Selective Adsorption of Fluorine Contaminants from Spiked Wastewater via a Novel FeIII–CeIV-Based Layered Hydroxide Composite and Mechanism Analysis of Colloids and Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and the Synthesis of DD-LHC
2.2. Experimental Design
2.2.1. Batch-Mode Adsorption Experiments
2.2.2. Column-Mode Adsorption Experiments
2.3. Analysis and Calculations
3. Results
3.1. Synthesis and Characterization of GR and DD-LHC
3.2. Equilibrium Adsorption Experiment
3.2.1. Effect of pH and Concentration on Adsorption
3.2.2. Adsorption Kinetics Under Different pH Conditions
3.2.3. Selectivity Characteristics
3.3. Optimization for F Removal in Column Mode
4. Discussion
4.1. Mechanism Explorations
4.2. Comprehensive Discussion on Removal Mechanisms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gan, C.D.; Jia, Y.B.; Yang, J.Y. Remediation of fluoride contaminated soil with nano-hydroxyapatite amendment: Response of soil fluoride bioavailability and microbial communities. J. Hazard. Mater 2021, 405, 124694. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Kumari, B.; Sinam, G.; Kriti; Kumar, N.; Mallick, S. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective – a review. Environ. Pollut. 2018, 239, 95. [Google Scholar] [CrossRef]
- Shu, J.C.; Chen, M.J.; Wu, H.P.; Li, B.B.; Wang, B.; Li, B.; Liu, R.L.; Liu, Z.H. An innovative method for synergistic stabilization/solidification of Mn2+, NH4+-N, PO43− and F− in electrolytic manganese residue and phosphogypsum. J. Hazard. Mater. 2019, 376, 212. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, L.F.; Coreno, O.; Nava, J.L.; Carreno, G. Removal of fluoride and hydrated silica from underground water by electrocoagulation in a flow channel reactor. Chemosphere 2020, 244, 125417. [Google Scholar] [CrossRef]
- Yue, B.J.; Zhang, X.H.; Li, W.P.; Wang, J.D.; Sun, Z.L.; Niu, R.Y. Fluoride exposure altered metabolomic profile in rat serum. Chemosphere 2020, 258, 127387. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.S.; Bezbaruah, A.N. Citric acid modified granular activated carbon for enhanced defluoridation. Chemosphere 2020, 252, 126639. [Google Scholar] [CrossRef]
- Abtahi, M.; Koolivand, A.; Dobaradaran, S.; Yaghmaeian, K.; Mohseni-Bandpei, A.; Khaloo, S.S.; Jorfi, S.; Saeedi, R. Defluoridation of synthetic and natural waters by polyaluminum chloride-chitosan (PACl-Ch) composite coagulant. Water Sci. Technol.-Water Supply 2018, 18, 259. [Google Scholar] [CrossRef]
- Pang, T.; Chan, T.S.A.; Jande, Y.A.C.; Shen, J.J. Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. Chemosphere 2020, 255, 126950. [Google Scholar] [CrossRef]
- Min, X.B.; Zhu, M.F.; He, Y.J.; Wang, Y.Y.; Deng, H.Y.; Wang, S.; Jin, L.F.; Wang, H.Y.; Zhang, L.Y.; Chai, L.Y. Selective removal of Cl− and F− from complex solution via electrochemistry deionization with bismuth/reduced graphene oxide composite electrode. Chemosphere 2020, 251, 126319. [Google Scholar] [CrossRef]
- He, J.J.; Xu, Y.H.; Xiong, Z.K.; Lai, B.; Sun, Y.; Yang, Y.; Yang, L.W. The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent. Chemosphere 2020, 256, 127056. [Google Scholar] [CrossRef]
- Hegde, R.M.; Rego, R.M.; Potla, K.M.; Kurkuri, M.D.; Kigga, M. Bio-inspired materials for defluoridation of water: A review. Chemosphere 2020, 253, 126657. [Google Scholar] [CrossRef]
- Luo, C.H.; Tian, J.; Zhu, P.L.; Zhou, B.; Bu, D.; Lu, X.B. Simultaneous removal of fluoride and arsenic in geothermal water in Tibet using modified yak dung biochar as an adsorbent. Roy. Soc. Open Sci. 2018, 5, 181266. [Google Scholar]
- Etawi, H.; Al-Rawajfeh, A.E.; Al-Ma, A.; Al-Amaireh, M.N.; Alfwaeer, R.N.; Al-Hawamdeh, S.; Al Dwairi, R.A.; Ababneh, S.A. Efficiency and mechanism of water defluoridation by mixtures of Jordanian Zeolite, Pozzolana, Feldspar, and Tripoli. Desalin Water Treat. 2018, 125, 75. [Google Scholar] [CrossRef]
- Bibi, S.; Farooqi, A.; Yasmin, A.; Kamran, M.A.; Niazi, N.K. Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments. Int. J. Phytoremediation 2017, 19, 1029. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.W.; Han, Y.S.; Lee, J.; Jang, J.Y.; Yim, G.J.; Cho, S.; Lee, J.S.; Cheong, Y.W. Water defluorination using granular composite synthesized via hydrothermal treatment of polyaluminum chloride (PAC) sludge. Chemosphere 2020, 247, 125899. [Google Scholar] [CrossRef]
- Mejia, G.V.; Solache-Rios, M.; Martinez-Miranda, V. Removal of fluoride and arsenate ions from aqueous solutions and natural water by modified natural materials. Desalin. Water Treat. 2017, 85, 271. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Environ. Manag. 2015, 162, 306. [Google Scholar] [CrossRef]
- Teutli-Sequeira, A.; Solache-Rios, M.; Martinez-Miranda, V.; Linares-Hernandez, I. Behavior of fluoride removal by aluminum modified zeolitic tuff and hematite in column systems and the thermodynamic parameters of the process. Water Air Soil. Poll. 2015, 226, 239. [Google Scholar] [CrossRef]
- Prathna, T.C.; Sitompul, D.N.; Sharma, S.K.; Kennedy, M. Synthesis, characterization and performance of iron oxide/alumina-based nanoadsorbents for simultaneous arsenic and fluoride removal. Desalin. Water Treat. 2018, 104, 121. [Google Scholar] [CrossRef]
- Mejia, G.V.; Martinez-Miranda, V.; Fall, C.; Linares-Hernandez, I.; Solache-Rios, M. Comparison of Fe–Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F− and As(V). Environ. Technol. 2015, 37, 558. [Google Scholar] [CrossRef]
- Wu, L.P.; Lin, X.Y.; Zhou, X.B.; Luo, X.G. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Appl. Surf. Sci. 2016, 384, 466. [Google Scholar] [CrossRef]
- Oladoja, N.A.; Hu, S.; Drewes, J.E.; Helmreich, B. Insight into the defluoridation efficiency of nano magnesium oxide in groundwater system contaminated with hexavalent chromium and fluoride. Sep. Purif. Technol. 2016, 162, 195. [Google Scholar] [CrossRef]
- Zhou, G.; Meng, Q.; Li, S.; Song, R.; Wang, Q.; Xu, Z.; Xing, Z. Novel magnetic metal-organic framework derivative: An adsorbent for efficient removal of fluorine-containing wastewater in mines. J. Environ. Chem. Eng. 2022, 10, 108421. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Gu, Y.; Lin, H.; Jie, B.; Zhang, Q.; Zhang, X. Adsorption property of fluoride in water by metal organic framework: Optimization of the process by response surface methodology technique. Surf. Interfaces 2022, 28, 101649. [Google Scholar] [CrossRef]
- Lv, J.-F.; Zheng, Y.-X.; Tong, X.; Li, X. Clean utilization of waste rocks as a novel adsorbent to treat the beneficiation wastewater containing arsenic and fluorine. J. Clean. Prod. 2021, 293, 126160. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, X.; Zhang, Y.; Zhang, X.; Ngo, H.H.; Liu, Y.; Jiang, W.; Tan, X.; Wang, X.; Zhang, J. Activated nano-Al2O3 loaded on polyurethane foam as a potential carrier for fluorine removal. J. Water Process Eng. 2021, 44, 102444. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, S.W.; Zhou, L.L.; Liu, L.F. Electrokinetics couples with the adsorption of activated carbon-supported hydroxycarbonate green rust that enhances the removal of Sr cations from the stock solution in batch and column. Sep. Purif. Technol. 2021, 265, 118531. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, S.-W.; Xie, J.; Zhou, L.; Liu, L.-F. Effective adsorption of quadrivalent cerium by synthesized laurylsulfonate green rust in a central composite design. J. Environ. Sci. 2021, 107, 14. [Google Scholar] [CrossRef]
- Bhave, C.; Shejwalkar, S. A review on the synthesis and applications of green rust for environmental pollutant remediation. Int. J. Environ. Sci. Te 2018, 15, 1243. [Google Scholar] [CrossRef]
- Usman, M.; Byrne, J.M.; Chaudhary, A.; Orsetti, S.; Hanna, K.; Ruby, C.; Kappler, A.; Haderlein, S.B. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chem. Rev. 2018, 118, 3251. [Google Scholar] [CrossRef]
- Huang, T.; Su, Z.; Dai, Y.; Zhou, L. Enhancement of the heterogeneous adsorption and incorporation of uraniumVIcaused by the intercalation of β-cyclodextrin into the green rust. Environ. Pollut. 2021, 290, 118002. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Bellazzi, S.; Caccamo, F.M.; Calatroni, S.; Milanese, C.; Baldi, M.; Abbà, A.; Sorlini, S.; Bertanza, G. Removal of Per- and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials. Sustainability 2023, 15, 13056. [Google Scholar] [CrossRef]
- Kameda, T.; Oba, J.; Yoshioka, T. Recyclable Mg–Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies. J. Hazard. Mater. 2015, 300, 475. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chem. Eng. J. 2013, 228, 731. [Google Scholar] [CrossRef]
- Najdanović, S.M.; Petrović, M.M.; Kostić, M.M.; Mitrović, J.Z.; Bojić, D.V.; Antonijević, M.D.; Bojić, A.L. Electrochemical synthesis and characterization of basic bismuth nitrate [Bi6O5(OH)3](NO3)5·2H2O: A potential highly efficient sorbent for textile reactive dye removal. Res. Chem. Intermed. 2020, 46, 665. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Dou, X.; Zhao, B.; Yang, M. Fluoride adsorption on an Fe–Al–Ce trimetal hydrous oxide: Characterization of adsorption sites and adsorbed fluorine complex species. Chem. Eng. J. 2013, 223, 364. [Google Scholar] [CrossRef]
- Dhillon, A.; Soni, S.K.; Kumar, D. Enhanced fluoride removal performance by Ce–Zn binary metal oxide: Adsorption characteristics and mechanism. J. Fluorine Chem. 2017, 199, 67. [Google Scholar] [CrossRef]
- Tao, W.; Zhong, H.; Pan, X.; Wang, P.; Wang, H.; Huang, L. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. J. Hazard. Mater. 2020, 384, 121373. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, S.W.; Liu, L.F.; Zhou, L.L. Green rust functionalized geopolymer of composite cementitious materials and its application on treating chromate in a holistic system. Chemosphere 2021, 263, 128319. [Google Scholar] [CrossRef]
- Gholami, Z.; Azqhandi, M.H.A.; Sabzevari, M.H.; Khazali, F. Evaluation of least square support vector machine, generalized regression neural network and response surface methodology in modeling the removal of Levofloxacin and Ciprofloxacin from aqueous solutions using ionic liquid @Graphene oxide@ ionic liquid NC. Alex. Eng. J. 2023, 73, 593. [Google Scholar] [CrossRef]
- Deylami, S.; Sabzevari, M.H.; Ghaedi, M.; Azqhandi, M.H.A.; Marahel, F. Efficient photodegradation of disulfine blue dye and Tetracycline over Robust and Green g-CN/Ag3VO4/PAN nanofibers: Experimental design, RSM, RBF-NN and ANFIS modeling. Process Saf. Environ. 2023, 169, 71. [Google Scholar] [CrossRef]
- Omidi, M.H.; Azqhandi, M.H.A.; Ghalami-Choobar, B. Synthesis, characterization, and application of graphene oxide/layered double hydroxide/poly acrylic acid nanocomposite (LDH-rGO-PAA NC) for tetracycline removal: A comprehensive chemometric study. Chemosphere 2022, 308, 136007. [Google Scholar] [CrossRef]
- Velinov, N.; Radović Vučić, M.; Petrović, M.; Najdanović, S.; Kostić, M.; Mitrović, J.; Bojić, A. The influence of various solvents’ polarity in the synthesis of wood biowaste sorbent: Evaluation of dye sorption. Biomass Convers. Biorefinery 2023, 13, 8139. [Google Scholar] [CrossRef]
- Naderi, K.; Foroughi, M.; Azqhandi, M.H.A. Tetracycline capture from aqueous solutions by nanocomposite of MWCNTs reinforced with glutaraldehyde cross-linked poly (vinyl alcohol)/chitosan. Chemosphere 2022, 303, 135124. [Google Scholar] [CrossRef]
- Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M.K. Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 479. [Google Scholar] [CrossRef] [PubMed]
- Najdanović, S.M.; Kostić, M.M.; Petrović, M.M.; Velinov, N.D.; Radović Vučić, M.D.; Mitrović, J.Z.; Bojić, A.L. Effect of Electrochemical Synthesis Parameters on the Morphology, Crystal and Chemical Structure, and Sorption Efficiency of Basic Bismuth Nitrates. Molecules 2025, 30, 1020. [Google Scholar] [CrossRef]
- Huang, T.; Song, D.; Zhou, L.; Tao, H.; Li, A.; Zhang, S.-W.; Liu, L.-F. Non-thermal plasma irradiated polyaluminum chloride for the heterogeneous adsorption enhancement of Cs+ and Sr2+ in a binary system. J. Hazard. Mater. 2022, 424, 127441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Q.; Xiao, H.; Mei, Z.; Lu, H.; Zhou, Y. Enhanced fluoride removal from water by non-thermal plasma modified CeO2/Mg–Fe layered double hydroxides. Appl. Clay Sci. 2013, 72, 117. [Google Scholar] [CrossRef]
- Kubra, K.T.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Khaleque, M.A.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Awual, M.E.; et al. The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf. A Physicochem. Eng. Asp. 2023, 667, 131415. [Google Scholar] [CrossRef]
- Velinov, N.; Najdanovic, S.; Vucic, M.R.; Mitrovic, J.; Kostic, M.; Bojic, D.; Bojic, A. Biosorption of Loperamide by Cellulosic-Al2O3 Hybrid: Optimization, Kinetic, Isothermal and Thermodynamic Studies. Cellul. Chem. Technol. 2019, 53, 176. [Google Scholar]
- Haldar, D.; Duarah, P.; Purkait, M.K. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere 2020, 251, 126388. [Google Scholar] [CrossRef]
- Lv, L.; He, J.; Wei, M.; Evans, D.G.; Zhou, Z. Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides: Kinetic and equilibrium studies. Water Res. 2007, 41, 1534. [Google Scholar] [CrossRef]
- Rochette, C.N.; Crassous, J.J.; Drechsler, M.; Gaboriaud, F.; Eloy, M.; de Gaudemaris, B.; Duval, J.F.L. Shell Structure of Natural Rubber Particles: Evidence of Chemical Stratification by Electrokinetics and Cryo-TEM. Langmuir 2013, 29, 14655. [Google Scholar] [CrossRef]
- Khomeyrani, S.F.N.; Ghalami-Choobar, B.; Azqhandi, M.H.A.; Foroughi, M. An enhanced removal of para-nitrophenol (PNP) from water media using CaAl-layered double hydroxide-loaded magnetic g-CN nanocomposite. J. Water Process Eng. 2022, 46, 102516. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Iqbal, J.; Islam, M.A.; Islam, A.; Khandaker, S.; Asiri, A.M.; Rahman, M.M. Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media. J. Environ. Chem. Eng. 2020, 8, 103591. [Google Scholar] [CrossRef]
- Kabir, M.M.; Mouna, S.S.P.; Akter, S.; Khandaker, S.; Didar-ul-Alam, M.; Bahadur, N.M.; Mohinuzzaman, M.; Islam, M.A.; Shenashen, M.A. Tea waste based natural adsorbent for toxic pollutant removal from waste samples. J. Mol. Liq. 2021, 322, 115012. [Google Scholar] [CrossRef]
- Khandaker, S.; Hossain, M.T.; Saha, P.K.; Rayhan, U.; Islam, A.; Choudhury, T.R.; Awual, M.R. Functionalized layered double hydroxides composite bio-adsorbent for efficient copper (II) ion encapsulation from wastewater. J. Environ. Manag. 2021, 300, 113782. [Google Scholar] [CrossRef]
- Kabir, M.M.; Akter, M.M.; Khandaker, S.; Gilroyed, B.H.; Didar-ul-Alam, M.; Hakim, M.; Awual, M.R. Highly effective agro-waste based functional green adsorbents for toxic chromium (VI) ion removal from wastewater. J. Mol. Liq. 2022, 347, 118327. [Google Scholar] [CrossRef]
- Hossain, M.T.; Khandaker, S.; Bashar, M.M.; Islam, A.; Ahmed, M.; Akter, R.; Alsukaibi, A.K.D.; Hasan, M.M.; Alshammari, H.M.; Kuba, T.; et al. Simultaneous toxic Cd (II) and Pb (II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J. Mol. Liq. 2022, 368, 120810. [Google Scholar] [CrossRef]
- Perez, J.P.H.; Schiefler, A.A.; Rubio, S.N.; Reischer, M.; Overheu, N.D.; Benning, L.G.; Tobler, D.J. Arsenic removal from natural groundwater using ‘green rust’: Solid phase stability and contaminant fate. J. Hazard. Mater. 2021, 401, 123327. [Google Scholar] [CrossRef] [PubMed]
- Agnel, M.I.; Grangeon, S.; Fauth, F.; Elkaim, E.; Claret, F.; Roulet, M.; Warmont, F.; Tournassat, C. Mechanistic and Thermodynamic Insights into Anion Exchange by Green Rus. Environ. Sci. Technol. 2020, 54, 851. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, S.; Toyohara, Y.; Saha, G.C.; Awual, M.R.; Kuba, T. Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J. Water Process Eng. 2020, 33, 101055. [Google Scholar] [CrossRef]
- Khandaker, S.; Toyohara, Y.; Kamida, S.; Kuba, T. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag. J. Environ. Manage 2018, 222, 304. [Google Scholar] [CrossRef]
- Awual, M.R.; Yaita, T.; Kobayashi, T.; Shiwaku, H.; Suzuki, S. Improving cesium removal to clean-up the contaminated water using modified conjugate material. J. Environ. Chem. Eng. 2020, 8, 103684. [Google Scholar] [CrossRef]
- Teo, S.H.; Ng, C.H.; Islam, A.; Abdulkareem-Alsultan, G.; Joseph, C.G.; Janaun, J.; Tau, Y.H.; Khandaker, S.; Islam, G.J.; Znad, H.; et al. Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review. J. Clean. Prod. 2022, 332, 130039. [Google Scholar] [CrossRef]
Models | Parameters | pH | ||
---|---|---|---|---|
3 | 7 | 11 | ||
Pseudo-first-order kinetic model | k1 (×10−2, min−1) | 6.999 | 6.965 | 7.97 |
Cal. qe (mmol·g−1) | 39.44 | 37.39 | 28.21 | |
Adj. R2 | 0.998 | 0.992 | 0.996 | |
Pseudo-second-order kinetic model | k2 (×10−3, g·mg−1·min−1) | 4.13 | 4.33 | 6.94 |
Cal. qe (mmol·g−1) | 39.44 | 37.39 | 28.25 | |
Adj. R2 | 0.938 | 0.923 | 0.936 | |
Intraparticle model | kp (mmol·g−1·min−0.5) | 5.334 | 5.139 | 3.837 |
C | 2.408 | 1.961 | 2.332 | |
Adj. R2 | 0.955 | 0.952 | 0.935 | |
Elovich model | α (mg·g−1 min−1) | 5.427 | 4.63 | 5.184 |
β (×10−2, g·mg−1) | 7.954 | 7.878 | 12.178 | |
Adj. R2 | 0.985 | 0.98 | 0.98 |
No. | Initial Concentration of Influent (mM) | Initial pH | Flow Rates (mL·min−1) | Response |
---|---|---|---|---|
X1 | X2 | X3 | Vbre (L) | |
1 | −1 (10) | −1 (4) | −1 (10) | 112.34 |
2 | 1 (20) | −1 | −1 | 97.67 |
3 | −1 | 1 (10) | −1 | 78.51 |
4 | 1 | 1 | −1 | 40.28 |
5 | −1 | −1 | 1 (15) | 105.06 |
6 | 1 | −1 | 1 | 92.39 |
7 | −1 | 1 | 1 | 69.45 |
8 | 1 | 1 | 1 | 33.52 |
9 | −1.682 (6.59) | 0 (7) | 0 (12.5) | 108.27 |
10 | 1.682 (23.41) | 0 | 0 | 58.19 |
11 | 0 (15) | −1.682 (1.95) | 0 | 99.32 |
12 | 0 | 1.682 (23.41) | 0 | 28.49 |
13 | 0 | 0 | −1.682 (8.30) | 90.21 |
14 | 0 | 0 | 1.682 (16.71) | 81.46 |
15 | 0 | 0 | 0 | 85.32 |
16 | 0 | 0 | 0 | 87.49 |
17 | 0 | 0 | 0 | 84.93 |
18 | 0 | 0 | 0 | 85.17 |
19 | 0 | 0 | 0 | 88.36 |
20 | 0 | 0 | 0 | 86.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Zhao, Y.; Huang, T.; Li, H.; He, J. Selective Adsorption of Fluorine Contaminants from Spiked Wastewater via a Novel FeIII–CeIV-Based Layered Hydroxide Composite and Mechanism Analysis of Colloids and Surfaces. Materials 2025, 18, 2665. https://doi.org/10.3390/ma18112665
Du J, Zhao Y, Huang T, Li H, He J. Selective Adsorption of Fluorine Contaminants from Spiked Wastewater via a Novel FeIII–CeIV-Based Layered Hydroxide Composite and Mechanism Analysis of Colloids and Surfaces. Materials. 2025; 18(11):2665. https://doi.org/10.3390/ma18112665
Chicago/Turabian StyleDu, Jing, Yanyan Zhao, Tao Huang, Hui Li, and Jia He. 2025. "Selective Adsorption of Fluorine Contaminants from Spiked Wastewater via a Novel FeIII–CeIV-Based Layered Hydroxide Composite and Mechanism Analysis of Colloids and Surfaces" Materials 18, no. 11: 2665. https://doi.org/10.3390/ma18112665
APA StyleDu, J., Zhao, Y., Huang, T., Li, H., & He, J. (2025). Selective Adsorption of Fluorine Contaminants from Spiked Wastewater via a Novel FeIII–CeIV-Based Layered Hydroxide Composite and Mechanism Analysis of Colloids and Surfaces. Materials, 18(11), 2665. https://doi.org/10.3390/ma18112665