Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- Documented perinatal brain injury (e.g., hypoxic-ischemic encephalopathy, grade III/IV intraventricular hemorrhage);
- Acquired structural brain abnormalities on MRI (e.g., periventricular leukomalacia, diffuse cortical atrophy);
- History of central nervous system infections (e.g., meningitis, encephalitis);
- Known metabolic disorders or traumatic brain injuries with sequelae;
- Diagnosed chromosomal syndromes or aneuploidies, unless separately analyzed.
2.2. SNP Selection and Genotype Extraction
- Minor allele frequency (MAF) ≥ 0.01 in East Asian populations, as our aim was to analyze common or low-frequency polymorphisms rather than rare or ultra-rare variants;
- Location in functionally important regions (coding exons, 3′ UTRs, enhancers, splice junctions);
- High predicted impact: Combined Annotation Dependent Depletion (CADD) score > 10 or RegulomeDB score ≤ 3a;
- Illumina Final SNP Score ≥ 0.6, indicating genotyping confidence.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albaradie, R.; Habibullah, H.; Mir, A.; Alshammari, A.K.; Alajmi, M.S.; Alsubaie, F.A.; Alsudairi, R.R.; Bashir, S. The prevalence of seizures in children with developmental delay. Neurosciences 2021, 26, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q.; Wigdor, E.M.; Malawsky, D.S.; Campbell, P.; Samocha, K.E.; Chundru, V.K.; Danecek, P.; Lindsay, S.; Marchant, T.; Koko, M.; et al. Examining the role of common variants in rare neurodevelopmental conditions. Nature 2024, 636, 404–411. [Google Scholar] [CrossRef]
- Szymanowicz, O.; Drużdż, A.; Słowikowski, B.; Pawlak, S.; Potocka, E.; Goutor, U.; Konieczny, M.; Ciastoń, M.; Lewandowska, A.; Jagodziński, P.P.; et al. A Review of the CACNA Gene Family: Its Role in Neurological Disorders. Diseases 2024, 12, 90. [Google Scholar] [CrossRef]
- Kessi, M.; Chen, B.; Peng, J.; Yan, F.; Yang, L.; Yin, F. Calcium channelopathies and intellectual disability: A systematic review. Orphanet J. Rare Dis. 2021, 16, 219. [Google Scholar] [CrossRef]
- Kshatri, A.S.; Gonzalez-Hernandez, A.; Giraldez, T. Physiological roles and therapeutic potential of Ca2+ activated potassium channels in the nervous system. Front. Mol. Neurosci. 2018, 11, 258. [Google Scholar] [CrossRef]
- Splawski, I.; Timothy, K.W.; Sharpe, L.M.; Decher, N.; Kumar, P.; Bloise, R.; Napolitano, C.; Schwartz, P.J.; Joseph, R.M.; Condouris, K.; et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004, 119, 19–31. [Google Scholar] [CrossRef]
- Daniil, G.; Fernandes-Rosa, F.L.; Chemin, J.; Blesneac, I.; Beltrand, J.; Polak, M.; Jeunemaitre, X.; Boulkroun, S.; Amar, L.; Strom, T.M.; et al. CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine 2016, 13, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 2007, 7, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Kessi, M.; Chen, B.; Pang, N.; Yang, L.; Peng, J.; He, F.; Yin, F. The genotype–phenotype correlations of the CACNA1A-related neurodevelopmental disorders: A small case series and literature reviews. Front. Mol. Neurosci. 2023, 16, 1222321. [Google Scholar] [CrossRef]
- Napolitano, C.; Priori, S.G. CACNA1C-related disorders. In GeneReviews®; National Center for Biotechnology Information (NCBI): Bethesda, MD, USA, 2024. [Google Scholar]
- Viggiano, M.; D’ANdrea, T.; Cameli, C.; Posar, A.; Visconti, P.; Scaduto, M.C.; Colucci, R.; Rochat, M.J.; Ceroni, F.; Milazzo, G.; et al. Contribution of CACNA1H variants in autism spectrum disorder susceptibility. Front. Psychiatry 2022, 13, 858238. [Google Scholar] [CrossRef]
- Lauerer, R.J.; Lerche, H. Voltage-gated calcium channels in genetic epilepsies. J. Neurochem. 2024, 168, 3853–3871. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An expanded view of complex traits: From polygenic to omnigenic. Cell 2017, 169, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Ganna, A.; Genovese, G.; Howrigan, D.P.; Byrnes, A.; I Kurki, M.; Zekavat, S.M.; Whelan, C.W.; Kals, M.; Nivard, M.G.; Bloemendal, A.; et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nat. Neurosci. 2016, 19, 1563–1565. [Google Scholar] [CrossRef] [PubMed]
- McKinney, A.A.; Petrova, R.; Panagiotakos, G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022, 149, dev198853. [Google Scholar] [CrossRef]
- Li, X.-L.; Li, Z.-J.; Liang, X.-Y.; Liu, D.-T.; Jiang, M.; Gao, L.-D.; Li, H.; Tang, X.-Q.; Shi, Y.-W.; Li, B.-M.; et al. CACNA1A mutations associated with epilepsies and their molecular sub-regional implications. Front. Mol. Neurosci. 2022, 15, 860662. [Google Scholar] [CrossRef]
- Bhat, S.; Dao, D.T.; Terrillion, C.E.; Arad, M.; Smith, R.J.; Soldatov, N.M.; Gould, T.D. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog. Neurobiol. 2012, 99, 1–14. [Google Scholar] [CrossRef]
- Lagrange, A. Genetic variants in absence epilepsy: A contextual consideration of calcium current kinetics. Epilepsy Curr. 2006, 6, 99–101. [Google Scholar] [CrossRef]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef]
- Smith, M.L.; Elliott, I.M.; Lach, L. Cognitive, psychosocial, and family function one year after pediatric epilepsy surgery. Epilepsia 2004, 45, 650–660. [Google Scholar] [CrossRef]
- Tuchman, R.; Rapin, I. Epilepsy in autism. Lancet Neurol 2002, 1, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Wirrell, E.C. Predicting pharmacoresistance in pediatric epilepsy. Epilepsia 2013, 54 (Suppl. S2), 19–22. [Google Scholar] [CrossRef] [PubMed]
- Myers, C.T.; McMahon, J.M.; Schneider, A.L.; Petrovski, S.; Allen, A.S.; Carvill, G.L.; Zemel, M.; Saykally, J.E.; LaCroix, A.J.; Heinzen, E.L.; et al. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am. J. Hum. Genet. 2016, 99, 287–298. [Google Scholar] [CrossRef]
- Wong-Spracklen, V.M.Y.; Kolesnik, A.; Eck, J.; Sabanathan, S.; Spasic-Boskovic, O.; Maw, A.; Baker, K. Biallelic CACNA1A variants: Review of literature and report of a child with drug-resistant epilepsy and developmental delay. Am. J. Med Genet. Part A 2022, 188, 3306–3311. [Google Scholar] [CrossRef]
- Consortium C-DGotPG. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 2013, 381, 1371–1379. [Google Scholar] [CrossRef]
- Chen, Y.; Parker, W.D.; Wang, K. The Role of T-Type Calcium Channel Genes in Absence Seizures. Front. Neurol. 2014, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Hommersom, M.P.; van Prooije, T.H.; Pennings, M.; Schouten, M.I.; van Bokhoven, H.; Kamsteeg, E.-J.; van de Warrenburg, B.P.C. The complexities of CACNA1A in clinical neurogenetics. J. Neurol. 2022, 269, 3094–3108. [Google Scholar] [CrossRef]
- Allen, A.S.; Berkovic, S.F.; Cossette, P.; Delanty, N.; Dlugos, D.; Eichler, E.E.; Epstein, M.P.; Glauser, T.; Goldstein, D.B.; Han, Y. De novo mutations in epileptic encephalopathies. Nature 2013, 501, 217. [Google Scholar]
- Li, M.; Santpere, G.; Imamura Kawasawa, Y.; Evgrafov, O.V.; Gulden, F.O.; Pochareddy, S.; Sunkin, S.M.; Li, Z.; Shin, Y.; Zhu, Y. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 2018, 362, eaat7615. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan micrornas. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Rehmsmeier, M.; Steffen, P.; Höchsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Welter, D.; Bowler, E.H.; Cerezo, M.; Harris, L.W.; McMahon, A.C.; Hall, P.; Junkins, H.A.; Milano, A.; Hastings, E.; et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 2018, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Popejoy, A.B.; Fullerton, S.M. Genomics is failing on diversity. Nature 2016, 538, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Lipman, A.R.; Fan, X.; Shen, Y.; Chung, W.K. Clinical and genetic characterization of CACNA1A-related disease. Clin. Genet. 2022, 102, 288–295. [Google Scholar] [CrossRef]
- Indelicato, E.; Boesch, S. From genotype to phenotype: Expanding the clinical spectrum of CACNA1A variants in the era of next generation sequencing. Front. Neurol. 2021, 12, 639994. [Google Scholar] [CrossRef]
Genes | SNP ID | Alleles | Location | Variant Type | MAF (ESA) | CADD Score | RegulomeDB Scores | Final Score | Functional Significance |
---|---|---|---|---|---|---|---|---|---|
CACNA1A | rs16023 | T>A,C | 3′ UTR | Post-transcriptional regulatory variant | 0.0468 | 12.3 | 1f | 0.847 | Reports related to epilepsy and developmental disorders |
CACNA1A | rs7249246 | T>A,G | Intron | Possible splicing regulatory variant | 0.0819 | 9.8 | 2b | 0.693 | GWAS reports related to developmental delay |
CACNA1A | rs2270655 | G>C | Exon | Missense variant | 0.0005 | 15.7 | 3a | 0.874 | Related to infantile spasms and epilepsy |
CACNA1C | rs1006737 | G>A | Intron | Regulatory region (enhancer) | 0 | 13.2 | 1f | 0.854 | Many reports on autism, epilepsy, and neuropsychiatric disorders |
CACNA1C | rs4765905 | G>A,C | Intron | Regulatory region | 0 | 10.5 | 2b | 0.776 | Related to neurological and psychiatric disorders, depression |
CACNA1C | rs2007044 | A>G | Exon | Synonymous variant | 0 | 11 | 3a | 0.851 | Related to ASD and developmental disorders |
CACNA1H | rs2753326 | A>G | Intron | Potential enhancer | 0 | 8.7 | 2b | 0.917 | Related to absence epilepsy |
CACNA1H | rs2753325 | A>C,G | Intron | Regulatory region | 0 | 9.1 | 3a | 0.841 | GWAS reports related to epilepsy |
CACNA1H | rs2235631 | C>A,T | Exon | Missense variant | 0 | 14.5 | 2b | 0.871 | Related to pediatric epilepsy |
Characteristics | Total (n = 141) (%) | DD/ID with Epilepsy (n = 45) (%) | DD/ID Without Epilepsy (n = 96) (%) | p-Value |
---|---|---|---|---|
Mean age ± SD (years) | 7.36 ± 5.00 | 10.89 ± 5.26 | 5.70 ± 3.92 | <0.001 |
Age at epilepsy diagnosis | - | 5.50 ± 5.12 | - | - |
Male (%) | 100 (71%) | 27 (58%) | 69 (72%) | 0.868 |
Severity of DD/ID | 0.171 | |||
mild | 70 (50%) | 26 (58%) | 44 (46%) | 0.253 |
moderate | 45 (32%) | 10 (22%) | 35 (37%) | 0.134 |
severe/profound | 26 (19%) | 9 (20%) | 17 (18%) | 0.925 |
Motor delay | 21 (15%) | 4 (9%) | 17 (18%) | 0.263 |
Language delay | 105 (75%) | 37 (82%) | 54 (56%) | 0.003 |
Autism spectrum disorders | 43 (30%) | 15 (33%) | 28 (29%) | 0.760 |
Sleep disturbances | 15 (%) | 4 (%) | 11 (%) | 0.866 |
Family history | 0.993 | |||
DD/ID | 22 (16%) | 7 (16%) | 15 (16%) | 1.000 |
Epilepsy | 10 (7%) | 8 (18%) | 2 (2%) | 0.002 |
SNP ID | Gene | Ref (A)/Alt (B) | A (n) | B (n) | A Frequency | B Frequency | B Frequency * (Controls) | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|---|---|---|
CACNA1A | rs16023 | T/A,C | 256 | 26 | 0.907 | 0.092 | 0.0027 | 37.51 (21.59–65.19) | <0.001 |
CACNA1A | rs7249246 | T/A,G | 259 | 23 | 0.918 | 0.081 | 0.0082 | 10.74 (6.66–17.33) | <0.001 |
CACNA1A | rs2270655 | G/C | 281 | 1 | 0.996 | 0.003 | 0.0027 | 1.31 (0.18–9.71) | 0.5415 |
CACNA1C | rs1006737 | G/A | 282 | 0 | 1.0 | 0.0 | 0.082 | – † | - |
CACNA1C | rs4765905 | G/A,C | 282 | 2 | 0.992 | 0.007 | 0.123 | 0.03 (0.00–0.18) | <0.001 |
CACNA1C | rs2007044 | A/G | 282 | 0 | 1 | 0.0 | 0.191 | – † | - |
CACNA1H | rs2753326 | A/G | 279 | 3 | 0.989 | 0.010 | 0.0164 | 0.64 (0.20–2.03) | 0.632 |
CACNA1H | rs2753325 | A/C,G | 278 | 4 | 0.985 | 0.014 | 0.0191 | 0.74 (0.27–2.00) | 0.822 |
CACNA1H | rs2235631 | C/A,T | 278 | 2 | 0.992 | 0.007 | 0.0109 | 0.65 (0.16–2.66) | 0.771 |
Gene | SNPs | Genotype | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Alleles | With Epilepsy (n = 45) | Without Epilepsy (n = 96) | |||||||
A/B | AA | AB | BB | AA | AB | BB | |||
CACNA1A | rs16023 | T/A,C | 33 | 7 | 5 | 80 | 15 | 1 | 0.0215 |
CACNA1A | rs7249246 | T/A,G | 41 | 2 | 2 | 88 | 3 | 5 | 0.9105 |
CACNA1A | rs2270655 | G/C | 45 | 0 | 0 | 95 | 0 | 1 | 1.0 |
CACNA1C | rs1006737 | G/A | 45 | 0 | 0 | 96 | 0 | 0 | 1.0 |
CACNA1C | rs4765905 | G/A,C | 45 | 0 | 0 | 95 | 1 | 0 | 1.0 |
CACNA1C | rs2007044 | A/G | 44 | 0 | 0 | 96 | 0 | 0 | 1.0 |
CACNA1H | rs2753326 | A/G | 44 | 1 | 0 | 94 | 1 | 1 | 0.6282 |
CACNA1H | rs2753325 | A/C,G | 44 | 1 | 0 | 94 | 1 | 1 | 0.9805 |
CACNA1H | rs2235631 | C/A,T | 45 | 0 | 0 | 95 | 1 | 0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.Y. Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity. Genes 2025, 16, 767. https://doi.org/10.3390/genes16070767
Han JY. Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity. Genes. 2025; 16(7):767. https://doi.org/10.3390/genes16070767
Chicago/Turabian StyleHan, Ji Yoon. 2025. "Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity" Genes 16, no. 7: 767. https://doi.org/10.3390/genes16070767
APA StyleHan, J. Y. (2025). Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity. Genes, 16(7), 767. https://doi.org/10.3390/genes16070767