilateral training of the uninjured limb, has been proposed as an adjunct therapy to promote bilateral adaptations. This scoping review evaluated the functional [...] Read more.
Anterior cruciate ligament reconstruction (ACLR) results in prolonged muscle weakness, impaired neuromuscular control, and delayed return to sport. Cross-education (CE), unilateral training of the uninjured limb, has been proposed as an adjunct therapy to promote bilateral adaptations. This scoping review evaluated the functional and neuroplastic effects of CE rehabilitation post-ACLR. Following PRISMA-ScR and JBI guidelines, PubMed, Scopus, Web of Science, and PEDro were searched up to February 2025. A bibliometric analysis was also conducted to report keyword co-occurrence and identify trends in this line of research. Of 333 screened references, 14 studies (price index: 43% and low-to-moderate risk of bias) involving 721 participants (aged 17–45 years) met inclusion criteria. CE protocols (6–12 weeks; 2–5 sessions/week) incorporating isometric, concentric, and eccentric exercises demonstrated strength gains (10–31%) and strength preservation, alongside improved limb symmetry (5–14%) and dynamic balance (7–18%). There is growing interest in neuroplasticity and corticospinal excitability, although neuroplastic changes were assessed heterogeneously across studies. Findings support CE as a feasible and low-cost strategy to complement early-stage ACLR rehabilitation, especially when direct loading of the affected limb is limited. Standardized protocols for clinical intervention and neurophysiological assessment are needed. Full article
(This article belongs to the Special Issue Novel Approaches of Physical Therapy-Based Rehabilitation)
Show Figures

Figure 1

24 pages, 2828 KiB  
Article
Determining the Ground Reaction Force Value and Location for Each Foot During Bipedal Stance Exercises from a Single Forceplate
by Adrián Schmedling, Erik Macho, Francisco J. Campa, Ruben Valenzuela, Mikel Diez, Javier Corral, Paul Diego, Saioa Herrero and Charles Pinto
Sensors 2025, 25(15), 4796; https://doi.org/10.3390/s25154796 - 4 Aug 2025
Abstract
In the study of biomechanical models, balance represents a complex problem due to the issue of indeterminate forces while standing. In order to solve this problem, it is essential to measure the ground reaction forces (GRFs) applied to each foot independently. The present [...] Read more.
In the study of biomechanical models, balance represents a complex problem due to the issue of indeterminate forces while standing. In order to solve this problem, it is essential to measure the ground reaction forces (GRFs) applied to each foot independently. The present work proposes a methodology for determining the independent GRF applied to each foot while standing when only one forceplate is available. For this purpose, an analytical method is proposed to determine the distribution of vertical GRFs and the position of the independent center of pressure (CoP) in each foot. Concurrently, several neural network (NN) models are trained to improve the results obtained. This hypothesis is experimentally validated by a self-developed device that allows one to simultaneously obtain the vertical GRF and CoP location of each foot at the same time that the GRF and the global CoP location are obtained from a single forceplate. The results obtained achieve a CoP position error of less than 8% and a vertical force error of 2%. The analytical hypothesis is demonstrated to offer a satisfactory level of precision, while the NN is shown to result in considerable improvement in some cases. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

19 pages, 1506 KiB  
Article
Do Forest Carbon Offset Projects Bring Biodiversity Conservation Co-Benefits? An Examination Based on Ecosystem Service Value
by Qi Wang, Yuan Hu, Rui Chen, Weizhong Zeng and Ying Cheng
Forests 2025, 16(8), 1274; https://doi.org/10.3390/f16081274 - 4 Aug 2025
Viewed by 35
Abstract
In the context of worsening climate change and biodiversity loss, forest carbon offset projects are viewed as important nature-based solutions to mitigate these trends. However, there is limited evidence on whether these projects provide net benefits for biodiversity conservation. This study uses a [...] Read more.
In the context of worsening climate change and biodiversity loss, forest carbon offset projects are viewed as important nature-based solutions to mitigate these trends. However, there is limited evidence on whether these projects provide net benefits for biodiversity conservation. This study uses a staggered difference-in-differences model with balanced panel data from 128 counties in Sichuan Province, China, spanning from 2000 to 2020, to examine whether these projects bring biodiversity conservation co-benefits. The results show that the implementation of forest carbon offset projects leads to a 55.1% decrease in the ecosystem service value of forest biodiversity, with the negative impact particularly pronounced in areas facing agricultural land use and livestock pressures. The dynamic effect tests indicate that the benefits of biodiversity conservation generally begin to decline significantly 5 years after project implementation. Additional analyses show that although projects certified under biodiversity conservation standards also exhibit negative effects, the magnitude of decline is substantially smaller compared to uncertified projects, and certified projects achieve greater carbon stock gains. Heterogeneity analysis demonstrates that projects employing native tree species show significant positive effects. Moreover, spatial econometric results demonstrate significant negative spillover effects within an 80 km radius surrounding the project sites, with the effect attenuating over distance. To maximize the potential of forest carbon offset projects in addressing both climate change and biodiversity loss, it is important to mitigate the negative impacts on biodiversity within and beyond project boundaries and to enhance the continuous monitoring of projects that have been certified for biodiversity conservation. Full article
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 200
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 173
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

25 pages, 1105 KiB  
Review
Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation
by Shan Lin, Yu Zhang, Xuanjiang Chen, Chengzhi Pan, Xianjun Dong, Xiang Xie and Long Chen
Sustainability 2025, 17(15), 7016; https://doi.org/10.3390/su17157016 - 1 Aug 2025
Viewed by 248
Abstract
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it [...] Read more.
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it challenging to identify the most suitable methods that simultaneously achieve both comfort and efficiency goals. Existing studies often lack a systematic framework that supports integrated decision-making under comfort constraints. This research aims to address this gap by proposing a decision-making tree for selecting energy conservation methods during building operation with an explicit consideration of indoor environmental comfort. A comprehensive literature review is conducted to identify four main energy-consuming components during building operation: the building envelope, HVAC systems, lighting systems, and plug loads and appliances. Three key comfort indicators—thermal comfort, lighting comfort, and air quality comfort—are defined, and energy conservation methods are categorized into three strategic groups: passive strategies, control optimization strategies, and behavioural intervention strategies. Each method is assessed using a defined set of evaluation criteria. Subsequently, a questionnaire survey is administered for the calibration of the decision tree, incorporating stakeholder preferences and expert judgement. The findings contribute to the advancement of understanding regarding the co-optimization of energy conservation and occupant comfort in building operations. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

14 pages, 279 KiB  
Article
FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome
by Maciej Migacz, Dagmara Pluta, Kamil Barański, Anna Kujszczyk, Marta Kochanowicz and Michał Holecki
Biomedicines 2025, 13(8), 1878; https://doi.org/10.3390/biomedicines13081878 - 1 Aug 2025
Viewed by 277
Abstract
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an [...] Read more.
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an association between PCOS and MASLD. This study was designed to compare the FIB-4 score (based on age, alanine aminotransferase, aspartate aminotransferase and platelet count) and the results of shear wave elastography in assessing the risk of developing MASLD by patients with PCOS divided by phenotypes. Methods: The study enrolled 242 women age 18–35 years with PCOS diagnosed according to Rotterdam criteria, hospitalized at the Department of Gynaecological Endocrinology of the University Clinical Centre in Katowice. The study subjects were assigned to phenotypes A to D. Clinical and biochemical assessments were performed (including androgens and metabolic parameters), and the FIB-4 index was calculated. Liver fibrosis was evaluated by shear wave elastography. To balance the group sizes of phenotypes, oversampling with replacement was applied (PROC SURVEYSELECT, SAS), increasing the number of observations for phenotypes B, C, and D fivefold. Statistical analyses were performed based on data distribution (Shapiro–Wilk test), using ANOVA or the Kruskal–Wallis test with Dunn’s correction. Statistical significance was set at p < 0.05. Results: The FIB-4 score was the highest in phenotype B patients (0.50 ± 0.15), and the lowest in phenotypes A and C (0.42 ± 0.14). The highest rate of positive elastography findings was recorded in phenotype A patients (34.7%) and the lowest in phenotype C group (13.5%). Significant differences between the phenotypes were also found in terms of androgen levels, insulin, HOMA-IR, and the lipid profile. Among patients with positive elastography, the highest FIB-4 scores were recorded in phenotype C group (0.44 ± 0.06), but the differences between the phenotypes were not statistically significant. Conclusions: The FIB-4 score was the highest in phenotype B patients and differed significantly from phenotypes A, C and D. In the elastography exam, the fibrosis index was statistically significantly higher in phenotype A compared to other phenotypes. No correlation was detected between the FIB-4 index and positive elastography. The findings suggest that the FIB-4 index may be used for MASLD screening, but its usefulness as a predictor of eligibility for elastography requires more research. Full article
17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 (registering DOI) - 1 Aug 2025
Viewed by 189
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

49 pages, 5495 KiB  
Review
A Map of the Research About Lighting Systems in the 1995–2024 Time Frame
by Gaetanino Paolone, Andrea Piazza, Francesco Pilotti, Romolo Paesani, Jacopo Camplone and Paolino Di Felice
Computers 2025, 14(8), 313; https://doi.org/10.3390/computers14080313 - 1 Aug 2025
Viewed by 175
Abstract
Lighting Systems (LSs) are a key component of modern cities. Across the years, thousands of articles have been published on this topic; nevertheless, a map of the state of the art of the extant literature is lacking. The present review reports on an [...] Read more.
Lighting Systems (LSs) are a key component of modern cities. Across the years, thousands of articles have been published on this topic; nevertheless, a map of the state of the art of the extant literature is lacking. The present review reports on an analysis of the network of the co-occurrences of the authors’ keywords from 12,148 Scopus-indexed articles on LSs published between 1995 and 2024. This review addresses the following research questions: (RQ1) What are the major topics explored by scholars in connection with LSs within the 1995–2024 time frame? (RQ2) How do they group together? The investigation leveraged VOSviewer, an open-source software largely used for performing bibliometric analyses. The number of thematic clusters returned by VOSviewer was determined by the value of the minimum number of occurrences needed for the authors’ keywords to be admitted into the business analysis. If such a number is not properly chosen, the consequence is a set of clusters that do not represent meaningful patterns of the input dataset. In the present study, to overcome this issue, the threshold value balanced the score of four independent clustering validity indices against the authors’ judgment of a meaningful partition of the input dataset. In addition, our review delved into the impact that the use/non-use of a thesaurus of the authors’ keywords had on the number and composition of the thematic clusters returned by VOSviewer and, ultimately, on how this choice affected the correctness of the interpretation of the clusters. The study adhered to a well-known protocol, whose implementation is reported in detail. Thus, the workflow is transparent and replicable. Full article
Show Figures

Figure 1

15 pages, 4578 KiB  
Article
Improving Balance Between Oxygen Permeability and Stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Through High-Entropy Design
by Yongfan Zhu, Meng Wu, Guangru Zhang, Zhengkun Liu and Gongping Liu
Membranes 2025, 15(8), 232; https://doi.org/10.3390/membranes15080232 - 1 Aug 2025
Viewed by 221
Abstract
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of [...] Read more.
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of a high-entropy perovskite, Ba0.5Sr0.5Co0.71Fe0.2Ta0.03Ni0.03Zr0.03O3−δ. The crystal structure, microstructure, and elemental composition of the material were systematically characterized and analyzed. Theoretical analysis and experimental characterization confirm that the material exhibits a stable single-phase high-entropy perovskite oxide structure. Under He as the sweep gas, the membrane achieved an oxygen permeation flux of 1.28 mL·cm−2·min−1 and operated stably for over 100 h (1 mm thick, 900 °C). In a 20% CO2/He atmosphere, the flux remained above 0.92 mL·cm−2·min−1 for over 100 h, demonstrating good CO2 tolerance. Notably, when the sweep gas is returned to the pure He atmosphere, the oxygen permeation flux fully recovers to 1.28 mL·cm−2·min−1, with no evidence of leakage. These findings indicate that the proposed B-site doping strategy can break the trade-off between oxygen permeability and structural stability in conventional perovskite membranes. This advancement supports the industrialization of oxygen permeable membranes and offers valuable theoretical guidance for the design of high-performance perovskite materials. Full article
Show Figures

Figure 1

Back to TopTop