The Association of Insomnia with Febrile Neutropenia, Leucopenia, and Infection in Women Receiving Adjuvant Chemotherapy for Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Treatment Groups
2.4. Sleep Measures
2.5. Primary Outcome
2.6. Secondary Outcomes
2.7. Statistical Analyses
2.8. Ethics and Funding
3. Results
3.1. Participants’ Characteristics
3.2. Insomnia and Quality of Life Data
3.3. Immune Parameters Data
3.4. Primary Outcome
3.5. Secondary Outcomes: Leucopenia
3.6. Secondary Outcomes: Infections
3.7. Secondary Outcomes: Chemotherapy Dose Reductions
3.8. Secondary Outcomes: Dose-Response Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC/T | Doxorubicin, cyclophosphamide, paclitaxel |
ANC | Absolute neutrophil count |
CCTG | Canadian Cancer Trial Group |
CEF | Cyclophosphamide, epirubicin, fluorouracil |
CI | Confidence interval |
EC/T | Epirubicin, cyclophosphamide, paclitaxel |
ECOG | Eastern Cooperative Oncology Group |
EORTC QLQ-C30 | European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 |
G-CSF | Granulocyte colony-stimulating factor |
NCI CTC | National Cancer Institute Common Toxicity Criteria |
OR | Odda ratio |
References
- Ancoli-Israel, S. Sleep Disturbances in Cancer: A Review. Sleep Med. Res. 2015, 6, 45–49. [Google Scholar] [CrossRef]
- Fiorentino, L.; Ancoli-Israel, S. Sleep dysfunction in patients with cancer. Curr. Treat. Options Neurol. 2007, 9, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Savard, J.; Ivers, H.; Villa, J.; Caplette-Gingras, A.; Morin, C.M. Natural course of insomnia comorbid with cancer: An 18-month longitudinal study. J. Clin. Oncol. 2011, 29, 3580–3586. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Herbert, T.B. Health psychology: Psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annu. Rev. Psychol. 1996, 47, 113–142. [Google Scholar] [CrossRef]
- Padgett, D.A.; Glaser, R. How stress influences the immune response. Trends Immunol. 2003, 24, 444–448. [Google Scholar] [CrossRef]
- Frey, D.J.; Fleshner, M.; Wright, K.P., Jr. The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav. Immun. 2007, 21, 1050–1057. [Google Scholar] [CrossRef]
- Dickstein, J.B.; Moldofsky, H. Sleep, cytokines and immune function. Sleep Med. Rev. 1999, 3, 219–228. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Lotsikas, A.; Zachman, K.; Kales, A.; Prolo, P.; Wong, M.L.; Licinio, J.; Gold, P.W.; et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J. Clin. Endocrinol. Metab. 1999, 84, 2603–2607. [Google Scholar] [CrossRef]
- Irwin, M.R.; Wang, M.; Campomayor, C.O.; Collado-Hidalgo, A.; Cole, S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch. Intern. Med. 2006, 166, 1756–1762. [Google Scholar] [CrossRef]
- Said, E.A.; Al-Abri, M.A.; Al-Saidi, I.; Al-Balushi, M.S.; Al-Busaidi, J.Z.; Al-Reesi, I.; Koh, C.Y.; Idris, M.A.; Al-Jabri, A.A.; Habbal, O. Sleep deprivation alters neutrophil functions and levels of Th1-related chemokines and CD4(+) T cells in the blood. Sleep Breath. 2019, 23, 1331–1339. [Google Scholar] [CrossRef]
- Irwin, M.; McClintick, J.; Costlow, C.; Fortner, M.; White, J.; Gillin, J.C. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J. 1996, 10, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, L.; Lange, T.; Born, J. Sleep and immune function. Pflugers Arch. 2012, 463, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R. Why sleep is important for health: A psychoneuroimmunology perspective. Annu. Rev. Psychol. 2015, 66, 143–172. [Google Scholar] [CrossRef] [PubMed]
- Born, J.; Lange, T.; Hansen, K.; Molle, M.; Fehm, H.L. Effects of sleep and circadian rhythm on human circulating immune cells. J. Immunol. 1997, 158, 4454–4464. [Google Scholar] [CrossRef]
- Palmblad, J.; Petrini, B.; Wasserman, J.; Akerstedt, T. Lymphocyte and granulocyte reactions during sleep deprivation. Psychosom. Med. 1979, 41, 273–278. [Google Scholar] [CrossRef]
- Savard, J.; Laroche, L.; Simard, S.; Ivers, H.; Morin, C.M. Chronic insomnia and immune functioning. Psychosom. Med. 2003, 65, 211–221. [Google Scholar] [CrossRef]
- Taylor, D.J.; Kelly, K.; Kohut, M.L.; Song, K.S. Is Insomnia a Risk Factor for Decreased Influenza Vaccine Response? Behav. Sleep Med. 2017, 15, 270–287. [Google Scholar] [CrossRef]
- Prather, A.A.; Hall, M.; Fury, J.M.; Ross, D.C.; Muldoon, M.F.; Cohen, S.; Marsland, A.L. Sleep and antibody response to hepatitis B vaccination. Sleep 2012, 35, 1063–1069. [Google Scholar] [CrossRef]
- Cohen, S.; Doyle, W.J.; Alper, C.M.; Janicki-Deverts, D.; Turner, R.B. Sleep habits and susceptibility to the common cold. Arch. Intern. Med. 2009, 169, 62–67. [Google Scholar] [CrossRef]
- Garbarino, S.; Lanteri, P.; Bragazzi, N.L.; Magnavita, N.; Scoditti, E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 2021, 4, 1304. [Google Scholar] [CrossRef]
- Irwin, M.R.; Opp, M.R. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology 2017, 42, 129–155. [Google Scholar] [CrossRef] [PubMed]
- Palesh, O.G.; Roscoe, J.A.; Mustian, K.M.; Roth, T.; Savard, J.; Ancoli-Israel, S.; Heckler, C.; Purnell, J.Q.; Janelsins, M.C.; Morrow, G.R. Prevalence, demographics, and psychological associations of sleep disruption in patients with cancer: University of Rochester Cancer Center-Community Clinical Oncology Program. J. Clin. Oncol. 2010, 28, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Burnell, M.; Levine, M.N.; Chapman, J.A.; Bramwell, V.; Gelmon, K.; Walley, B.; Vandenberg, T.; Chalchal, H.; Albain, K.S.; Perez, E.A.; et al. Cyclophosphamide, epirubicin, and Fluorouracil versus dose-dense epirubicin and cyclophosphamide followed by Paclitaxel versus Doxorubicin and cyclophosphamide followed by Paclitaxel in node-positive or high-risk node-negative breast cancer. J. Clin. Oncol. 2010, 28, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Aaronson, N.; Ahmedzai, S.; Bullinger, M.; Crabeels, D.; Estape, J.; Filiberti, A.; Flechtner, H.; Frick, U.; Hurny, C.; Kaasa, S.; et al. The EORTC Core Quality-of-Life Questionnaire: Interim Results of an International Field Study. In The Effect of Cancer on Quality of Life; Osoba, D., Ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Desautels, C.; Savard, J.; Ivers, H.; Savard, M.H.; Caplette-Gingras, A. Treatment of depressive symptoms in patients with breast cancer: A randomized controlled trial comparing cognitive therapy and bright light therapy. Health Psychol. 2018, 37, 1–13. [Google Scholar] [CrossRef]
- Bastien, C.H.; Vallieres, A.; Morin, C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- National Cancer Institute. Cancer Therapy Evaluation Program, Common Toxicity Criteria, Version 2.0, Published 30 April 1999; National Cancer Institute: Bethesda, MD, USA, 1999. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcv20_4-30-992.pdf (accessed on 27 May 2025).
- Giesinger, J.M.; Kuijpers, W.; Young, T.; Tomaszewski, K.A.; Friend, E.; Zabernigg, A.; Holzner, B.; Aaronson, N.K. Thresholds for clinical importance for four key domains of the EORTC QLQ-C30: Physical functioning, emotional functioning, fatigue and pain. Health Qual. Life Outcomes 2016, 14, 87. [Google Scholar] [CrossRef]
- Ruel, S.; Ivers, H.; Savard, M.H.; Gouin, J.P.; Lemieux, J.; Provencher, L.; Caplette-Gingras, A.; Bastien, C.; Morin, C.M.; Couture, F.; et al. Insomnia, immunity, and infections in cancer patients: Results from a longitudinal study. Health Psychol. 2020, 39, 358–369. [Google Scholar] [CrossRef]
- Hoopes, E.K.; D’Agata, M.N.; Berube, F.R.; Ranadive, S.M.; Patterson, F.; Farquhar, W.B.; Edwards, D.G.; Witman, M.A. Consistency where it counts: Sleep regularity is associated with circulating white blood cell count in young adults. Brain Behav. Immun. Health 2021, 13, 100233. [Google Scholar] [CrossRef]
- Goldstein, A.N.; Walker, M.P. The role of sleep in emotional brain function. Annu. Rev. Clin. Psychol. 2014, 10, 679–708. [Google Scholar] [CrossRef]
- Bechtel, W. Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related? Front. Psychiatry 2015, 6, 118. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Savitz, J.; Kent Teague, T.; Gandhapudi, S.K.; Tan, C.; Misaki, M.; McKinney, B.A.; Irwin, M.R.; Drevets, W.C.; Bodurka, J. Altered populations of natural killer cells, cytotoxic T lymphocytes, and regulatory T cells in major depressive disorder: Association with sleep disturbance. Brain Behav. Immun. 2017, 66, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Herbert, T.B.; Cohen, S. Depression and immunity: A meta-analytic review. Psychol. Bull. 1993, 113, 472–486. [Google Scholar] [CrossRef]
- Ray, A.; Gulati, K.; Rai, N. Stress, Anxiety, and Immunomodulation: A Pharmacological Analysis. Vitam. Horm. 2017, 103, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Roth, T. Insomnia: Definition, Prevalence, Etiology, and Consequences. J. Clin. Sleep Med. 2007, 3, S7–S10. [Google Scholar] [CrossRef]
- Medic, G.; Wille, M.; Hemels, M.E. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 2017, 9, 151–161. [Google Scholar] [CrossRef]
- Fernandez-Mendoza, J.; Vgontzas, A.N. Insomnia and its impact on physical and mental health. Curr. Psychiatry Rep. 2013, 15, 418. [Google Scholar] [CrossRef]
- Savard, J.; Ivers, H. Screening for clinical insomnia in cancer patients with the Edmonton Symptom Assessment System-Revised: A specific sleep item is needed. Support. Care Cancer 2019, 27, 3777–3783. [Google Scholar] [CrossRef]
- Schutte-Rodin, S.; Broch, L.; Buysse, D.; Dorsey, C.; Sateia, M. Clinical guideline for the evaluation and management of chronic insomnia in adults. J. Clin. Sleep Med. 2008, 4, 487–504. [Google Scholar] [CrossRef]
- Rossman, J. Cognitive-Behavioral Therapy for Insomnia: An Effective and Underutilized Treatment for Insomnia. Am. J. Lifestyle Med. 2019, 13, 544–547. [Google Scholar] [CrossRef]
- van der Zweerde, T.; Bisdounis, L.; Kyle, S.D.; Lancee, J.; van Straten, A. Cognitive behavioral therapy for insomnia: A meta-analysis of long-term effects in controlled studies. Sleep Med. Rev. 2019, 48, 101208. [Google Scholar] [CrossRef]
- Ruel, S.; Savard, J.; Ivers, H. Insomnia and self-reported infections in cancer patients: An 18-month longitudinal study. Health Psychol. 2015, 34, 983–991. [Google Scholar] [CrossRef]
Outcomes | EORTC QLQ-C30 Q11 | |
---|---|---|
Insomnia | Good Sleepers | |
Febrile neutropenia | ||
No (grades 0–2) | 781 (83.7%) | 701 (87.8%) |
Yes (grades 3–5) | 152 (16.3%) | 97 (12.2%) |
p | 0.01 | |
Leucopenia | ||
Grade 0 | 157 (16.8%) | 141 (17.7%) |
Grade 1 | 135 (14.5%) | 138 (17.3%) |
Grade 2 | 184 (19.7%) | 186 (23.3%) |
Grade 3 | 214 (22.9%) | 173 (21.7%) |
Grade 4 | 243 (26.1%) | 160 (20.1%) |
Grade 5 | 0 (0%) | 0 (0%) |
p | 0.02 | |
Infection | ||
Grade 0 | 619 (66.4%) | 564 (70.7%) |
Grade 1 | 68 (7.3%) | 62 (7.8%) |
Grade 2 | 158 (16.9%) | 110 (13.8%) |
Grade 3 | 87 (9.3%) | 61 (7.6%) |
Grade 4 | 1 (0.1%) | 1 (0.1%) |
Grade 5 | 0 (0%) | 0 (0%) |
p | 0.24 | |
Chemotherapy delay | ||
No | 271 (29.1%) | 239 (30.0%) |
Yes | 662 (70.9%) | 559 (70.0%) |
p | 0.68 | |
Chemotherapy dose reduction | ||
No | 648 (69.5%) | 624 (78.2%) |
Yes | 285 (30.6%) | 174 (21.8%) |
p | <0.0001 |
Predictor | Multivariate Analysis, Including the EF Domain Score | Second Multivariate Analysis Excluding Emotional Functioning Score | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | |
Insomnia (Yes vs. No) | 1.45 (1.07–1.97) | 0.02 | 1.42 (1.06–1.92) | 0.02 |
G-CSF (Yes vs. No) | 4.72 (3.22–6.92) | <0.0001 | 4.71 (3.21–6.90) | <0.0001 |
Prophylactic antibiotics (Yes vs. No) | 3.94 (2.52–6.18) | <0.0001 | 3.95 (2.52–6.19) | <0.0001 |
Age | 1.00 (0.97–1.02) | 0.81 | 1.00 (0.97–1.02) | 0.83 |
Race (Aboriginal vs. Caucasian) | 0.51 (0.07–3.99) | 0.52 | 0.51 (0.07–3.98) | 0.52 |
Race (Asian vs. Caucasian) | 1.56 (0.68–3.60) | 0.30 | 1.56 (0.68–3.61) | 0.30 |
Race (Black vs. Caucasian) | 0.65 (0.28–1.52) | 0.32 | 0.65 (0.28–1.53) | 0.32 |
Race (Unknown vs. Caucasian) | 0.53 (0.15–1.92) | 0.34 | 0.53 (0.15–1.92) | 0.33 |
Treatment Arm (CEF vs. AC/T) | 1.22 (0.69–2.15) | 0.50 | 1.22 (0.69–2.16) | 0.49 |
Treatment Arm (EC/T vs. AC/T) | 1.13 (0.68–1.88) | 0.63 | 1.14 (0.69–1.89) | 0.61 |
Menopausal Status (Post vs. Pre) | 1.57 (1.05–2.35) | 0.03 | 1.57 (1.05–2.35) | 0.03 |
Performance Status (1+ vs. 0) | 0.75 (0.49–1.14) | 0.18 | 0.75 (0.49–1.14) | 0.17 |
N Stage (1 vs. 0) | 1.08 (0.77–1.51) | 0.65 | 1.08 (0.77–1.50) | 0.66 |
N Stage (2 vs. 0) | 0.86 (0.46–1.60) | 0.63 | 0.86 (0.46–1.59) | 0.62 |
T Stage (2 vs. 1) | 1.23 (0.89–1.69) | 0.21 | 1.23 (0.89–1.69) | 0.21 |
T Stage (3+ vs. 1) | 1.32 (0.80–2.18) | 0.28 | 1.32 (0.80–2.18) | 0.28 |
Emotional Functioning domain score | 1.00 (0.99–1.01) | 0.74 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemelin, A.; Savard, J.; Chen, M.; Shepherd, L.E.; Burnell, M.; Levine, M.N.; Chen, B.E.; Lemieux, J. The Association of Insomnia with Febrile Neutropenia, Leucopenia, and Infection in Women Receiving Adjuvant Chemotherapy for Breast Cancer. Cancers 2025, 17, 1838. https://doi.org/10.3390/cancers17111838
Lemelin A, Savard J, Chen M, Shepherd LE, Burnell M, Levine MN, Chen BE, Lemieux J. The Association of Insomnia with Febrile Neutropenia, Leucopenia, and Infection in Women Receiving Adjuvant Chemotherapy for Breast Cancer. Cancers. 2025; 17(11):1838. https://doi.org/10.3390/cancers17111838
Chicago/Turabian StyleLemelin, Audreylie, Josée Savard, Michelle Chen, Lois E. Shepherd, Margot Burnell, Mark N. Levine, Bingshu E. Chen, and Julie Lemieux. 2025. "The Association of Insomnia with Febrile Neutropenia, Leucopenia, and Infection in Women Receiving Adjuvant Chemotherapy for Breast Cancer" Cancers 17, no. 11: 1838. https://doi.org/10.3390/cancers17111838
APA StyleLemelin, A., Savard, J., Chen, M., Shepherd, L. E., Burnell, M., Levine, M. N., Chen, B. E., & Lemieux, J. (2025). The Association of Insomnia with Febrile Neutropenia, Leucopenia, and Infection in Women Receiving Adjuvant Chemotherapy for Breast Cancer. Cancers, 17(11), 1838. https://doi.org/10.3390/cancers17111838