Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = CD40/CD40L crosslinking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2843 KB  
Article
Synthesis and Characterization of Water-Soluble EDTA-Crosslinked Poly-β-Cyclodextrins Serving as Ion-Complexing Drug Carriers
by Zuzanna Podgórniak, Witold Musiał, Michał J. Kulus, Dominika Łacny, Aleksandra Budnik and Tomasz Urbaniak
Materials 2026, 19(1), 207; https://doi.org/10.3390/ma19010207 - 5 Jan 2026
Viewed by 377
Abstract
Water-soluble poly-β-cyclodextrins (PCDs), crosslinked with ethylenediaminetetraacetic acid dianhydride (EDTADA), were synthesized at varying β-CD:EDTADA molar ratios (1:6, 1:9, 1:12, 1:15) to develop multifunctional nanocarriers with the ability to complex drugs, polymers, and ions. All PCDs exhibited nanometric particle sizes (14 to 28 nm), [...] Read more.
Water-soluble poly-β-cyclodextrins (PCDs), crosslinked with ethylenediaminetetraacetic acid dianhydride (EDTADA), were synthesized at varying β-CD:EDTADA molar ratios (1:6, 1:9, 1:12, 1:15) to develop multifunctional nanocarriers with the ability to complex drugs, polymers, and ions. All PCDs exhibited nanometric particle sizes (14 to 28 nm), negative zeta potential (−18 to −27 mV), and adjustable content of free carboxyl groups controlled by crosslinker ratio. Functional evaluations demonstrated effective Ca2+ chelation and a linear inclusion complexation profile with acyclovir, but not with naproxen, highlighting pH-dependent solubility effects. Additionally, PCDs successfully formed polyelectrolyte complexes with poly-L-lysine, indicating their potential as components of advanced drug delivery systems. Among the analyzed variants, PCD 1:6 showed reduced yields, fewer reactive groups, and diminished ion-binding capacity compared to formulations with higher crosslinker content. These findings underscore the importance of crosslinking density in modulating physicochemical and functional properties and support the potential of EDTA-crosslinked PCDs as versatile platforms for advanced, ion-sensitive biomedical applications. Full article
Show Figures

Graphical abstract

16 pages, 1975 KB  
Article
Effect of Acute Cadmium Exposure and Short-Term Depuration on Oxidative Stress and Immune Responses in Meretrix meretrix Gills
by Yu Zheng, Yijiao Zheng, Xuantong Qian, Yinuo Wu, Alan Kueichieh Chang and Xueping Ying
Toxics 2026, 14(1), 47; https://doi.org/10.3390/toxics14010047 - 31 Dec 2025
Viewed by 403
Abstract
Cadmium (Cd) is a typical pollutant with strong toxicity even at low concentrations. In the marine environment, Cd is a problem of magnitude and ecological significance due to its high toxicity and accumulation in living organisms. The clam Meretrix meretrix is a useful [...] Read more.
Cadmium (Cd) is a typical pollutant with strong toxicity even at low concentrations. In the marine environment, Cd is a problem of magnitude and ecological significance due to its high toxicity and accumulation in living organisms. The clam Meretrix meretrix is a useful bioindicator species for evaluating heavy-metal stress. This study investigated the extent of recovery from Cd2+-induced oxidative and immune impairments in M. meretrix gills achieved by short-term depuration. Clams were exposed to 3 mg/L Cd2+ for six days or three days followed by three days of depuration, and the Cd contents, morphological structure, osmoregulation, oxidative stress, and immune responses in the gills were evaluated. The results showed that gill Cd contents increased with exposure, reaching 9.857 ± 0.074 mg·kg−1 on day 3 but decreased slightly to 8.294 ± 0.056 mg·kg−1 after depuration, while reaching 18.665 ± 0.040 mg·kg−1 on day 6 after continuous exposure. Histological lesions, including lamellar fusion, hemolymphatic sinus dilation, and ciliary degeneration, partially recovered after depuration. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels decreased significantly, while DNA-protein crosslinking rate (DPC) and protein carbonyl (PCO) showed minor reductions. Total antioxidant capacity (T-AOC) and the activities of Ca2+/Mg2+-ATPase (CMA), cytochrome c oxidase (COX), succinate dehydrogenase (SDH), and lactate dehydrogenase (LDH) increased by over 10% during depuration, though these changes were not statistically significant. Lysozyme (LZM) activity and MT transcript levels increased progressively with Cd exposure, indicating their suitability as biomarkers of Cd stress. Acid and alkaline phosphatase (ACP, AKP) activities and Hsp70 and Nrf2 mRNA transcripts exhibited inverted U-shaped response consistent with hormetic response. ACP and AKP activity levels rose by more than 20% after depuration, suggesting partial restoration of immune capacity. Overall, Cd exposure induced oxidative damage, metabolic disruption, and immune suppression in M. meretrix gills, yet short-term depuration allowed partial recovery. These findings enhance understanding of Cd toxicity and reversibility in marine bivalves and reinforce the usage of biochemical and molecular markers for monitoring Cd contamination and assessing depuration efficiency in aquaculture environments. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

14 pages, 2352 KB  
Article
Pre-Crosslinked Gel Particles Enhanced by Amphiphilic Nanocarbon Dots in Harsh Reservoirs: Synthesis and Deep Stimulation Mechanism
by Guorui Xu, Xiaoxiao Li, Jinzhou Yang, Chunyu Tong, Xiaolong Wang and Tengfei Wang
Processes 2025, 13(12), 3994; https://doi.org/10.3390/pr13123994 - 10 Dec 2025
Viewed by 387
Abstract
To address the issues of easy degradation, dehydration, and insufficient deep plugging strength of traditional pre-crosslinked gel particles (PPGs) in high-temperature and high-salinity reservoirs, this study innovatively introduced amphiphilic carbon dots (CDs) with both hydrophilic and hydrophobic structures as multifunctional modifiers. The carbon [...] Read more.
To address the issues of easy degradation, dehydration, and insufficient deep plugging strength of traditional pre-crosslinked gel particles (PPGs) in high-temperature and high-salinity reservoirs, this study innovatively introduced amphiphilic carbon dots (CDs) with both hydrophilic and hydrophobic structures as multifunctional modifiers. The carbon dot-reinforced PPGs (CD-PPGs) were successfully prepared through in situ polymerization. Through systematic characterization, microscopic visualization experiments, and macroscopic oil displacement evaluation, the performance enhancement mechanism and profile control behavior were deeply explored. The results show that the amphiphilic carbon dots significantly enhanced the material’s temperature resistance (up to 110 °C), salt resistance (up to 15 × 104 mg/L salinity), and mechanical properties by constructing a “hydrogen bond-hydrophobic association” dual crosslinking system within the PPG network. More importantly, it was found that CD-PPGs exhibit a unique “self-aggregation” ability in deep reservoirs, which enables the in situ formation of high-strength plugging micelles at the target location while ensuring excellent injectability. At a permeability range of 539.0–2988.6 mD, the sealing rate of 0.5 PV CD-PPGs was greater than 95%. With permeabilities of 490.1 mD and 3020.5 mD under heterogeneous reservoir simulation conditions, the total recovery degree after the CD-PPGs was 52.6%, which was 20.5% higher than that of single water flooding. This study not only developed a high-performance profile control nanomaterial but also elucidated its strengthening mechanism, providing new insights and a theoretical basis for advancing deep profile control technology. Full article
Show Figures

Figure 1

22 pages, 5704 KB  
Article
Application of DFT and Experimental Tests for the Study of Compost Formation Between Chitosan-1,3-dichloroketone with Uses for the Removal of Heavy Metals in Wastewater
by Joaquín Alejandro Hernández Fernández, Jose Alfonso Prieto Palomo and Rodrigo Ortega-Toro
J. Compos. Sci. 2025, 9(2), 91; https://doi.org/10.3390/jcs9020091 - 19 Feb 2025
Cited by 5 | Viewed by 1660
Abstract
The environment presently contains greater amounts of heavy metals due to human activities, causing toxicity, mutagenicity, and carcinogenicity. This study evaluated a chitosan (CS) composite material combined with 1,3-dichlorocetone to extract heavy metals from affected waters, integrating experimental and computational analyses. The synthesis [...] Read more.
The environment presently contains greater amounts of heavy metals due to human activities, causing toxicity, mutagenicity, and carcinogenicity. This study evaluated a chitosan (CS) composite material combined with 1,3-dichlorocetone to extract heavy metals from affected waters, integrating experimental and computational analyses. The synthesis of chitosan, obtained from shrimp waste chitin, reached a yield of 85%. FTIR analysis confirmed key functional groups (NH2 and OH), and XRD showed high crystallinity with peaks at 2θ = 8° and 20°. The physicochemical properties evaluated included a moisture content of 7.3%, ash content of 2.4%, and a deacetylation degree of 73%, consistent with commercial standards. Chitosan exhibited significant solubility in 1.5% acetic acid, moderate solubility in water, and insolubility in NaOH, demonstrating its versatility for environmental applications. In adsorption tests, heavy metal concentrations were reduced by CS derivatives, with Cr and Pb dropping to 0.03 mg/L, and Cu and Zn to less than 0.05 mg/L. CS cross-linked with 1,3-dichlorocetone proved the most efficient, outperforming other derivatives such as glutaraldehyde and epichlorohydrin. Computational analysis evaluated key molecular interactions using DFT and the B3LYP/LANLD2Z method. The band gap energies (HOMO–LUMO) decreased to 0.09753 eV for Zn and 0.01485 eV for Pb, indicating high affinity, while Cd showed lower interaction (0.11076 eV). The total dipole moment increased remarkably for Zn (14.693 Debye) and Pb (7.449 Debye), in contrast to Cd (4.515 Debye). Other descriptors, such as chemical hardness (η), reflected a higher reactivity for Zn (0.04877 eV) and Pb (0.00743 eV), which favors adsorption. The correlation between experimental and computational results validates the efficiency and selectivity of CS/1,3-dichlorocetone for removing heavy metals, especially Pb and Zn. This material stands out for its adsorbent capacity, sustainability, and economic viability, positioning it as a promising solution for wastewater remediation. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

18 pages, 4080 KB  
Article
Removal Efficiency and Mechanism of Typical PPCPs onto Novel Cyclodextrin–Graphene Oxide Composite Adsorbent in Aqueous Solutions
by Ziyang Zhang, Wenhui Wang, Fangyuan Liu, Hongrui Chen, Xiaoran Zhang, Chaohong Tan and Yongwei Gong
Water 2025, 17(4), 590; https://doi.org/10.3390/w17040590 - 18 Feb 2025
Cited by 8 | Viewed by 1188
Abstract
A novel β-cyclodextrin–graphene oxide (β-CD/GO) composite adsorbent was synthesized via a hydrothermal method. Removal efficiency and mechanisms of typical pharmaceutical and personal care products (PPCPs) by the β-CD/GO composite were investigated in aqueous solutions. The results demonstrated that the β-CD/GO composite was successfully [...] Read more.
A novel β-cyclodextrin–graphene oxide (β-CD/GO) composite adsorbent was synthesized via a hydrothermal method. Removal efficiency and mechanisms of typical pharmaceutical and personal care products (PPCPs) by the β-CD/GO composite were investigated in aqueous solutions. The results demonstrated that the β-CD/GO composite was successfully formed through cross-linking between β-CD and GO nanosheets, exhibiting enriched hydroxyl groups, a porous layered structure, and good thermal stability. The adsorption of cimetidine (CTD), sulfamethazine (SMZ), and diclofenac (DCF) onto the β-CD/GO composite was well described by pseudo-first-order and pseudo-second-order kinetic models, and Langmuir isotherm. The maximum adsorption capacities of CTD, SMZ, and DCF onto the β-CD/GO composite were 58.86, 35.62, and 29.11 mg g−1 at 298 K, respectively. The adsorption process was rapid and reached equilibrium after 6 h. The adsorption followed a monolayer mechanism and was an exothermic process. The adsorption capacity decreased with increasing pH values and ion concentrations. The β-CD/GO composite exhibited maximum adsorption capacities of 17.69, 16.96, and 16.23 mg g−1 for CTD, SMZ, and DCF, respectively, under a pH of 4 with a dosage of 1.0 g/L at 298 K for 6 h. Due to the combined impacts of electrostatic interaction, hydrogen bonding, and host–guest interaction, the adsorption of PPCPs onto β-CD/GO composite was fast and efficient. β-CD/GO composite exhibited superior adsorption efficacy and structural stability, which highlighted its promising application in the elimination of micropollutants from aqueous solutions. Full article
Show Figures

Figure 1

17 pages, 2598 KB  
Article
Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots
by Angela Gabriela Pãun, Simona Popescu, Alisa Ioana Ungureanu, Roxana Trusca, Alina Popp, Cristina Dumitriu and George-Octavian Buica
Biosensors 2025, 15(1), 42; https://doi.org/10.3390/bios15010042 - 13 Jan 2025
Cited by 4 | Viewed by 2076
Abstract
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein [...] Read more.
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode. Initial, quantum dots (QDs) were obtained from Bombyx mori silk fibroin and embedded in polypyrrole film. Using carbodiimide coupling, a polyamidoamine (PAMAM) dendrimer was linked with GQDs-polypyrrole film to improve sensor sensitivity. The tissue transglutaminase (tTG) antigen was cross-linked onto PAMAM using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)-N-hydroxy succinimide (NHS) chemistry to develop a nanoprobe that can detect human serum anti-tTG antibodies. The physicochemical characteristics of the synthesized nanocomposite were examined by FTIR, UV-visible, FE-SEM, EDX, and electrochemical studies. The novel electrode measures anti-tissue antibody levels in real time using human blood serum samples. The modified electrode has great repeatability and an 8.7 U/mL detection limit. Serum samples from healthy people and CD patients were compared to standard ELISA kit assays. SPSS and Excel were used for statistical analysis. The improved electrode and detection system can identify anti-tissue antibodies up to 80 U/mL. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

31 pages, 3608 KB  
Article
Reversal of Endothelial Cell Anergy by T Cell-Engaging Bispecific Antibodies
by Márcia Gonçalves, Karsten M. Warwas, Marten Meyer, Reinhard Schwartz-Albiez, Nadja Bulbuc, Inka Zörnig, Dirk Jäger and Frank Momburg
Cancers 2024, 16(24), 4251; https://doi.org/10.3390/cancers16244251 - 20 Dec 2024
Cited by 1 | Viewed by 1963
Abstract
Objectives: Reduced expression of adhesion molecules in tumor vasculature can limit infiltration of effector T cells. To improve T cell adhesion to tumor endothelial cell (EC) antigens and enhance transendothelial migration, we developed bispecific, T-cell engaging antibodies (bsAb) that activate T cells after [...] Read more.
Objectives: Reduced expression of adhesion molecules in tumor vasculature can limit infiltration of effector T cells. To improve T cell adhesion to tumor endothelial cell (EC) antigens and enhance transendothelial migration, we developed bispecific, T-cell engaging antibodies (bsAb) that activate T cells after cross-linking with EC cell surface antigens. Methods: Recombinant T-cell stimulatory anti-VEGFR2–anti-CD3 and costimulatory anti-TIE2–anti-CD28 or anti-PD-L1–anti-CD28 bsAb were engineered and expressed. Primary lines of human umbilical vein endothelial cells (HUVEC) that constitutively express VEGFR2 and TIE2 growth factor receptors and PD-L1, but very low levels of adhesion molecules, served as models for anergic tumor EC. Results: In cocultures with HUVEC, anti-VEGFR2–anti-CD3 bsAb increased T cell binding and elicited rapid T cell activation. The release of proinflammatory cytokines TNF-α, IFN-γ, and IL-6 was greatly augmented by the addition of anti-TIE2–anti-CD28 or anti-PD-L1–anti-CD28 costimulatory bsAb. Concomitantly, T cell-released cytokines upregulated E-selectin, ICAM1, and VCAM1 adhesion molecules on HUVEC. HUVEC cultured in breast cancer cell-conditioned medium to mimic the influence of tumor-secreted factors were similarly activated by T cell-engaging bsAb. Migration of T cells in transwell assays was significantly increased by anti-VEGFR2–anti-CD3 bsAb. The combination with costimulatory anti-TIE2–anti-CD28 bsAb augmented activation and proliferation of migrated T cells and their cytotoxic capacity against spheroids of the MCF-7 breast cancer cell line seeded in the lower transwell chamber. Conclusions: T cells activated by anti-VEGFR2–anti-CD3 and costimulatory EC-targeting bsAb can reverse the energy of quiescent EC in vitro, resulting in improved T cell migration through an EC layer. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

20 pages, 6959 KB  
Article
Dissecting Cytophagalysin: Structural and Biochemical Studies of a Bacterial Pappalysin-Family Metallopeptidase
by Eva Estevan-Morió, Juan Sebastián Ramírez-Larrota, Enkela Bushi and Ulrich Eckhard
Biomolecules 2024, 14(12), 1604; https://doi.org/10.3390/biom14121604 - 16 Dec 2024
Cited by 2 | Viewed by 1646
Abstract
Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic Flavobacterium spp. that cause severe diseases in fish. Cytophaga strain L43-1 secretes cytophagalysin (CPL1), a 137 kDa peptidase with reported collagenolytic and gelatinolytic [...] Read more.
Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic Flavobacterium spp. that cause severe diseases in fish. Cytophaga strain L43-1 secretes cytophagalysin (CPL1), a 137 kDa peptidase with reported collagenolytic and gelatinolytic activity. We performed highly-confident structure prediction calculations for CPL1, which identified 11 segments and domains, including a signal peptide for secretion, a prosegment (PS) for latency, a metallopeptidase (MP)-like catalytic domain (CD), and eight immunoglobulin (Ig)-like domains (D3–D10). In addition, two short linkers were found at the D8–D9 and D9–D10 junctions, and the structure would be crosslinked by four disulfide bonds. The CPL1 CD was found closest to ulilysin from Methanosarcina acetivorans, which assigns CPL1 to the lower-pappalysin family within the metzincin clan of MPs. Based on the structure predictions, we aimed to produce constructs spanning the full-length enzyme, as well as PS+CD, PS+CD+D3, and PS+CD+D3+D4. However, we were successful only with the latter three constructs. We could activate recombinant CPL1 by PS removal employing trypsin, and found that both zymogen and mature CPL1 were active in gelatin zymography and against a fluorogenic gelatin variant. This activity was ablated in a mutant, in which the catalytic glutamate described for lower pappalyins and other metzincins was replaced by alanine, and by a broad-spectrum metal chelator. Overall, these results proved that our recombinant CPL1 is a functional active MP, thus supporting the conclusions derived from the structure predictions. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

17 pages, 4255 KB  
Article
Correlation between the Chemical Structure of (Meth)Acrylic Monomers and the Properties of Powder Clear Coatings Based on the Polyacrylate Resins
by Katarzyna Pojnar and Barbara Pilch-Pitera
Materials 2024, 17(7), 1655; https://doi.org/10.3390/ma17071655 - 3 Apr 2024
Cited by 6 | Viewed by 2448
Abstract
This paper presents studies on the influence of the chemical structure of (meth)acrylic monomers on the properties of powder coatings based on polyacrylate resins. For this purpose, a wide range of monomers were selected—2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), n-butyl acrylate ( [...] Read more.
This paper presents studies on the influence of the chemical structure of (meth)acrylic monomers on the properties of powder coatings based on polyacrylate resins. For this purpose, a wide range of monomers were selected—2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), n-butyl acrylate (nBA), tert-butyl acrylate (tBA), dodecyl acrylate (DA), ethyl acrylate (EA) and benzyl acrylate (BAZ)—for the synthesis of the polyacrylate resin. The average molecular mass and molecular mass distribution of the synthesized resins were measured by gel permeation chromatography (GPC). The glass transition temperature (Tg) and viscosity of polyacrylate resins were determined by using differential scanning calorimetry (DSC) and a Brookfield viscometer. These parameters were necessary to obtain information about storage stability and behavior during the application of powder clear coatings. Additionally, DSC was also used to checked the course of the low-temperature curing reaction between the hydroxyl group contained in the polyacrylate resin and the blocked polyisocyanate group derived from a commercial agent such as Vestanat B 1358/100. The properties of the cured powder clear coatings were tested, such as: roughness, gloss, adhesion to the steel surface, hardness, cupping, scratch resistance, impact resistance and water contact angle. The best powder clear coating based on the polyacrylate resin L_HEMA/6MMA/0.5nBA/0.5DA was characterized as having good scratch resistance (550 g) and adhesion to the steel surface, a high water contact angle (93.53 deg.) and excellent cupping (13.38 mm). Moreover, its crosslinking density (CD) and its thermal stability was checked by using dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). Full article
(This article belongs to the Special Issue Recent Advances and Emerging Challenges in Functional Coatings)
Show Figures

Figure 1

14 pages, 1514 KB  
Article
Application of β-Cyclodextrin Adsorbents in the Removal of Mixed Per- and Polyfluoroalkyl Substances
by Elham Abaie, Manish Kumar, Naveen Kumar, Yilang Sun, Jennifer Guelfo, Yuexiao Shen and Danny Reible
Toxics 2024, 12(4), 264; https://doi.org/10.3390/toxics12040264 - 31 Mar 2024
Cited by 8 | Viewed by 4503
Abstract
The extensive use of per- and polyfluoroalkyl substances (PFASs) in industrial consumer products has led to groundwater contamination, raising concerns for human health and the environment. These persistent chemicals exist in different forms with varying properties, which makes their removal challenging. In this [...] Read more.
The extensive use of per- and polyfluoroalkyl substances (PFASs) in industrial consumer products has led to groundwater contamination, raising concerns for human health and the environment. These persistent chemicals exist in different forms with varying properties, which makes their removal challenging. In this study, we assessed the effectiveness of three different β-cyclodextrin (β-CD) adsorbents at removing a mixture of PFASs, including anionic, neutral, and zwitterionic compounds, at neutral pH. We calculated linear partition coefficient (Kd) values to quantify the adsorption affinity of each PFAS. β-CD polymers crosslinked with hexamethylene diisocyanate (β-CD-HDI) and epichlorohydrin (β-CD-EPI) displayed some adsorption of PFASs. Benzyl chloride β-CD (β-CD-Cl), an adsorbent that had not been previously reported, was also synthesized and tested for PFAS adsorption. β-CD-Cl exhibited higher PFAS adsorption than β-CD-HDI and β-CD-EPI, with log Kd values ranging from 1.9 L·g−1 to 3.3 L·g−1. β-CD-Cl displayed no affinity for zwitterionic compounds, as opposed to β-CD-HDI and β-CD-EPI, which removed N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). A comparison between Kd values and the log Kow of PFAS confirmed the significant role of hydrophobic interactions in thee adsorption mechanism. This effect was stronger in β-CD-Cl, compared to β-CD-HDI and β-CD-EPI. While no effect of PFAS charge was observed in β-CD-Cl, some influence of charge was observed in β-CD-HDI and β-CD-EPI, with less negative compounds being more adsorbed. The adsorption of PFASs by β-CD-Cl was similar in magnitude to that of other adsorbents proposed in literature. However, it offers the advantage of not containing fluorine, unlike many commonly proposed adsorbents. Full article
(This article belongs to the Special Issue Novel Adsorbents and Adsorption Methods for Pollutants Removal Ⅱ)
Show Figures

Figure 1

20 pages, 3490 KB  
Article
A Comprehensive Strategy for Stepwise Design of a Lab PROTOTYPE for the Removal of Emerging Contaminants in Water Using Cyclodextrin Polymers as Adsorbent Material
by Antonio Tomás Hernández Cegarra, Teresa Gómez-Morte, José Antonio Pellicer, Nuria Vela, María Isabel Rodríguez-López, Estrella Núñez-Delicado and José Antonio Gabaldón
Int. J. Mol. Sci. 2024, 25(5), 2829; https://doi.org/10.3390/ijms25052829 - 29 Feb 2024
Cited by 1 | Viewed by 1833
Abstract
The significant environmental issue of water pollution caused by emerging contaminants underscores the imperative for developing novel cleanup methods that are efficient, economically viable, and that are intended to operate at high capacity and under continuous flows at the industrial scale. This study [...] Read more.
The significant environmental issue of water pollution caused by emerging contaminants underscores the imperative for developing novel cleanup methods that are efficient, economically viable, and that are intended to operate at high capacity and under continuous flows at the industrial scale. This study shows the results of the operational design to build a prototype for the retention at lab scale of pollutant residues in water by using as adsorbent material, insoluble polymers prepared by β-cyclodextrin and epichlorohydrin as a cross-linking agent. Laboratory in-batch tests were run to find out the adsorbent performances against furosemide and hydrochlorothiazide as pollutant models. The initial evaluation concerning the dosage of adsorbent, pH levels, agitation, and concentration of pharmaceutical pollutants enabled us to identify the optimal conditions for conducting the subsequent experiments. The adsorption kinetic and the mechanisms involved were evaluated revealing that the experimental data perfectly fit the pseudo second-order model, with the adsorption process being mainly governed by chemisorption. With KF constant values of 0.044 (L/g) and 0.029 (L/g) for furosemide and hydrochlorothiazide, respectively, and the determination coefficient (R2) being higher than 0.9 for both compounds, Freundlich yielded the most favorable outcomes, suggesting that the adsorption process occurs on heterogeneous surfaces involving both chemisorption and physisorption processes. The maximum monolayer adsorption capacity (qmax) obtained by the Langmuir isotherm revealed a saturation of the β-CDs-EPI polymer surface 1.45 times higher for furosemide (qmax = 1.282 mg/g) than hydrochlorothiazide (qmax = 0.844 mg/g). Based on these results, the sizing design and building of a lab-scale model were carried out, which in turn will be used later to evaluate its performance working in continuous flow in a real scenario. Full article
(This article belongs to the Special Issue Biomaterials for Pollutants Removal: From Molecular Perspectives)
Show Figures

Figure 1

17 pages, 1962 KB  
Article
Removal of Diclofenac and Heavy Metal Ions from Aqueous Media Using Composite Sorbents in Dynamic Conditions
by Daniela Fighir, Carmen Paduraru, Ramona Ciobanu, Florin Bucatariu, Oana Plavan, Andreea Gherghel, George Barjoveanu, Marcela Mihai and Carmen Teodosiu
Nanomaterials 2024, 14(1), 33; https://doi.org/10.3390/nano14010033 - 21 Dec 2023
Cited by 4 | Viewed by 1851
Abstract
Pharmaceuticals and heavy metals pose significant risks to human health and aquatic ecosystems, necessitating their removal from water and wastewater. A promising alternative for this purpose involves their removal by adsorption on composite sorbents prepared using a conventional layer-by-layer (LbL) method or an [...] Read more.
Pharmaceuticals and heavy metals pose significant risks to human health and aquatic ecosystems, necessitating their removal from water and wastewater. A promising alternative for this purpose involves their removal by adsorption on composite sorbents prepared using a conventional layer-by-layer (LbL) method or an innovative coacervate direct deposition approach. In this study, four novel composite materials based on a silica core (IS) and a polyelectrolyte coacervate shell were used for the investigation of dynamic adsorption of three heavy metals (lead, nickel and cadmium) and an organic drug model (diclofenac sodium salt, DCF-Na). The four types of composite sorbents were tested for the first time in dynamic conditions (columns with continuous flow), and the column conditions were similar to those used in wastewater treatment plants. The influence of the polyanion nature (poly(acrylic acid) (PAA) vs. poly(sodium methacrylate) (PMAA)), maintaining a constant poly(ethyleneimine) (PEI), and the cross-linking degree (r = 0.1 and r = 1.0) of PEI chains on the immobilization of these pollutants (inorganic vs. organic) on the same type of composite was also studied. The experiments involved both single- and multi-component aqueous solutions. The kinetics of the dynamic adsorption process were examined using two non-linear models: the Thomas and Yoon–Nelson models. The tested sorbents demonstrated good adsorption capacities with affinities for the metal ions in the following order: Pb2+ > Cd2+ > Ni2+. An increase in the initial diclofenac sodium concentration led to an enhanced adsorption capacity of the IS/(PEI-PAA)c-r1 sorbent. The calculated sorption capacities were in good agreement with the adsorption capacity predicted by the Thomas and Yoon–Nelson models. The substantial affinity observed between DCF-Na and a column containing composite microparticles saturated with heavy metal ions was explained. Full article
Show Figures

Figure 1

12 pages, 8770 KB  
Article
Supramolecular Responsive Chitosan Microcarriers for Cell Detachment Triggered by Adamantane
by Lixia Huang, Yifei Jiang, Xinying Chen, Wenqi Zhang, Qiuchen Luo, Siyan Chen, Shuhan Wang, Fangqing Weng and Lin Xiao
Polymers 2023, 15(19), 4024; https://doi.org/10.3390/polym15194024 - 8 Oct 2023
Cited by 1 | Viewed by 2116
Abstract
Supramolecular responsive microcarriers based on chitosan microspheres were prepared and applied for nonenzymatic cell detachment. Briefly, chitosan microspheres (CSMs) were first prepared by an emulsion crosslinking approach, the surface of which was then modified with β-cyclodextrin (β-CD) by chemical grafting. Subsequently, gelatin was [...] Read more.
Supramolecular responsive microcarriers based on chitosan microspheres were prepared and applied for nonenzymatic cell detachment. Briefly, chitosan microspheres (CSMs) were first prepared by an emulsion crosslinking approach, the surface of which was then modified with β-cyclodextrin (β-CD) by chemical grafting. Subsequently, gelatin was attached onto the surface of the CSMs via the host–guest interaction between β-CD groups and aromatic residues in gelatin. The resultant microspheres were denoted CSM-g-CD-Gel. Due to their superior biocompatibility and gelatin niches, CSM-g-CD-Gel microspheres can be used as effective microcarriers for cell attachment and expansion. L-02, a human fetal hepatocyte line, was used to evaluate cell attachment and expansion with these microcarriers. After incubation for 48 h, the cells attached and expanded to cover the entire surface of microcarriers. Moreover, with the addition of adamantane (AD), cells can be detached from the microcarriers together with gelatin because of the competitive binding between β-CD and AD. Overall, these supramolecular responsive microcarriers could effectively support cell expansion and achieve nonenzymatic cell detachment and may be potentially reusable with a new cycle of gelatin attachment and detachment. Full article
(This article belongs to the Special Issue Research Progress on Chitosan Applications)
Show Figures

Figure 1

13 pages, 2218 KB  
Article
Removal of the Water Pollutant Ciprofloxacin Using Biodegradable Sorbent Polymers Obtained from Polysaccharides
by Sarah Alvarado, Alicia Megia-Fernandez, Mariano Ortega-Muñoz, Fernando Hernandez-Mateo, F. Javier Lopez-Jaramillo and Francisco Santoyo-Gonzalez
Polymers 2023, 15(15), 3188; https://doi.org/10.3390/polym15153188 - 27 Jul 2023
Cited by 9 | Viewed by 2098
Abstract
Water use has been increasing globally by 1% per year, and recycling and re-use are critical issues compromised by the presence of pollutants. In this context, the design of novel materials and/or procedures for the large scale-removal of pollutants must be economically and [...] Read more.
Water use has been increasing globally by 1% per year, and recycling and re-use are critical issues compromised by the presence of pollutants. In this context, the design of novel materials and/or procedures for the large scale-removal of pollutants must be economically and environmentally feasible in order to be considered as part of the solution by emerging economies. We demonstrate that the cross-linking of biodegradable polysaccharides such as starch, dextrin, or dextrin and β-cyclodextrin with divinyl sulfone is an innovative strategy for synthesizing insoluble and eco-friendly sorbent polymers, including pSt, pDx and pCD-Dx. The evaluation of these polymers’ ability to remove ciprofloxacin (CIP), a prime example of antibiotic pollution, revealed that pSt, with a Kd of 1469 L/kg and a removal rate higher than 92%, is a favorable material. Its sorption is pH-dependent and enhanced at a mildly alkaline pH, allowing for the desorption (i.e., cleaning) and reuse of pSt through an environmentally friendly treatment with 20 mM AcONa pH 4.6. The facts that pSt (i) shows a high affinity for CIP even at high NaCl concentrations, (ii) can be obtained from affordable starting materials, and (iii) is synthesized and regenerated through organic, solvent-free procedures make pSt a novel sustainable material for inland water and seawater remediation, especially in less developed countries, due to its simplicity and low cost. Full article
(This article belongs to the Special Issue Polymer Composites for Biomedical and Environmental Applications II)
Show Figures

Graphical abstract

21 pages, 4481 KB  
Article
Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism
by Xiangfen Cui, Juan Wang, Qun Zhao, Chen Li, Jianhong Huang, Xuewei Hu, Jie Li and Mantao Li
Separations 2023, 10(6), 358; https://doi.org/10.3390/separations10060358 - 15 Jun 2023
Cited by 10 | Viewed by 3114
Abstract
Biochar adsorption has emerged as a favorable and environmentally friendly approach for removing metals such as chromium (Cr) from wastewater. However, the use of pristine biochar (PBC) is limited due to its finite adsorptive capacity, selectivity, and potential for secondary pollution. In this [...] Read more.
Biochar adsorption has emerged as a favorable and environmentally friendly approach for removing metals such as chromium (Cr) from wastewater. However, the use of pristine biochar (PBC) is limited due to its finite adsorptive capacity, selectivity, and potential for secondary pollution. In this study, a novel bifunctionalized magnetic biochar (BMBC) was fabricated by incorporating cystamine as a ligand and glutaraldehyde as a crosslinker into alkali-treated magnetic biochar (MBC). This chemical modification introduced numerous amino groups and disulfide bonds onto the surfaces of BMBC. The biochar adsorbents’ surface morphologies, crystal structures, and texture properties were characterized using SEM, XRD, and N2 adsorption-desorption techniques. The specific surface area was determined using the BET method. Furthermore, the surface functional groups and elemental compositions before and after adsorption were analyzed using FTIR and XPS, respectively. The results demonstrated higher Cr(VI) removal efficacy of BMBC (100%) than MBC (72.37%) and PBC (61.42%). Optimal conditions for Cr(VI) removal were observed at a solution pH of 2, a temperature of 50 °C, a reaction time of around 1440 min, and an initial adsorbate concentration of 300 mg/L. The sorption process followed a chemical mechanism and was controlled by monolayer adsorption, with a maximum adsorption capacity of 66.10 mg/g at 50 °C and a pH of 2, as indicated by the larger fitting values of the pseudo–second-order and Langmuir models. The positive ∆Ho and ∆So values and negative ∆G0 values suggested a spontaneous and endothermic Cr(VI) adsorption process with high randomness at the solid/liquid interface. The removal of Cr(VI) was attributed to the reduction of Cr(VI) into Cr(III) facilitated by the introduced amino acids, sulfur, and Fe(II), electrostatic interaction between Cr(VI) in the solution and positive charges on the adsorbent surface, and complexation with functional groups. The presence of co-existing cations such as Cu(II), Cd(II), Mn(II), and K(I) had little effect on Cr(VI) removal efficiency. At the same time, the co-existence of anions of Cl, NO3, SO42−, and HPO42− resulted in a 7.58% decrease in the Cr(VI) removal rate. After five consecutive adsorption/desorption cycles, BMBC maintained a high Cr(VI) removal rate of 61.12%. Overall, this novel BMBC derived from rice straw shows great promise as a biosorbent for treating Cr(VI) in wastewater. Full article
(This article belongs to the Special Issue (Bio)-Sorbents for Water Treatment and Soil Remediation)
Show Figures

Figure 1

Back to TopTop