Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = CEF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1411 KiB  
Article
Enhancing Antibiotic Effect by Photodynamic: The Case of Klebsiella pneumoniae
by Koteswara Rao Yerra and Vanderlei S. Bagnato
Antibiotics 2025, 14(8), 766; https://doi.org/10.3390/antibiotics14080766 - 29 Jul 2025
Viewed by 108
Abstract
Background: The effect of antibiotics can be severely affected by external factors. Combining the oxidative impact of photodynamic therapy with antibiotics is largely unexplored, which may result in positive results with great impact on clinical applications. In particular, that can be relevant in [...] Read more.
Background: The effect of antibiotics can be severely affected by external factors. Combining the oxidative impact of photodynamic therapy with antibiotics is largely unexplored, which may result in positive results with great impact on clinical applications. In particular, that can be relevant in the case of antibiotic resistance. Objectives: In this study, we examined the effects of aPDT using the photosensitizers (PSs), methylene blue (MB) or Photodithazine (PDZ), both alone and in combination with the antibiotics ciprofloxacin (CIP), gentamicin (GEN), and ceftriaxone (CEF), against the Gram-negative bacterium Klebsiella pneumoniae. Methods: A standard suspension of K. pneumoniae was subjected to PDT with varying doses of MB and PDZ solutions, using a 75 mW/cm2 LED emitting at 660 nm with an energy of 15 J/cm2. The MICs of CIP, GEN, and CEF were determined using the broth dilution method. We also tested the photosensitizers MB or PDZ as potentiating agents for synergistic combinations with antibiotics CIP, GEN, and CEF against K. pneumoniae. Results: The results showed that MB was more effective in inhibiting survival and killing K. pneumoniae compared to PDZ. The tested antibiotics CIP, GEN, and CEF suppressed bacterial growth (as shown by reduced MIC values) and effectively killed K. pneumoniae (reduced Log CFU/mL). While antibiotic treatment or aPDT alone showed a moderate effect (1 Log10 to 2 Log10 CFU reduction) on killing K. pneumoniae, the combination therapy significantly increased bacterial death, resulting in a ≥3 Log10 to 6 Log10 CFU reduction. Conclusions: Our study indicates that pre-treating bacteria with PDT makes them more susceptible to antibiotics and could serve as an alternative for treating local infections caused by resistant bacteria or even reduce the required antibiotic dosage. This work explores numerous possible combinations of PDT and antibiotics, emphasizing their interdependence in controlling infections and the unique properties each PS-antibiotic combination offers. Clinical application for the combination is a promising reality since both are individually already adopted in clinical use. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 242
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

22 pages, 4670 KiB  
Article
Integrated Carbon Flow Tracing and Topology Reconfiguration for Low-Carbon Optimal Dispatch in DG-Embedded Distribution Networks
by Rao Fu, Guofeng Xia, Sining Hu, Yuhao Zhang, Handaoyuan Li and Jiachuan Shi
Mathematics 2025, 13(15), 2395; https://doi.org/10.3390/math13152395 - 25 Jul 2025
Viewed by 217
Abstract
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging [...] Read more.
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging “carbon perspective” requirements, this research integrated Carbon Emission Flow (CEF) theory to analyze spatiotemporal carbon flow characteristics within DN. Recognizing the limitations of the single-objective approach in balancing multifaceted demands, a multi-objective optimization model was formulated. This model could capture the spatiotemporal dynamics of nodal carbon intensity for low-carbon dispatching while comprehensively incorporating diverse operational economic costs to achieve collaborative low-carbon and economic dispatch in DG-embedded DN. To efficiently solve this complex constrained model, a novel Q-learning enhanced Moth Flame Optimization (QMFO) algorithm was proposed. QMFO synergized the global search capability of the Moth Flame Optimization (MFO) algorithm with the adaptive decision-making of Q-learning, embedding an adaptive exploration strategy to significantly enhance solution efficiency and accuracy for multi-objective problems. Validated on a 16-node three-feeder system, the method co-optimizes switch configurations and DG outputs, achieving dual objectives of loss reduction and carbon emission mitigation while preserving radial topology feasibility. Full article
(This article belongs to the Special Issue Mathematical and Computational Methods for Mechanics and Engineering)
Show Figures

Figure 1

21 pages, 3397 KiB  
Article
Climate-Driven Habitat Shifts and Conservation Implications for the Submediterranean Oak Quercus pyrenaica Willd.
by Isabel Passos, Carlos Vila-Viçosa, João Gonçalves, Albano Figueiredo and Maria Margarida Ribeiro
Forests 2025, 16(8), 1226; https://doi.org/10.3390/f16081226 - 25 Jul 2025
Viewed by 956
Abstract
Climate change poses a major threat to forests, impacting the distribution and viability of key species. Quercus pyrenaica Willd., a marcescent oak endemic to the Iberian Peninsula (Portugal and Spain) and southwestern France and a structural species in submediterranean forests, is particularly susceptible [...] Read more.
Climate change poses a major threat to forests, impacting the distribution and viability of key species. Quercus pyrenaica Willd., a marcescent oak endemic to the Iberian Peninsula (Portugal and Spain) and southwestern France and a structural species in submediterranean forests, is particularly susceptible to shifts in temperature and precipitation patterns. Aiming to assess its potential loss of suitable area under future climate scenarios, we developed high-resolution spatial distribution models to project the future habitat suitability of Q. pyrenaica under two climate change scenarios (SSP3-7.0 and SSP5-8.5) for the periods 2070 and 2100. Our model, which has an excellent predictive performance (AUC of 0.971 and a TSS of 0.834), indicates a predominantly northward shift in the potential distribution of the species, accompanied by substantial habitat loss in southern and lowland regions. Long-term potential suitable area may shrink to 42% of that currently available. This, combined with the limited natural dispersal capacity of the species, highlights the urgency of targeted management and conservation strategies. These results offer critical insights to inform conservation strategies and forest management under ongoing climate change. Full article
Show Figures

Figure 1

15 pages, 1325 KiB  
Article
Comparative Effects of Intermittent vs. Constant Ceftiofur Hydrochloride Exposure on Staphylococcus aureus In Vitro
by Junli Wang, Chongyang Li, Fanxi Guo and Zugong Yu
Antibiotics 2025, 14(7), 686; https://doi.org/10.3390/antibiotics14070686 - 6 Jul 2025
Viewed by 364
Abstract
Background/Objectives: Ceftiofur hydrochloride (CEF) is a third-generation cephalosporin widely used in cattle to treat various disease. The recommended dosage was 1.1 to 2.2 mg/kg BW for 3 to 5 consecutive days by intramuscular or subcutaneous injection. Incomplete treatment, overuse, or misuse, often observed [...] Read more.
Background/Objectives: Ceftiofur hydrochloride (CEF) is a third-generation cephalosporin widely used in cattle to treat various disease. The recommended dosage was 1.1 to 2.2 mg/kg BW for 3 to 5 consecutive days by intramuscular or subcutaneous injection. Incomplete treatment, overuse, or misuse, often observed in clinical practice, are major contributors to resistance development. This study aims to explore how different concentrations, durations, and dosing frequencies affect susceptibility and bactericidal efficacy of Staphylococcus aureus to optimize CEF dosage regimens. Methods: First, CEF was intermittently administered at 1/2 × minimum inhibitory concentration (MIC), 2 × MIC, 6 × MIC, and 100 × MIC for 30 cycles. Second, CEF was continuously administered for 48, 72, 96, 120, 144, and 168 h. Bacterial susceptibility, regrowth, survival rate, and the emergence of persisters or tolerant phenotypes were assessed. Genetic mutations were identified by whole-genome resequencing. Membrane permeability, integrity, and efflux pump activity were analyzed to elucidate the mechanism of CEF. Results: After 30 cycles, the MIC increased eight-fold in the 2 × MIC group. No significant MIC increase was found in other groups, but a progression from susceptibility to persistence and then to tolerance was observed in the 100 × MIC intermittent group. The survival rate increased both in the 2 × MIC and 100 × MIC groups. With continuous exposure to ≥6 × MIC over 120 h, strains were completely eradicated without MIC increase. Resistance-associated single-nucleotide polymorphism (SNP) mutations were detected only in strains of the 2 × MIC and 100 × MIC intermittent groups. CEF altered the membrane hydrophobicity, damaging membrane integrity after 30 cycles. Conclusions: These findings suggest that high-dose, prolonged exposure is more effective for eliminating Staphylococcus aureus and avoiding resistance, whereas intermittent dosing may promote persistence, tolerance, and resistance evolution. Full article
Show Figures

Figure 1

26 pages, 14647 KiB  
Article
Coordinated Dispatch Between Agricultural Park and Distribution Network: A Stackelberg Game Based on Carbon Emission Flow
by Jiahao Gou, Hailong Cui and Xia Zhao
Processes 2025, 13(7), 2102; https://doi.org/10.3390/pr13072102 - 2 Jul 2025
Viewed by 260
Abstract
With the acceleration of global climate warming and agricultural modernization, the energy and carbon emission issues of agricultural parks (APs) have drawn increasing attention. An AP equipped with biogas-based combined heat and power (CHP) generation and photovoltaic systems serves as a prosumer terminal [...] Read more.
With the acceleration of global climate warming and agricultural modernization, the energy and carbon emission issues of agricultural parks (APs) have drawn increasing attention. An AP equipped with biogas-based combined heat and power (CHP) generation and photovoltaic systems serves as a prosumer terminal in a distribution network (DN). This paper introduces carbon emission flow (CEF) theory into the coordinated dispatch of APs and DNs. First, a CEF model for APs is established. Then, based on this model, a carbon–energy coordinated dispatch is carried out under bidirectional CEF interaction between the park and DN. A bidirectional carbon tax mechanism is adopted to explore the low-carbon synergy potential between them. Finally, the Stackelberg game approach is employed to address the pricing of electricity purchase/sale and carbon taxes in a DN, and the particle swarm optimization algorithm is used for rapid generating solutions. The case study shows that the proposed CEF model can effectively determine CEF distribution in the park. Moreover, the proposed bidirectional carbon tax mechanism significantly enhances the low-carbon economic benefits of both the AP and the DN. Full article
(This article belongs to the Special Issue Modeling, Optimization, and Control of Distributed Energy Systems)
Show Figures

Figure 1

13 pages, 3063 KiB  
Article
Gastric Acid-Protective and Intestinal Targeted Nanogels Enable Anti-Bacterial Activity of Cefquinome
by Xianqiang Li, Tianhui Wang, Shuo Han, Jinhuan Liu, Xiuping Zhang, Zhiqiang Zhou, Ali Sobhy Dawood and Wanhe Luo
Gels 2025, 11(7), 503; https://doi.org/10.3390/gels11070503 - 27 Jun 2025
Viewed by 294
Abstract
To enhance the antibacterial activity of cefquinome (CEF) against Escherichia coli, a Carboxymethylcellulose sodium (CMCNa)/D-Mannosamine hydrochloride (DMH)-based nanogels delivery system capable of protecting CEF from gastric acid degradation while enabling intestinal sustained release and targeted antibacterial enhancement was developed. Systematic research was [...] Read more.
To enhance the antibacterial activity of cefquinome (CEF) against Escherichia coli, a Carboxymethylcellulose sodium (CMCNa)/D-Mannosamine hydrochloride (DMH)-based nanogels delivery system capable of protecting CEF from gastric acid degradation while enabling intestinal sustained release and targeted antibacterial enhancement was developed. Systematic research was conducted on the best formulation, physicochemical characteristics, stability, gastrointestinal fluid-responsiveness, and antibacterial activity of the optimal formulation. The results showed that the optimized CEF nanogels demonstrated an enhanced loading capacity (13.0% ± 1.7%) and encapsulation efficiency (52.2% ± 1.0%). CEF nanogels appeared as uniform transparent spheres with a smooth surface under transmission electron microscopy and exhibited a three-dimensional porous network via scanning electron microscopy. More importantly, stability studies revealed that the CEF nanogels hold satisfactory stability. In addition, the formed CEF nanogels could effectively avoid the destruction of CEF by gastric acid in simulated gastric juice. In addition, they had the effect of slow and targeted release in the simulated intestinal tract. Compared to the free CEF, CEF nanogels have stronger antibacterial activity against Escherichia coli. In short, the prepared CEF nanogels had stronger antibacterial activity than CEF through sustained and targeted release. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Figure 1

20 pages, 3538 KiB  
Article
Technology for Boosting Sustainability: A Web App-Based Information Model for Boosting Residual Biomass Recovery
by Tiago Bastos, João Matias, Leonel Nunes and Leonor Teixeira
Land 2025, 14(7), 1332; https://doi.org/10.3390/land14071332 - 23 Jun 2025
Viewed by 361
Abstract
There is currently a growing need for energy, which, combined with climate change, has increased the focus on renewable energies. Among them, biomass energy takes the lion’s share, and this can create forestry pressures or lead to the excessive consumption of resources. To [...] Read more.
There is currently a growing need for energy, which, combined with climate change, has increased the focus on renewable energies. Among them, biomass energy takes the lion’s share, and this can create forestry pressures or lead to the excessive consumption of resources. To mitigate this situation, residual biomass from agroforestry has emerged as a valuable resource, supporting energy transition and mitigating these challenges. However, this biomass is traditionally burned, leading to large fires, as a result of the high logistical costs associated with the lack of information/coordination between those involved in the chain. Therefore, the primary objective of this work is to address this gap by presenting an information management model based on a web application, which aims to increase transparency, integrate stakeholders, and improve logistical decisions. In methodological terms, this study follows the principles of human-centered design, as well as an agile software development methodology. The results include the creation of a new, flexible information management ecosystem, which allows each stakeholder to take on different roles according to their needs in the chain. In addition, lean information management principles have been included in order to reduce waste in information content and flow. Full article
Show Figures

Figure 1

30 pages, 3453 KiB  
Article
Addressing Weather Data Gaps in Reference Crop Evapotranspiration Estimation: A Case Study in Guinea-Bissau, West Africa
by Gabriel Garbanzo, Jesus Céspedes, Marina Temudo, Tiago B. Ramos, Maria do Rosário Cameira, Luis Santos Pereira and Paula Paredes
Hydrology 2025, 12(7), 161; https://doi.org/10.3390/hydrology12070161 - 22 Jun 2025
Viewed by 633
Abstract
Crop water use (ETc) is typically estimated as the product of crop evapotranspiration (ETo) and a crop coefficient (Kc). However, the estimation of ETo requires various meteorological data, which are often unavailable or of poor quality, [...] Read more.
Crop water use (ETc) is typically estimated as the product of crop evapotranspiration (ETo) and a crop coefficient (Kc). However, the estimation of ETo requires various meteorological data, which are often unavailable or of poor quality, particularly in countries such as Guinea-Bissau, where the maintenance of weather stations is frequently inadequate. The present study aimed to assess alternative approaches, as outlined in the revised FAO56 guidelines, for estimating ETo when only temperature data is available. These included the use of various predictors for the missing climatic variables, referred to as the Penman–Monteith temperature (PMT) approach. New approaches were developed, with a particular focus on optimizing the predictors at the cluster level. Furthermore, different gridded weather datasets (AgERA5 and MERRA-2 reanalysis) were evaluated for ETo estimation to overcome the lack of ground-truth data and upscale ETo estimates from point to regional and national levels, thereby supporting water management decision-making. The results demonstrate that the PMT is generally accurate, with RMSE not exceeding 26% of the average daily ETo. With regard to shortwave radiation, using the temperature difference as a predictor in combination with cluster-focused multiple linear regression equations for estimating the radiation adjustment coefficient (kRs) yielded accurate results. ETo estimates derived using raw (uncorrected) reanalysis data exhibit considerable bias and high RMSE (1.07–1.57 mm d−1), indicating the need for bias correction. Various correction methods were tested, with the simple bias correction delivering the best overall performance, reducing RMSE to 0.99 mm d−1 and 1.05 mm d−1 for AgERA5 and MERRA-2, respectively, and achieving a normalized RMSE of about 22%. After implementing bias correction, the AgERA5 was found to be superior to the MERRA-2 for all the studied sites. Furthermore, the PMT outperformed the bias-corrected reanalysis in estimating ETo. It was concluded that PMT-ETo can be recommended for further application in countries with limited access to ground-truth meteorological data, as it requires only basic technical skills. It can also be used alongside reanalysis data, which demands more advanced expertise, particularly for data retrieval and processing. Full article
Show Figures

Figure 1

18 pages, 2791 KiB  
Article
Assessment of Biodegradation Mechanisms of Ceftiofur Sodium by Escherichia sp. CS-1 and Insights from Transcriptomic Analysis
by Meng-Yang Yan, Cai-Hong Zhao, Jie Wu, Adil Mohammad, Yi-Tao Li, Liang-Bo Liu, Yi-Bo Cao, Xing-Mei Deng, Jia Guo, Hui Zhang, Hong-Su He and Zhi-Hua Sun
Microorganisms 2025, 13(6), 1404; https://doi.org/10.3390/microorganisms13061404 - 16 Jun 2025
Viewed by 477
Abstract
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes [...] Read more.
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). This situation poses substantial challenges to both environmental integrity and public health. Currently, research on the biodegradation of CFS is limited. In this study, we isolated a strain of Escherichia coli, designated E. coli CS-1, a Gram-negative, rod-shaped bacterium capable of utilizing CFS as its sole carbon source, from fecal samples collected from hog farms. We investigated the effects of initial CFS concentration, pH, temperature, and inoculum size on the degradation of CFS by E. coli CS-1 through a series of single-factor experiments conducted under aerobic conditions. The results indicated that E. coli CS-1 achieved the highest CFS degradation rate under the following optimal conditions: an initial CFS concentration of 50 mg/L, a pH of 7.0, a temperature of 37 °C, and an inoculum size of 6% (volume fraction). Under these conditions, E. coli CS-1 was able to completely degrade CFS within 60 h. Additionally, E. coli CS-1 exhibited significant capabilities for CFS degradation. In this study, six major degradation products of (CFS) were identified by UPLC–MS/MS: desfuroyl ceftiofur, 5-hydroxymethyl-2-furaldehyde, 7-aminodesacetoxycephalosporanic acid, 5-hydroxy-2-furoic acid, 2-furoic acid, and CEF-aldehyde. Based on these findings, two degradation pathways are proposed. Pathway I: CFS is hydrolyzed to break the sulfur–carbon (S–C) bond, generating two products. These products undergo subsequent hydrolysis and redox reactions for gradual transformation. Pathway II: The β-lactam bond of CFS is enzymatically cleaved, forming CEF-aldehyde as the primary degradation product, which is consistent with the biodegradation mechanism of most β-lactam antibiotics via β-lactam ring cleavage. Transcriptome sequencing revealed that 758 genes essential for degradation were upregulated in response to the hydrolysis and redox processes associated with CFS. Furthermore, the differentially expressed genes (DEGs) of E. coli CS-1 were functionally annotated using a combination of genomics and bioinformatics approaches. This study highlights the potential of E. coli CS-1 to degrade CFS in the environment and proposes hypotheses regarding the possible biodegradation mechanisms of CFS for future research. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Figure 1

14 pages, 2607 KiB  
Article
Spontaneous Flora as Reservoir for the Survival and Spread of the Almond Anthracnose Pathogen (Colletotrichum godetiae) in Intensive Almond Orchards
by Madalena Ramos, Rodrigo Maurício, Vicelina Sousa and Pedro Talhinhas
Plants 2025, 14(12), 1762; https://doi.org/10.3390/plants14121762 - 9 Jun 2025
Viewed by 445
Abstract
Almond anthracnose, primarily caused by Colletotrichum godetiae, severely affects intensively irrigated almond orchards. This polyphagous pathogen is dispersed among plants by rain splashes. Consequently, weeds may contribute to the survival and dispersal of the inoculum during the almond tree’s dormant period. This [...] Read more.
Almond anthracnose, primarily caused by Colletotrichum godetiae, severely affects intensively irrigated almond orchards. This polyphagous pathogen is dispersed among plants by rain splashes. Consequently, weeds may contribute to the survival and dispersal of the inoculum during the almond tree’s dormant period. This study investigated how C. godetiae interacts with plants from various species in the spontaneous flora of almond orchards and how these plant species may influence the maintenance and spread of inoculum and the disease. After inoculating a collection of plants with C. godetiae conidia, it was observed that the fungus can cause symptoms and signs on Lathyrus tingitanus and on Trifolium pratense and act as an epiphyte with the ability to maintain and multiply conidia on Conyza canadensis, Medicago orbicularis, Polygonum aviculare, Scorpiurus sulcatus, Taraxacum officinale, and Trifolium vesiculosum, thus contributing to the survival and multiplication of the inoculum. Conidia germinated and produced appressoria on Andryala integrifolia, Cichorium intybus, Medicago polymorpha, Medicago sativa, Torilis arvensis, Picris echioides, and Rumex pulcher, but no further development was detected, suggesting that these plants may limit the spread of the pathogen. A better understanding of the susceptibility of almond orchard flora will support optimized vegetation management to reduce inoculum reservoirs. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

14 pages, 1211 KiB  
Article
AI-Aided Crystallization Elution Fractionation (CEF) Assessment of Polyolefin Resins
by Lorenzo Brighel, Gabriella Maria Lucia Scuotto, Giuseppe Antinucci, Roberta Cipullo and Vincenzo Busico
Polymers 2025, 17(12), 1597; https://doi.org/10.3390/polym17121597 - 7 Jun 2025
Viewed by 597
Abstract
Artificial Intelligence (AI) tools and methods are dramatically innovating the application protocols of most polymer characterization techniques. In this paper, we demonstrate that, with the aid of custom-made and properly trained machine learning algorithms, analytical Crystallization Elution Fractionation (aCEF) can be changed from [...] Read more.
Artificial Intelligence (AI) tools and methods are dramatically innovating the application protocols of most polymer characterization techniques. In this paper, we demonstrate that, with the aid of custom-made and properly trained machine learning algorithms, analytical Crystallization Elution Fractionation (aCEF) can be changed from an ancillary to a standalone approach usable to identify and categorize commercially relevant polyolefin materials without any prior information. The proposed protocols are fully operational for monomaterials, whereas for multimaterials, integration with AI-aided 13C NMR is a realistic intermediate step. Full article
(This article belongs to the Special Issue Scientific Machine Learning for Polymeric Materials)
Show Figures

Graphical abstract

17 pages, 6782 KiB  
Article
Selective Adsorption of Fluorine Contaminants from Spiked Wastewater via a Novel FeIII–CeIV-Based Layered Hydroxide Composite and Mechanism Analysis of Colloids and Surfaces
by Jing Du, Yanyan Zhao, Tao Huang, Hui Li and Jia He
Materials 2025, 18(11), 2665; https://doi.org/10.3390/ma18112665 - 5 Jun 2025
Viewed by 471
Abstract
Excessive intake of fluorine (F) over time can lead to acute or chronic fluorosis. In this study, a novel FeIII–CeIV-based layered hydroxide composite (DD-LHC) was synthesized and applied in both batch and column modes to develop new adsorbent materials [...] Read more.
Excessive intake of fluorine (F) over time can lead to acute or chronic fluorosis. In this study, a novel FeIII–CeIV-based layered hydroxide composite (DD-LHC) was synthesized and applied in both batch and column modes to develop new adsorbent materials and to obtain efficient removal of fluorine (F) anions from wastewater. DD-LHC achieved better adsorption results and material stability compared to green rusts (GR, FeII–FeIII hydroxide). The maximum adsorption capacity of DD-LHC for F was 44.68 mmol·g−1, obtained at an initial pH of 5 and initial concentration of 80 mM. The substitution of CeIV for FeII in the intercalated layered structure of GR potentially changed the reaction pathways for F removal, which are typically dominant in the layered double hydroxides (LDHs) of FeII–FeIII. The molecular structure of layered hydroxides combined with the three-dimensional (3D) metal frame of Fe-O-Ce was integrated into DD-LHC, resulting in nanoscale particle morphologies distinct from those of GR. The pseudo-first-order kinetic model effectively described the whole adsorption process of DD-LHC for F. DD-LHC exhibited notable selectivity for F across a wide pH range. The removal process of F by DD-LHC was dominated by Ce–F coordination bonds, with additional influences from auxiliary pathways to different extents. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 804 KiB  
Article
A Community Empowerment Framework to Promote Social Connection and Engagement of South Sudanese Youth in Australia
by Troy Pittaway, Elisha Riggs and Jaya A. R. Dantas
Int. J. Environ. Res. Public Health 2025, 22(6), 865; https://doi.org/10.3390/ijerph22060865 - 31 May 2025
Viewed by 537
Abstract
Background: Significant factors impact the wellbeing of South Sudanese youth who settle in Australia. This article proposes a community empowerment framework based on outcomes from research and community feedback undertaken in Melbourne, with South Sudanese youth and elders to improve social connection and [...] Read more.
Background: Significant factors impact the wellbeing of South Sudanese youth who settle in Australia. This article proposes a community empowerment framework based on outcomes from research and community feedback undertaken in Melbourne, with South Sudanese youth and elders to improve social connection and community engagement of the youth. Methods: Twenty-three semi-structured interviews, four focus groups and two community forums were conducted using qualitative, case study methodology. Data were collected from South Sudanese youth aged 14 to 21 years, social workers, elders and parents from the South Sudanese community. Inductive thematic analysis was used to gain an understanding of the social issues facing South Sudanese youth, Results: Four themes—health and wellbeing, the experience of racism, sports and intergenerational conflict—were identified during analysis. These themes were then used to develop and propose a Community Empowerment Framework (CEF), that outlines strategies to empower South Sudanese youth to improve their wellbeing at different levels: personal empowerment, career empowerment and community empowerment (both internal and external). Conclusions: The CEF provides a community-informed model for service providers and policy makers to promote positive community engagement and social connection to improve the lives of South Sudanese youth living in Australia. Full article
Show Figures

Figure 1

12 pages, 254 KiB  
Article
The Association of Insomnia with Febrile Neutropenia, Leucopenia, and Infection in Women Receiving Adjuvant Chemotherapy for Breast Cancer
by Audreylie Lemelin, Josée Savard, Michelle Chen, Lois E. Shepherd, Margot Burnell, Mark N. Levine, Bingshu E. Chen and Julie Lemieux
Cancers 2025, 17(11), 1838; https://doi.org/10.3390/cancers17111838 - 30 May 2025
Viewed by 514
Abstract
Background/Objectives: Insomnia is associated with immune function. This study evaluated the association between insomnia and febrile neutropenia in women treated with adjuvant chemotherapy for breast cancer. Methods: This secondary analysis used data from the Canadian Cancer Trial Group MA.21 trial, which [...] Read more.
Background/Objectives: Insomnia is associated with immune function. This study evaluated the association between insomnia and febrile neutropenia in women treated with adjuvant chemotherapy for breast cancer. Methods: This secondary analysis used data from the Canadian Cancer Trial Group MA.21 trial, which compared three chemotherapy regimens (CEF, EC/T dose-dense, or AC/T) in 2104 women with high-risk locoregional breast cancer. A total of 1731 patients completed the EORTC QLQ-C30 questionnaire. We compared “insomnia patients” with patients considered “good sleepers” based on the sleep item of this questionnaire. The primary endpoint was the occurrence of febrile neutropenia. Secondary endpoints were the occurrences of leucopenia and infection. Chemotherapy dose reduction was added as a secondary outcome in an unplanned analysis. Results: Patients with insomnia (16.3%) had a significantly higher rate of febrile neutropenia than good sleepers (12.2%; p = 0.01). After controlling for various confounders, the contribution of insomnia in explaining febrile neutropenia remained statistically significant (OR 1.45, 95% CI 1.07–1.97, p = 0.02). Chemotherapy dose reductions were significantly more frequent in patients with insomnia (30.6%) than in good sleepers (21.8%; p < 0.0001). The relationship remained significant in the multivariate analysis (OR 1.67, 95% CI 1.30–2.15, p < 0.0001). Conclusions: In the MA21 trial, insomnia was associated with febrile neutropenia. Furthermore, chemotherapy dose reductions were more common in women with insomnia. These results suggest that the role of insomnia in potential cancer outcomes needs to be confirmed in other studies, given the possible implication of dose reductions on the prognosis of women receiving chemotherapy for breast cancer. Full article
(This article belongs to the Section Cancer Pathophysiology)
Back to TopTop