Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = CACNA1A gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2443 KiB  
Article
Contralateral Structure and Molecular Response to Severe Unilateral Brain Injury
by Xixian Liao, Xiaojian Xu, Ming Li, Runfa Tian, Yuan Zhuang and Guoyi Gao
Brain Sci. 2025, 15(8), 837; https://doi.org/10.3390/brainsci15080837 (registering DOI) - 5 Aug 2025
Abstract
Background: Severe damage to one side of the brain often leads to adverse consequences and can also cause widespread changes throughout the brain, especially in the contralateral area. Studying molecular changes in the contralateral cerebral hemisphere, especially with regard to genetic regulation, [...] Read more.
Background: Severe damage to one side of the brain often leads to adverse consequences and can also cause widespread changes throughout the brain, especially in the contralateral area. Studying molecular changes in the contralateral cerebral hemisphere, especially with regard to genetic regulation, can help discover potential treatment strategies to promote recovery after severe brain trauma on one side. Methods: In our study, the right motor cortex was surgically removed to simulate severe unilateral brain injury, and changes in glial cells and synaptic structure in the contralateral cortex were subsequently assessed through immunohistological, morphological, and Western blot analyses. We conducted transcriptomic studies to explore changes in gene expression levels associated with the inflammatory response. Results: Seven days after corticotomy, levels of reactive astrocytes and hypertrophic microglia increased significantly in the experimental group, while synapsin-1 and PSD-95 levels in the contralateral motor cortex increased. These molecular changes are associated with structural changes, including destruction of dendritic structures and the encapsulation of astrocytes by synapses. Genome-wide transcriptome analysis showed a significant increase in gene pathways involved in inflammatory responses, synaptic activity, and nerve fiber regeneration in the contralateral cortex after corticorectomy. Key transcription factors such as NF-κB1, Rela, STAT3 and Jun were identified as potential regulators of these contralateral changes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) confirmed that the mRNA expression levels of Cacna1c, Tgfb1 and Slc2a1 genes related to STAT3, JUN, and NF-κB regulation significantly increased in the contralateral cortex of the experimental group. Conclusions: After unilateral brain damage occurs, changes in the contralateral cerebral hemisphere are closely related to processes involving inflammation and synaptic function. Full article
Show Figures

Figure 1

11 pages, 242 KiB  
Article
Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis
by Zizi Molaee, Robert A. Smith, Neven Maksemous and Lyn R. Griffiths
Genes 2025, 16(8), 895; https://doi.org/10.3390/genes16080895 - 28 Jul 2025
Viewed by 326
Abstract
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points [...] Read more.
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points to an overlap between migraine and cerebral small vessel disease (SVD), implicating vascular dysfunction in HM pathophysiology. Objective: This study aimed to identify rare or novel variants in genes associated with SVD in a cohort of patients clinically diagnosed with HM who tested negative for known familial hemiplegic migraine (FHM) pathogenic variants. Methods: We conducted a case-control association analysis of whole exome sequencing (WES) data from 184 unrelated HM patients. A targeted panel of 34 SVD-related genes was assessed. Variants were prioritised based on rarity (MAF ≤ 0.05), location (exonic/splice site), and predicted pathogenicity using in silico tools. Statistical comparisons to gnomAD’s Non-Finnish European population were made using chi-square tests. Results: Significant variants were identified in several SVD-related genes, including LRP1 (p.Thr4077Arg), COL4A1 (p.Pro54Leu), COL4A2 (p.Glu1123Gly), and TGFBR2 (p.Met148Leu and p.Ala51Pro). The LRP1 variant showed the strongest association (p < 0.001). All key variants demonstrated pathogenicity predictions in multiple computational models, implicating them in vascular dysfunction relevant to migraine mechanisms. Conclusions: This study provides new insights into the genetic architecture of hemiplegic migraine, identifying rare and potentially deleterious variants in SVD-related genes. These findings support the hypothesis that vascular and cellular maintenance pathways contribute to migraine susceptibility and may offer new targets for diagnosis and therapy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
23 pages, 5573 KiB  
Article
Expression Profiles of Genes Related to Serotonergic Synaptic Function in Hypothalamus of Hypertensive and Normotensive Rats in Basal and Stressful Conditions
by Olga E. Redina, Marina A. Ryazanova, Dmitry Yu. Oshchepkov, Yulia V. Makovka and Arcady L. Markel
Int. J. Mol. Sci. 2025, 26(15), 7058; https://doi.org/10.3390/ijms26157058 - 22 Jul 2025
Viewed by 196
Abstract
The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. [...] Read more.
The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. Unfortunately, the genetic determination of serotonergic hypothalamic mechanisms has been little studied. The aim of this article is to describe the expression profile of the genes in the hypothalamic serotonergic synapses in hypertensive ISIAH rats in comparison with normotensive WAG rats in control conditions and under the influence of a single short-term restraint stress. It was found that 14 differentially expressed genes (DEGs) may provide the inter-strain differences in the serotonergic synaptic function in the hypothalamus between the hyper- and normotensive rats studied. In hypertensive rats, downregulation of Slc18a1 gene in the presynaptic serotoninergic ends and decreased expression of Cacna1s and Htr3a genes determining the postsynaptic membrane conductance may be considered as a main factors causing differences in the function of hypothalamic serotoninergic synapses in hypertensive ISIAH and normotensive WAG rats at the basal conditions. Under basal conditions, glial cell genes were not involved in the formation of inter-strain differences in serotonergic synaptic function. The analysis of transcriptional responses to restraint stress revealed key genes whose expression is involved in the regulation of serotonergic signaling, and a cascade of interrelated changes in biological processes and metabolic pathways. Stress-dependent changes in the expression of some DEGs are similar in the hypothalamus of hypertensive and normotensive rats, but the expression of a number of genes changes in a strain-specific manner. The results suggest that in hypothalamic glial cells of both strains, restraint stress induces changes in the expression of DEGs associated with the synthesis of Ip3 and its receptors. Many of the identified serotonergic DEGs participate in the regulation of not only serotonergic synapses but may also be involved in the regulation of cholinergic, GABAergic, glutamatergic, and dopaminergic synapses. The results of the study provide new information on the genetic mechanisms of inter-strain differences in the functioning of the hypothalamic serotonergic system in hypertensive ISIAH and normotensive WAG rats at rest and under the influence of a single short-term restraint (emotional) stress. Full article
(This article belongs to the Special Issue Serotonin in Health and Diseases)
Show Figures

Figure 1

20 pages, 1417 KiB  
Article
Gene-Based Burden Testing of Rare Variants in Hemiplegic Migraine: A Computational Approach to Uncover the Genetic Architecture of a Rare Brain Disorder
by Mohammed M. Alfayyadh, Neven Maksemous, Heidi G. Sutherland, Rodney A. Lea and Lyn R. Griffiths
Genes 2025, 16(7), 807; https://doi.org/10.3390/genes16070807 - 9 Jul 2025
Cited by 1 | Viewed by 488
Abstract
Background: HM is a rare, severe form of migraine with aura, characterised by motor weakness and strongly influenced by genetic factors affecting the brain. While pathogenic variants in CACNA1A, ATP1A2, and SCN1A genes have been implicated in familial HM, approximately 75% [...] Read more.
Background: HM is a rare, severe form of migraine with aura, characterised by motor weakness and strongly influenced by genetic factors affecting the brain. While pathogenic variants in CACNA1A, ATP1A2, and SCN1A genes have been implicated in familial HM, approximately 75% of cases lack known pathogenic variants in these genes, suggesting a more complex genetic basis. Methods: To advance our understanding of HM, we applied a variant prioritisation approach using whole-exome sequencing (WES) data from patients referred for HM diagnosis (n = 184) and utilised PathVar, a bioinformatics pipeline designed to identify pathogenic variants. Our analysis incorporated two strategies for association testing: (1) PathVar-identified single nucleotide variants (SNVs) and (2) PathVar SNVs combined with missense and rare variants. Principal component analysis (PCA) was performed to adjust for ancestral and other unknown differences between cases and controls. Results: Our results reveal a sequential reduction in the number of genes significantly associated with HM, from 20 in the first strategy to 11 in the second, which highlights the unique contribution of PathVar SNVs to the genetic architecture of HM. PathVar SNVs were more distinctive in the case cohort, suggesting a closer link to the functional changes underlying HM compared to controls. Notably, novel genes, such as SLC38A10, GCOM1, and NXPH2, which were previously not implicated in HM, are now associated with the disorder, advancing our understanding of its genetic basis. Conclusions: By prioritising PathVar SNVs, we identified a broader set of genes potentially contributing to HM. Given that HM is a rare condition, our findings, utilising a sample size of 184, represent a unique contribution to the field. This iterative analysis demonstrates that integrating diverse variant schemes provides a more comprehensive view of the genetic factors driving HM. Full article
Show Figures

Figure 1

22 pages, 4262 KiB  
Article
Transcriptomic Changes of Telencephalon and Hypothalamus in Largemouth Bass (Micropterus salmoides) Under Crowding Stress
by Meijia Li, Leshan Yang and Ying Liu
Biology 2025, 14(7), 809; https://doi.org/10.3390/biology14070809 - 3 Jul 2025
Viewed by 394
Abstract
Crowding stress is an inevitable stressor in intensive farming, yet its underlying mechanisms are still obscure, severely hindering the aquaculture industry’s healthy development. As the primary sensory and regulatory organ for stressors, the brain plays a crucial role in stress responses. In this [...] Read more.
Crowding stress is an inevitable stressor in intensive farming, yet its underlying mechanisms are still obscure, severely hindering the aquaculture industry’s healthy development. As the primary sensory and regulatory organ for stressors, the brain plays a crucial role in stress responses. In this study, the effect of crowding stress on the telencephalon (Tel) and hypothalamus (Hy) has been explored using RNA sequencing. After four weeks of crowding stress, neuroinflammation-related genes were significantly induced in both the Tel and Hy. Additionally, cell fate-related processes were markedly altered. Neurogenesis-related pathways, including the Wnt and Hedgehog signaling pathways, were significantly enriched in both regions. The apoptosis-related genes (caspase3, p53) were predominantly downregulated in the Tel (log2Fold Change: −1.27 and −0.71, respectively), while ferroptosis-related genes (ho1, ncoa4) were specifically activated in the Hy (log2Fold Change: 1.15 and 0.73, respectively). The synaptic plasticity-related genes (prkcg, cacna1d) were significantly downregulated in both the Tel (log2Fold Change: −1.78 and −0.88) and Hy (log2Fold Change: −1.99 and −1.52). Furthermore, neurotransmitter synthesis (γ-aminobutyric acid (GABA) and serotonin (5-HT)) was disrupted in the Tel, whereas growth-related hormone gene expression was markedly altered in the Hy. These findings provide novel insights into the neurobiological mechanisms of chronic crowding stress in fish, laying a foundation for developing brain-targeted strategies to enhance welfare and mitigate stress in intensive largemouth bass farming. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

13 pages, 472 KiB  
Article
Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity
by Ji Yoon Han
Genes 2025, 16(7), 767; https://doi.org/10.3390/genes16070767 - 29 Jun 2025
Viewed by 340
Abstract
Background: Developmental delay and intellectual disability (DD/ID) are frequently accompanied by epilepsy, and growing evidence implicates variants in voltage-gated calcium channel genes in their pathogenesis. This study aimed to investigate the association of polymorphisms in CACNA1A, CACNA1C, and CACNA1H with DD/ID [...] Read more.
Background: Developmental delay and intellectual disability (DD/ID) are frequently accompanied by epilepsy, and growing evidence implicates variants in voltage-gated calcium channel genes in their pathogenesis. This study aimed to investigate the association of polymorphisms in CACNA1A, CACNA1C, and CACNA1H with DD/ID and epilepsy comorbidity in Korean children. Methods: We retrospectively analyzed 141 pediatric patients diagnosed with DD/ID who underwent whole-exome sequencing (WES) and were not found to have pathogenic monogenic variants. Nine single-nucleotide polymorphisms (SNPs) across CACNA1A, CACNA1C, and CACNA1H were selected based on functional annotation scores and prior literature. Genotype data were extracted from WES variant files, and allele and genotype frequencies were compared with control data from the gnomAD East Asian population and the Korean Reference Genome Database (KRGDB). Subgroup analyses were performed according to epilepsy comorbidity. Results: The CACNA1A rs16023 variant showed a significantly higher B allele frequency in DD/ID patients than in both control datasets and was also associated with epilepsy comorbidity. Genotype distribution analysis revealed that the BB genotype of rs16023 was more frequent in patients with epilepsy. Conclusions: The CACNA1A rs16023 variant may contribute to genetic susceptibility to DD/ID and epilepsy in Korean children, potentially through regulatory mechanisms. These findings support the relevance of calcium channel genes in neurodevelopmental disorders and highlight the importance of integrating functional annotation in variant prioritization. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 1224 KiB  
Article
Reduced Gene Dosage of the Psychiatric Risk Gene Cacna1c Is Associated with Impairments in Hypothalamic–Pituitary–Adrenal Axis Activity in Rats
by Anna L. Moon, Eleanor R. Mawson, Patricia Gasalla, Lawrence S. Wilkinson, Dominic M. Dwyer, Jeremy Hall and Kerrie L. Thomas
Int. J. Mol. Sci. 2025, 26(12), 5547; https://doi.org/10.3390/ijms26125547 - 10 Jun 2025
Viewed by 453
Abstract
Common and rare variation in CACNA1C gene expression has been consistently associated with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and major depression. However, the underlying biological pathways that cause this association have yet to be fully determined. In this study, we present [...] Read more.
Common and rare variation in CACNA1C gene expression has been consistently associated with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and major depression. However, the underlying biological pathways that cause this association have yet to be fully determined. In this study, we present evidence that rats with a reduced gene dosage of Cacna1c have increased basal corticosterone levels in the periphery and reduced the expression of Nr3c1 encoding the glucocorticoid receptor in the hippocampus and hypothalamus. These results are consistent, with an effect of Cacna1c dosage on hypothalamus–pituitary–adrenal (HPA) axis function. Heterozygous Cacna1c rats had lower levels of the histone markers H3K4me3 and H3K27acat exon 17 of the Nr3c1 gene. These histone modifications are typically linked to increased gene expression, but here were not associated with changes in the expression of exon 17 variants under non-stress conditions. Heterozygous Cacna1c rats additionally show increased anxiety behaviours. These results support an association of Cacna1c heterozygosity with the altered activity of the HPA axis and function in the resting state, and this may be a predisposing mechanism that contributes to the increased risk of psychiatric disorders with stress. Full article
Show Figures

Figure 1

21 pages, 1567 KiB  
Article
Whole Exome Sequencing in 26 Saudi Patients Expands the Mutational and Clinical Spectrum of Diabetic Nephropathy
by Imadeldin Elfaki, Rashid Mir, Sanaa Almowallad, Rehab F. Almassabi, Wed Albalawi, Aziz Dhaher Albalawi, Ajaz A. Bhat, Jameel Barnawi, Faris J. Tayeb, Mohammed M. Jalal, Malik A. Altayar and Faisal H. Altemani
Medicina 2025, 61(6), 1017; https://doi.org/10.3390/medicina61061017 - 29 May 2025
Viewed by 689
Abstract
Background and Objectives: Type 2 diabetes mellitus (T2DM) is a health problem all over the world due to its serious complications such as diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, cardiovascular diseases, and limb amputation. The risk factors for T2DM are environmental, lifestyle, [...] Read more.
Background and Objectives: Type 2 diabetes mellitus (T2DM) is a health problem all over the world due to its serious complications such as diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, cardiovascular diseases, and limb amputation. The risk factors for T2DM are environmental, lifestyle, and genetic. The genome-wide association studies (GWASs) have revealed the linkage of certain loci with diabetes mellitus (DM) and its complications. The objective of this study was to examine the association of genetic loci with diabetic nephropathy (DN) in the Saudi population. Materials and Methods: Whole exome sequencing (WES) and bioinformatics analysis, such as Genome Analysis Toolkit, Samtools, SnpEff, Polymorphism Phenotyping v2, and Sorting Intolerant from Tolerant (SIFT), were used to examine the association of gene variations with DN in 26 Saudi patients (18 males and 8 females). Results: The present study showed that there are loci that are probably linked to DM and DN. The genes showed variations that include COCH, PRPF31, PIEZO2, RABL5, CCT5, PLIN3, PDE4A, SH3BP2, GPR108, GPR108, MUC6, CACNA1D, and MAFA. The physiological processes that are potentially affected by these gene variations include insulin signaling and secretion, the inflammatory pathway, and mitochondrial function. Conclusion: The variations in these genes and the dysregulation of these processes may be linked to the development of DM and DN. These findings require further verification in future studies with larger sample sizes and protein functional studies. The results of this study will assist in identifying the genes involved in DM and DN (for example, through genetic counseling) and help in prevention and treatment of individuals or populations at risk of this disease and its complications. Full article
Show Figures

Figure 1

14 pages, 2142 KiB  
Article
Search for Ancient Selection Traces in Faverolle Chicken Breed (Gallus gallus domesticus) Based on Runs of Homozygosity Analysis
by Anna E. Ryabova, Anastasiia I. Azovtseva, Yuri S. Shcherbakov, Artem P. Dysin and Natalia V. Dementieva
Animals 2025, 15(10), 1487; https://doi.org/10.3390/ani15101487 - 20 May 2025
Viewed by 498
Abstract
Runs of homozygosity (ROHs) are continuous homozygous segments of genomes that can be used to infer the historical development of the population. ROH studies allow us to analyze the genetic structure of a population and identify signs of selection. The present study searched [...] Read more.
Runs of homozygosity (ROHs) are continuous homozygous segments of genomes that can be used to infer the historical development of the population. ROH studies allow us to analyze the genetic structure of a population and identify signs of selection. The present study searched for ROH regions in the Faverolle chicken breed. DNA samples from modern individuals and museum Faverolle specimens were obtained and sent for whole-genome sequencing (WGS) with 30× coverage. The results were aligned to the reference genome and subjected to additional filtering. ROH segments were then analyzed using PLINK 1.9. As a result, 10 regions on GGA1, 2, 3, 4, and 13 were identified. A total of 19 genes associated with fat deposition and lipid metabolism (GBE1, CACNA2D1, STON1, PPP1R21, RPL21L1, ATP6V0E1, CREBRF, NKX2-2, COMMD1), fertility (LHCGR, GTF2A1L, SAMD5), muscle development and body weight (VGLL3, CACNA2D1, FOXN2, ERGIC1, RPL26L1), the shape and relative size of the skeleton (FAT4), and autophagy and apoptosis (BNIP1) were found. Developmental protein genes (PAX1, NKX2-2, NKX2-4, NKX2-5) formed a separate cluster. Probably, selection for the preservation of high flavor characteristics contributed to the consolidation of these ROH regions. The present research enhances our knowledge on the Faverolle breed’s genome and pinpoints their ROH segments that are also specific «selection traces». Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2739 KiB  
Article
TP53 Mutation-Specific Dysregulation of Store-Operated Calcium Entry and Apoptotic Sensitivity in Triple-Negative Breast Cancer
by Kaneez E. Rabab, Paul J. Buchanan, Grace Colley, Anita White, Aisling Murphy, Chloe McCormack and Alex J. Eustace
Cancers 2025, 17(10), 1614; https://doi.org/10.3390/cancers17101614 - 10 May 2025
Cited by 1 | Viewed by 1066
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen, progesterone, and HER2 receptors, and is associated with poor prognosis and limited targeted therapeutic options. TP53 mutations occur in the majority of TNBC cases, disrupting p53’s role in DNA repair and apoptosis. [...] Read more.
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen, progesterone, and HER2 receptors, and is associated with poor prognosis and limited targeted therapeutic options. TP53 mutations occur in the majority of TNBC cases, disrupting p53’s role in DNA repair and apoptosis. Beyond gene regulation, p53 also influences calcium signalling through store-operated calcium entry (SOCE), a critical pathway for cell survival and death. However, the impact of different TP53 mutation types on calcium signalling remains unclear. Methods: Calcium channel gene expression was analysed using publicly available TNBC datasets. Calcium channel expression and SOCE activity were assessed in TNBC cell lines with different TP53 mutations using quantitative PCR and calcium imaging (Fura-2AM). Cell proliferation was measured using acid phosphatase assays, while apoptosis was evaluated through caspase 3/7 activation using the Incucyte live-cell fluorescent imager. The p53 reactivator COTI-2 was tested for its ability to restore TP53 function and modulate calcium signalling. Results: Analysis revealed significant downregulation of CACNA1D in TP53-mutant TNBCs. TNBC cell lines harbouring frameshift and stop TP53 mutations exhibited reduced SOCE, lower CACNA1D expression, and resistance to thapsigargin-induced apoptosis compared to wild-type cells. In contrast, cells with the TP53 R273H missense mutation demonstrated similar calcium signalling and proliferation to TP53 wild-type cels. COTI-2 treatment restored CACNA1D expression and SOCE in frameshift and stop mutant cells, enhancing apoptotic sensitivity. Combined treatment with COTI-2 and thapsigargin resulted in a synergistic increase in apoptosis. Conclusions: This study identifies a novel link between TP53 mutation type and calcium signalling in TNBC. Reactivating mutant p53 with COTI-2 restores calcium-mediated apoptosis, supporting combination strategies targeting both TP53 dysfunction and calcium signalling. Full article
(This article belongs to the Special Issue Calcium Signaling in Cancer Cell Progression)
Show Figures

Figure 1

13 pages, 242 KiB  
Article
A Series of Patients with Genodermatoses in a Reference Service for Rare Diseases: Results from the Brazilian Rare Genomes Project
by Carlos Eduardo Steiner, Maria Beatriz Puzzi, Antonia Paula Marques-de-Faria, Ruy Pires de Oliveira Sobrinho, Vera Lúcia Gil-da-Silva-Lopes, Carolina Araújo Moreno and The Rare Genomes Project Consortium
Genes 2025, 16(5), 522; https://doi.org/10.3390/genes16050522 - 29 Apr 2025
Viewed by 580
Abstract
Background/Objectives: Genodermatoses are genetic conditions with clinical symptoms manifesting in the skin and adjoining tissues, individually rare but comprising a large and heterogeneous group of disorders that represents 15% of genetic diseases. This article discusses the results of individuals with genodermatoses from a [...] Read more.
Background/Objectives: Genodermatoses are genetic conditions with clinical symptoms manifesting in the skin and adjoining tissues, individually rare but comprising a large and heterogeneous group of disorders that represents 15% of genetic diseases. This article discusses the results of individuals with genodermatoses from a reference center for rare diseases studied through whole genome sequencing conducted by the Brazilian Rare Genomes Project between 2021 and 2023. Methods: A retrospective case series with data comprising sex, age at first assessment in the hospital, family history, clinical findings, and molecular results. Results: Excluding neurofibromatosis type 1, Ehlers–Danlos syndrome and RASopathies are discussed elsewhere. Diagnoses in this work comprised ectodermal dysplasias (n = 6), ichthyosis (n = 4), albinism (n = 4), tuberous sclerosis complex (n = 4), and incontinentia pigmenti (n = 3), in addition to 11 others with individual rare conditions. The sex ratio was 17:16 (M:F), consanguinity was present in 6/33 (18%), and the age at the first evaluation ranged from neonatal to 26 years (median 13.65 years). Negative results were 3/33 (9%), novel variants were 17/41 (41.4%), and 7/30 (23%) presented initially with a double molecular diagnosis, three confirming composed phenotypes. Conclusions: Besides reporting 17 novel variants in 14 genes (BLM, CACNA1B, EDA, ELN, ENG, ERC6, EVC2, PNPLA1, PITCH1, PORCN, SIN3A, TP63, TYR, and WNT10B), the study also identified three atypical clinical presentations due to dual diagnoses, and the c.454C>T variant in the SDR9C7 gene, previously reported only in dogs, was, for the first time, confirmed as causative for ichthyosis in humans. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
21 pages, 498 KiB  
Review
Precision Therapeutics in Lennox–Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy
by Debopam Samanta
Children 2025, 12(4), 481; https://doi.org/10.3390/children12040481 - 8 Apr 2025
Cited by 3 | Viewed by 1782
Abstract
Lennox–Gastaut syndrome (LGS) is a severe childhood-onset developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, cognitive impairment, and distinctive electroencephalographic patterns. Current treatments primarily focus on symptom management through antiseizure medications (ASMs), dietary therapy, epilepsy surgery, and neuromodulation, but often fail [...] Read more.
Lennox–Gastaut syndrome (LGS) is a severe childhood-onset developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, cognitive impairment, and distinctive electroencephalographic patterns. Current treatments primarily focus on symptom management through antiseizure medications (ASMs), dietary therapy, epilepsy surgery, and neuromodulation, but often fail to address the underlying pathophysiology or improve cognitive outcomes. As genetic causes are identified in 30–40% of LGS cases, precision therapeutics targeting specific molecular mechanisms are emerging as promising disease-modifying approaches. This narrative review explores precision therapeutic strategies for LGS based on molecular pathophysiology, including channelopathies (SCN2A, SCN8A, KCNQ2, KCNA2, KCNT1, CACNA1A), receptor and ligand dysfunction (GABA/glutamate systems), cell signaling abnormalities (mTOR pathway), synaptopathies (STXBP1, IQSEC2, DNM1), epigenetic dysregulation (CHD2), and CDKL5 deficiency disorder. Treatment modalities discussed include traditional ASMs, dietary therapy, targeted pharmacotherapy, antisense oligonucleotides, gene therapy, and the repurposing of existing medications with mechanism-specific effects. Early intervention with precision therapeutics may not only improve seizure control but could also potentially prevent progression to LGS in susceptible populations. Future directions include developing computable phenotypes for accurate diagnosis, refining molecular subgrouping, enhancing drug development, advancing gene-based therapies, personalizing neuromodulation, implementing adaptive clinical trial designs, and ensuring equitable access to precision therapeutic approaches. While significant challenges remain, integrating biological insights with innovative clinical strategies offers new hope for transforming LGS treatment from symptomatic management to targeted disease modification. Full article
(This article belongs to the Special Issue Childhood Epilepsy: Clinical Advances and Perspectives)
19 pages, 2080 KiB  
Article
Genetic Alterations in Atypical Cerebral Palsy Identified Through Chromosomal Microarray and Exome Sequencing
by Ji Yoon Han, Jin Gwack, Jong Hun Kim, Min Kyu Park and Joonhong Park
Int. J. Mol. Sci. 2025, 26(7), 2929; https://doi.org/10.3390/ijms26072929 - 24 Mar 2025
Viewed by 889
Abstract
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or [...] Read more.
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or genome sequencing (GS) after routine karyotyping and CMA was performed to identify causative variants and expand the spectrum of mutations associated with atypical CP. In cases of atypical CP, scoliosis and/or kyphosis, ranging from mild to severe, were present in all patients. Epilepsy was a comorbidity in seven patients (70%), and intellectual disability (ID) was observed in varying degrees. This study identified three copy number variations (CNVs), including 15q11.2 microdeletion (n = 1), 17p11.2 duplication (n = 1), and 12p13.33p11.23 duplication/18p11.32 microdeletion (n = 1), and six likely pathogenic variants (LPVs) or pathogenic variants (PVs) detected in the SLC2A1, PLAA, CDC42BPB, CACNA1D, ALG12, and SACS genes (n = 6). These findings emphasize the significance of incorporating genetic testing into the diagnostic process for atypical CP to improve our understanding of its molecular basis and inform personalized treatment strategies. To further advance this research, future studies should focus on exploring genotype–phenotype correlations, assessing the functional impact of identified variants, and increasing the sample size to validate the observed patterns. Full article
Show Figures

Figure 1

8 pages, 2149 KiB  
Case Report
Effects of Levetiracetam on Episodic Ataxia Type 2 and Spinocerebellar Ataxia Type 6 with Episodic Ataxic Symptoms: A Case Series
by Haruo Shimazaki
Genes 2025, 16(3), 335; https://doi.org/10.3390/genes16030335 - 13 Mar 2025
Viewed by 801
Abstract
Background: Episodic ataxia type 2 (EA2) is a rare disorder characterized by paroxysmal gait instability, dysarthria, and dizziness. It is caused by CACNA1A mutations. Spinocerebellar ataxia type 6 (SCA6) rarely causes episodic ataxia-like symptoms. Acetazolamide has limited effectiveness for treating episodic ataxia. Methods: [...] Read more.
Background: Episodic ataxia type 2 (EA2) is a rare disorder characterized by paroxysmal gait instability, dysarthria, and dizziness. It is caused by CACNA1A mutations. Spinocerebellar ataxia type 6 (SCA6) rarely causes episodic ataxia-like symptoms. Acetazolamide has limited effectiveness for treating episodic ataxia. Methods: We investigated the effect of drug therapy in two patients with EA2 and one patient with SCA6 who presented with episodic ataxia. All three cases were CACNA1A-associated diseases. Results: In these three cases, acetazolamide administration was partially and transiently effective for episodic ataxia attacks. After levetiracetam addition, the number of ataxic attacks was significantly reduced, although the durations of attacks were not changed. The effect of levetiracetam was stable and continued for seven years. Levetiracetam and acetazolamide reduced chronic cerebellar ataxia in an SCA6 patient. Conclusions: In this small number of cases, levetiracetam was considered effective in two patients with EA2 and mildly effective in one patient with SCA6. Full article
Show Figures

Figure 1

15 pages, 1790 KiB  
Article
The Effect of TGF-β3 and IL-1β on L-Type Voltage-Operated Calcium Channels and Calcium Ion Homeostasis in Osteoarthritic Chondrocytes and Human Bone Marrow-Derived Mesenchymal Stem Cells During Chondrogenesis
by Anastasiia Shelest, Aidas Alaburda, Raminta Vaiciuleviciute, Ilona Uzieliene, Paulina Bialaglovyte and Eiva Bernotiene
Pharmaceutics 2025, 17(3), 343; https://doi.org/10.3390/pharmaceutics17030343 - 7 Mar 2025
Viewed by 967
Abstract
Background: Transforming growth factor-β (TGF-β) and interleukin 1β (IL-1β) are key regulators of the chondrogenic differentiation, physiology and pathology of cartilage tissue, with TGF-β promoting chondrogenesis and matrix formation, while IL-1β exerts catabolic effects, inhibiting chondrogenesis and contributing to cartilage degradation. Both cytokines [...] Read more.
Background: Transforming growth factor-β (TGF-β) and interleukin 1β (IL-1β) are key regulators of the chondrogenic differentiation, physiology and pathology of cartilage tissue, with TGF-β promoting chondrogenesis and matrix formation, while IL-1β exerts catabolic effects, inhibiting chondrogenesis and contributing to cartilage degradation. Both cytokines alter the intracellular calcium ion (iCa2+) levels; however, the exact pathways are not known. Objectives: This study aimed to evaluate the impact of TGF-β3 and IL-1β on calcium homeostasis in human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and chondrocytes during chondrogenesis. Results: TGF-β3 increased iCa2+ levels in both hBM-MSCs and chondrocytes. Furthermore, TGF-β3 increased the functional activity of L-type voltage-operated calcium channels (L-VOCCs) in hBM-MSCs but not in chondrocytes. TGF-β3 and IL-1β reduced L-VOCCs subunit CaV1.2 (CACNA1C) gene expression in chondrocytes. In hBM-MSCs, TGF-β3 and IL-1β increased SERCA pump (ATP2A2) gene expression, while in chondrocytes, this effect was observed only with TGF-β3. Conclusions: TGF-β3 increases iCa2+ both in osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis. In hBM-MSCs, TGF-β3-mediated elevation in iCa2+ is related to the increased functional activity of L-VOCCs. IL-1β does not change iCa2+ in osteoarthritic chondrocytes and hBM-MSCs; however, it initiates the mechanisms leading to further downregulation of iCa2+ in both types of cells. The differential and cell-specific roles of TGF-β3 and IL-1β in the calcium homeostasis of osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis may provide a new insight into future strategies for cartilage repair and osteoarthritis treatment. Full article
(This article belongs to the Special Issue Osteoarthritis and Cartilage Biologics)
Show Figures

Figure 1

Back to TopTop