Precision Therapeutics in Lennox–Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy
Abstract
:1. Introduction
2. Channelopathies
2.1. SCN2A and SCN8A
2.2. KCNQ2
2.3. KCNA2
2.4. KCNT1
2.5. CACNA1A
3. Receptor- and Ligand-Mediated Dysfunction
3.1. GABA/GABA Receptor Dysfunction
3.2. Glutamate Receptor Dysfunction
4. Synaptopathies
4.1. STXBP1
4.2. IQSEC2
4.3. DNM1
5. Cell Signaling Dysfunction
6. Epigenopathies/Chromatinopathies
CHD2
7. Dysfunction in Neuronal Formation and Maturation
CDKL5
8. Gene and Cell Therapy Strategies for Lennox–Gastaut Syndrome
9. Future Directions in Precision Therapeutics for Lennox–Gastaut Syndrome
10. Conclusions
Funding
Conflicts of Interest
References
- Amrutkar, C.V.; Riel-Romero, R.M. Lennox Gastaut Syndrome. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Asadi-Pooya, A.A.; Sharifzade, M. Lennox-Gastaut syndrome in south Iran: Electro-clinical manifestations. Seizure 2012, 21, 760–763. [Google Scholar] [CrossRef]
- Trevathan, E.; Murphy, C.C.; Yeargin-Allsopp, M. Prevalence and descriptive epidemiology of Lennox-Gastaut syndrome among Atlanta children. Epilepsia 1997, 38, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N.; Wirrell, E.C.; Scheffer, I.E.; Nabbout, R.; Riney, K.; Samia, P.; Guerreiro, M.; Gwer, S.; Zuberi, S.M.; Wilmshurst, J.M. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1398–1442. [Google Scholar]
- Samanta, D. Management of Lennox-Gastaut syndrome beyond childhood: A comprehensive review. Epilepsy Behav. 2021, 114, 107612. [Google Scholar]
- Samanta, D. Efficacy and Safety of Vagus Nerve Stimulation in Lennox–Gastaut Syndrome: A Scoping Review. Children 2024, 11, 905. [Google Scholar] [CrossRef] [PubMed]
- Knowles, J.K.; Warren, A.E.; Mohamed, I.S.; Stafstrom, C.E.; Koh, H.Y.; Samanta, D.; Shellhaas, R.A.; Gupta, G.; Dixon-Salazar, T.; Tran, L. Clinical trials for Lennox–Gastaut syndrome: Challenges and priorities. Ann. Clin. Transl. Neurol. 2024, 11, 2818–2835. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Aungaroon, G.; Fine, A.L.; Karakas, C.; Chiu, M.Y.; Jain, P.; Seinfeld, S.; Knowles, J.K.; Mohamed, I.S.; Stafstrom, C.E. Neuromodulation Strategies in Lennox-Gastaut Syndrome: Practical Clinical Guidance from the Pediatric Epilepsy Research Consortium. Epilepsy Res. 2025, 210, 107499. [Google Scholar]
- Samanta, D.; Bhalla, S.; Bhatia, S.; Fine, A.L.; Haridas, B.; Karakas, C.; Keator, C.G.; Koh, H.Y.; Perry, M.S.; Stafstrom, C.E. Antiseizure medications for Lennox-Gastaut Syndrome: Comprehensive review and proposed consensus treatment algorithm. Epilepsy Behav. 2025, 164, 110261. [Google Scholar] [CrossRef]
- Samanta, D. Cognitive and behavioral impact of antiseizure medications, neuromodulation, ketogenic diet, and surgery in lennox-gastaut syndrome: A comprehensive review. Epilepsy Behav. 2025, 164, 110272. [Google Scholar] [CrossRef]
- Yang, J.O.; Choi, M.-H.; Yoon, J.-Y.; Lee, J.-J.; Nam, S.O.; Jun, S.Y.; Kwon, H.H.; Yun, S.; Jeon, S.-J.; Byeon, I. Characteristics of genetic variations associated with Lennox-Gastaut syndrome in Korean families. Front. Genet. 2021, 11, 590924. [Google Scholar]
- Tumienė, B.; Maver, A.; Writzl, K.; Hodžić, A.; Čuturilo, G.; Kuzmanić-Šamija, R.; Čulić, V.; Peterlin, B. Diagnostic exome sequencing of syndromic epilepsy patients in clinical practice. Clin. Genet. 2018, 93, 1057–1062. [Google Scholar]
- Asadi-Pooya, A.A. Lennox-Gastaut syndrome: A comprehensive review. Neurol. Sci. 2018, 39, 403–414. [Google Scholar]
- Lund, C.; Brodtkorb, E.; Røsby, O.; Rødningen, O.K.; Selmer, K.K. Copy number variants in adult patients with Lennox–Gastaut syndrome features. Epilepsy Res. 2013, 105, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.S.; Berkovic, S.F.; Cossette, P.; Delanty, N.; Dlugos, D.; Eichler, E.E.; Epstein, M.P.; Glauser, T.; Goldstein, D.B.; Han, Y. De novo mutations in epileptic encephalopathies. Nature 2013, 501, 217–221. [Google Scholar] [PubMed]
- Project, E.P.G.; Consortium, E.K.; Allen, A.S.; Berkovic, S.F.; Coe, B.P.; Cook, J.; Cossette, P.; Delanty, N.; Dlugos, D.; Eichler, E.E.; et al. Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. Ann. Neurol. 2015, 78, 323–328. [Google Scholar]
- Scheffer, I.E.; Zuberi, S.; Mefford, H.C.; Guerrini, R.; McTague, A. Developmental and epileptic encephalopathies. Nat. Rev. Dis. Primers 2024, 10, 61. [Google Scholar]
- Ng, A.C.-H.; Chahine, M.; Scantlebury, M.H.; Appendino, J.P. Channelopathies in epilepsy: An overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J. Neurol. 2024, 271, 3063–3094. [Google Scholar]
- Samanta, D. Changing Landscape of Dravet Syndrome Management: An Overview. Neuropediatrics 2020, 51, 135–145. [Google Scholar] [CrossRef]
- Samanta, D. A comprehensive review of evolving treatment strategies for Dravet syndrome: Insights from randomized trials, meta-analyses, real-world evidence, and emerging therapeutic approaches. Epilepsy Behav. 2025, 162, 110171. [Google Scholar]
- Ademuwagun, I.A.; Rotimi, S.O.; Syrbe, S.; Ajamma, Y.U.; Adebiyi, E. Voltage gated sodium channel genes in epilepsy: Mutations, functional studies, and treatment dimensions. Front. Neurol. 2021, 12, 600050. [Google Scholar]
- Mangano, G.D.; Fontana, A.; Antona, V.; Salpietro, V.; Mangano, G.R.; Giuffrè, M.; Nardello, R. Commonalities and distinctions between two neurodevelopmental disorder subtypes associated with SCN2A and SCN8A variants and literature review. Mol. Genet. Genom. Med. 2022, 10, e1911. [Google Scholar] [CrossRef]
- Rusina, E.; Simonti, M.; Duprat, F.; Cestèle, S.; Mantegazza, M. Voltage-gated sodium channels in genetic epilepsy: Up and down of excitability. J. Neurochem. 2024, 168, 3872–3890. [Google Scholar] [PubMed]
- Reynolds, C.; King, M.D.; Gorman, K.M. The phenotypic spectrum of SCN2A-related epilepsy. Eur. J. Paediatr. Neurol. 2020, 24, 117–122. [Google Scholar]
- Wolff, M.; Johannesen, K.M.; Hedrich, U.B.; Masnada, S.; Rubboli, G.; Gardella, E.; Lesca, G.; Ville, D.; Milh, M.; Villard, L. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017, 140, 1316–1336. [Google Scholar] [PubMed]
- Talwar, D.; Hammer, M.F. SCN8A epilepsy, developmental encephalopathy, and related disorders. Pediatr. Neurol. 2021, 122, 76–83. [Google Scholar] [PubMed]
- Boerma, R.S.; Braun, K.P.; van de Broek, M.P.; van Berkestijn, F.M.; Swinkels, M.E.; Hagebeuk, E.O.; Lindhout, D.; van Kempen, M.; Boon, M.; Nicolai, J. Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: A molecular neuropharmacological approach. Neurotherapeutics 2016, 13, 192–197. [Google Scholar]
- Brodie, M.J. Sodium channel blockers in the treatment of epilepsy. CNS Drugs 2017, 31, 527–534. [Google Scholar]
- Müller, P.; Draguhn, A.; Egorov, A.V. Persistent sodium currents in neurons: Potential mechanisms and pharmacological blockers. Pflügers Arch. Eur. J. Physiol. 2024, 476, 1445–1473. [Google Scholar]
- Que, Z.; Olivero-Acosta, M.I.; Zhang, J.; Eaton, M.; Tukker, A.M.; Chen, X.; Wu, J.; Xie, J.; Xiao, T.; Wettschurack, K. Hyperexcitability and pharmacological responsiveness of cortical neurons derived from human iPSCs carrying epilepsy-associated sodium channel Nav1. 2-L1342P genetic variant. J. Neurosci. 2021, 41, 10194–10208. [Google Scholar]
- Gjerulfsen, C.E.; Oudin, M.J.; Furia, F.; Gverdtsiteli, S.; Landmark, C.J.; Trivisano, M.; Balestrini, S.; Guerrini, R.; Aledo-Serrano, A.; Morcos, R. Cenobamate as add-on treatment for SCN8A developmental and epileptic encephalopathy. Epilepsia 2025. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new medications for seizures and epilepsy: A summary of the 17th Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVII). I. Drugs in preclinical and early clinical development. Epilepsia 2024, 65, 2831–2857. [Google Scholar] [CrossRef] [PubMed]
- Kahlig, K.M.; Scott, L.; Hatch, R.J.; Griffin, A.; Martinez Botella, G.; Hughes, Z.A.; Wittmann, M. The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia 2022, 63, 697–708. [Google Scholar] [CrossRef]
- Frizzo, S. Relutrigine Demonstrates Robust Seizure Reduction and Seizure Freedom in Dees: Results from the EMBOLD Study. In Proceedings of the American Epilepsy Society Annual Meeting, Los Angeles, CA, USA, 6–10 December 2024. [Google Scholar]
- Johnson, J.; Focken, T.; Khakh, K.; Tari, P.K.; Dube, C.; Goodchild, S.J.; Andrez, J.-C.; Bankar, G.; Bogucki, D.; Burford, K. NBI-921352, a first-in-class, NaV1. 6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. eLife 2022, 11, e72468. [Google Scholar] [CrossRef]
- Atkin, T.A.; Maher, C.M.; Gerlach, A.C.; Gay, B.C.; Antonio, B.M.; Santos, S.C.; Padilla, K.M.; Rader, J.; Krafte, D.S.; Fox, M.A. A comprehensive approach to identifying repurposed drugs to treat SCN 8A epilepsy. Epilepsia 2018, 59, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, F.A.; Hudairi, A.; Al Ghamdi, M.; Mahmoud, A.A. A Case of Neonatal Epileptic Encephalopathy due to SCN2A Mutation Responsive to a Ketogenic Diet. J. Pediatr. Epilepsy 2018, 7, 148–151. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y.; Zhang, J.; Lu, Y.; Men, X.; Wang, X. Ketogenic diet in infants with early-onset epileptic encephalopathy and SCN2A mutation. Yonsei Med. J. 2021, 62, 370. [Google Scholar] [CrossRef]
- Su, D.-J.; Lu, J.-F.; Lin, L.-J.; Liang, J.-S.; Hung, K.-L. SCN2A mutation in an infant presenting with migrating focal seizures and infantile spasm responsive to a ketogenic diet. Brain Dev. 2018, 40, 724–727. [Google Scholar] [CrossRef]
- Turkdogan, D.; Thomas, G.; Demirel, B. Ketogenic diet as a successful early treatment modality for SCN2A mutation. Brain Dev. 2019, 41, 389–391. [Google Scholar] [CrossRef]
- Li, M.; Jancovski, N.; Jafar-Nejad, P.; Burbano, L.E.; Rollo, B.; Richards, K.; Drew, L.; Sedo, A.; Heighway, J.; Pachernegg, S. Antisense oligonucleotide therapy reduces seizures and extends life span in an SCN2A gain-of-function epilepsy model. J. Clin. Investig. 2021, 131, e152079. [Google Scholar] [CrossRef]
- Wengert, E.R.; Miralles, R.M.; Patel, M.K. Voltage-Gated Sodium Channels as Drug Targets in Epilepsy-Related Sodium Channelopathies. In Ion Channels as Targets in Drug Discovery; Springer International Publishing: Cham, Switzerland, 2024; pp. 91–114. [Google Scholar]
- Frizzo, S. EMBRAVE: A Clinical Trial of PRAX-222, a Novel Antisense Oligonucleotide, in Pediatric Participants with Early Onset SCN2A Developmental and Epileptic Encephalopathy. In Proceedings of the American Epilepsy Society Meeting 2023, Orlando, FL, USA, 1–5 December 2023. [Google Scholar]
- Lenk, G.M.; Jafar-Nejad, P.; Hill, S.F.; Huffman, L.D.; Smolen, C.E.; Wagnon, J.L.; Petit, H.; Yu, W.; Ziobro, J.; Bhatia, K.; et al. Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet Syndrome. Ann. Neurol. 2020, 87, 339–346. [Google Scholar] [CrossRef]
- Kim, H.J.; Yang, D.; Kim, S.H.; Won, D.; Kim, H.D.; Lee, J.S.; Choi, J.R.; Lee, S.-T.; Kang, H.-C. Clinical characteristics of KCNQ2 encephalopathy. Brain Dev. 2021, 43, 244–250. [Google Scholar] [PubMed]
- Morrison-Levy, N.; Borlot, F.; Jain, P.; Whitney, R. Early-onset developmental and epileptic encephalopathies of infancy: An overview of the genetic basis and clinical features. Pediatr. Neurol. 2021, 116, 85–94. [Google Scholar]
- Pisano, T.; Numis, A.L.; Heavin, S.B.; Weckhuysen, S.; Angriman, M.; Suls, A.; Podesta, B.; Thibert, R.L.; Shapiro, K.A.; Guerrini, R. Early and effective treatment of KCNQ 2 encephalopathy. Epilepsia 2015, 56, 685–691. [Google Scholar]
- Millichap, J.J.; Park, K.L.; Tsuchida, T.; Ben-Zeev, B.; Carmant, L.; Flamini, R.; Joshi, N.; Levisohn, P.M.; Marsh, E.; Nangia, S. KCNQ2 encephalopathy: Features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2016, 2, e96. [Google Scholar] [PubMed]
- Knight, D.; Mahida, S.; Kelly, M.; Poduri, A.; Olson, H.E. Ezogabine impacts seizures and development in patients with KCNQ2 developmental and epileptic encephalopathy. Epilepsia 2023, 64, e143–e147. [Google Scholar] [PubMed]
- Shkolnik, T.G.; Feuerman, H.; Didkovsky, E.; Kaplan, I.; Bergman, R.; Pavlovsky, L.; Hodak, E. Blue-gray mucocutaneous discoloration: A new adverse effect of ezogabine. JAMA Dermatol. 2014, 150, 984–989. [Google Scholar] [CrossRef] [PubMed]
- French, J.A.; Porter, R.J.; Perucca, E.; Brodie, M.J.; Rogawski, M.A.; Pimstone, S.; Aycardi, E.; Harden, C.; Qian, J.; Rosenblut, C.L. Efficacy and safety of XEN1101, a novel potassium channel opener, in adults with focal epilepsy: A phase 2b randomized clinical trial. JAMA Neurol. 2023, 80, 1145–1154. [Google Scholar]
- Awsare, B.; Lerner, J.; Ashbrenner, E.; Sevinsky, H.; Bozik, M.; Dworetzky, S.; Donahue, L.; Killingsworth, R.; Francoeur, B.; Qureshi, I. Phase 1 study evaluating the safety and tolerability of BHV-7000, a novel, selective Kv7. 2/7.3 potassium channel activator, in healthy adults (P8-1.007). Neurology 2024, 102, 6351. [Google Scholar]
- Hedrich, U.B.; Lauxmann, S.; Wolff, M.; Synofzik, M.; Bast, T.; Binelli, A.; Serratosa, J.M.; Martínez-Ulloa, P.; Allen, N.M.; King, M.D. 4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2-encephalopathy. Sci. Transl. Med. 2021, 13, eaaz4957. [Google Scholar]
- Jia, Y.; Lin, Y.; Li, J.; Li, M.; Zhang, Y.; Hou, Y.; Liu, A.; Zhang, L.; Li, L.; Xiang, P. Quinidine therapy for Lennox-Gastaut syndrome with KCNT1 mutation. A case report and literature review. Front. Neurol. 2019, 10, 64. [Google Scholar]
- Hinckley, C.A.; Zhu, Z.; Chu, J.h.; Gubbels, C.; Danker, T.; Cherry, J.J.; Whelan, C.D.; Engle, S.J.; Nguyen, V. Functional evaluation of epilepsy-associated KCNT1 variants in multiple cellular systems reveals a predominant gain of function impact on channel properties. Epilepsia 2023, 64, 2126–2136. [Google Scholar]
- Burbano, L.E.; Li, M.; Jancovski, N.; Jafar-Nejad, P.; Richards, K.; Sedo, A.; Soriano, A.; Rollo, B.; Jia, L.; Gazina, E.V. Antisense oligonucleotide therapy for KCNT1 encephalopathy. JCI Insight 2022, 7, e146090. [Google Scholar] [CrossRef]
- Jiang, X.; Raju, P.K.; D’Avanzo, N.; Lachance, M.; Pepin, J.; Dubeau, F.; Mitchell, W.G.; Bello-Espinosa, L.E.; Pierson, T.M.; Minassian, B.A. Both gain-of-function and loss-of-function de novo CACNA 1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia 2019, 60, 1881–1894. [Google Scholar]
- Le Roux, M.; Barth, M.; Gueden, S.; de Cepoy, P.D.; Aeby, A.; Vilain, C.; Hirsch, E.; de Saint Martin, A.; Des Portes, V.; Lesca, G. CACNA1A-associated epilepsy: Electroclinical findings and treatment response on seizures in 18 patients. Eur. J. Paediatr. Neurol. 2021, 33, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Pinna, F.; Corda, D.; Fois, C.; Maccabeo, A.; Sechi, G.P.; Solla, P. Seizure response to carbamazepine in a patient with CACNA1A-associated epilepsy: A case report. Seizure Eur. J. Epilepsy 2023, 111, 68–70. [Google Scholar]
- Billakota, S.; Andresen, J.M.; Gay, B.C.; Stewart, G.R.; Fedorov, N.B.; Gerlach, A.C.; Devinsky, O. Personalized medicine: Vinpocetine to reverse effects of GABRB3 mutation. Epilepsia 2019, 60, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Gjerulfsen, C.E.; Mieszczanek, T.S.; Johannesen, K.M.; Liao, V.W.; Chebib, M.; Nørby, H.A.; Gardella, E.; Rubboli, G.; Ahring, P.; Møller, R.S. Vinpocetine improved neuropsychiatric and epileptic outcomes in a patient with a GABRA1 loss-of-function variant. Ann. Clin. Transl. Neurol. 2023, 10, 1493–1498. [Google Scholar] [CrossRef]
- Absalom, N.L.; Liao, V.W.; Johannesen, K.M.; Gardella, E.; Jacobs, J.; Lesca, G.; Gokce-Samar, Z.; Arzimanoglou, A.; Zeidler, S.; Striano, P. Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies. Nat. Commun. 2022, 13, 1822. [Google Scholar] [CrossRef]
- Cai, K.; Wang, J.; Eissman, J.; Wang, J.; Nwosu, G.; Shen, W.; Liang, H.-C.; Li, X.-J.; Zhu, H.-X.; Yi, Y.-H. A missense mutation in SLC6A1 associated with Lennox-Gastaut syndrome impairs GABA transporter 1 protein trafficking and function. Exp. Neurol. 2019, 320, 112973. [Google Scholar]
- Johannesen, K.M.; Gardella, E.; Linnankivi, T.; Courage, C.; de Saint Martin, A.; Lehesjoki, A.E.; Mignot, C.; Afenjar, A.; Lesca, G.; Abi-Warde, M.T. Defining the phenotypic spectrum of SLC6A1 mutations. Epilepsia 2018, 59, 389–402. [Google Scholar]
- Palmer, S.; Towne, M.C.; Pearl, P.L.; Pelletier, R.C.; Genetti, C.A.; Shi, J.; Beggs, A.H.; Agrawal, P.B.; Brownstein, C.A. SLC6A1 mutation and ketogenic diet in epilepsy with myoclonic-atonic seizures. Pediatr. Neurol. 2016, 64, 77–79. [Google Scholar] [PubMed]
- Samanta, D. GRIN2A-related epilepsy and speech disorders: A comprehensive overview with a focus on the role of precision therapeutics. Epilepsy Res. 2023, 189, 107065. [Google Scholar] [PubMed]
- Fedele, L.; Newcombe, J.; Topf, M.; Gibb, A.; Harvey, R.J.; Smart, T.G. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nat. Commun. 2018, 9, 957. [Google Scholar]
- Pierson, T.M.; Yuan, H.; Marsh, E.D.; Fuentes-Fajardo, K.; Adams, D.R.; Markello, T.; Golas, G.; Simeonov, D.R.; Holloman, C.; Tankovic, A. GRIN2A mutation and early-onset epileptic encephalopathy: Personalized therapy with memantine. Ann. Clin. Transl. Neurol. 2014, 1, 190–198. [Google Scholar] [PubMed]
- Muglia, P. Pharmacokinetics, Safety/tolerability, and Effect on Seizure Frequency and Behavior of Individually Titrated Radiprodil Doses in Children with Grin-related Disorder: Top Line Multicenter Study Data. In Proceedings of the American Epilepsy Society Meeting, Los Angeles, CA, USA, 6–10 December 2024. [Google Scholar]
- Krey, I.; von Spiczak, S.; Johannesen, K.M.; Hikel, C.; Kurlemann, G.; Muhle, H.; Beysen, D.; Dietel, T.; Møller, R.S.; Lemke, J.R. L-serine treatment is associated with improvements in behavior, EEG, and seizure frequency in individuals with GRIN-related disorders due to null variants. Neurotherapeutics 2022, 19, 334–341. [Google Scholar]
- Zimmern, V.; Minassian, B.; Korff, C. A review of targeted therapies for monogenic epilepsy syndromes. Front. Neurol. 2022, 13, 829116. [Google Scholar]
- Abramov, D.; Guiberson, N.G.L.; Burré, J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J. Neurochem. 2021, 157, 165–178. [Google Scholar]
- Grinspan, Z.M.; Burre, J.; Cross, J.; Ross, M.E.; Stone, A.; Basma, N.; Gao, K.; Kang, J.-Q.; Lim, J.; Dubow, E. 4-Phenylbutyrate for STXBP1 and SLC6A1. Safety, tolerability, seizure, and EEG outcomes. A case series at 2 centers. medRxiv 2024. [Google Scholar] [CrossRef]
- Masataka, Y.; Miki, N.; Akino, K.; Yamamoto, H.; Takumi, I. Case reports of identical twins with developmental and epileptic encephalopathy with STXBP1 gene mutations for whom different CBD supplementations were markedly effective. Epilepsy Behav. Rep. 2024, 28, 100720. [Google Scholar]
- Xian, J.; Parthasarathy, S.; Ruggiero, S.M.; Balagura, G.; Fitch, E.; Helbig, K.; Gan, J.; Ganesan, S.; Kaufman, M.C.; Ellis, C.A. Assessing the landscape of STXBP1-related disorders in 534 individuals. Brain 2022, 145, 1668–1683. [Google Scholar]
- Nam, J.Y.; Teng, L.-Y.; Cho, K.; Kang, H.-C.; Lee, J.S.; Kim, H.D.; Kim, S.H. Effects of the ketogenic diet therapy in patients with STXBP1-related encephalopathy. Epilepsy Res. 2022, 186, 106993. [Google Scholar] [CrossRef]
- Moog, M.; Baraban, S.C. Clemizole and trazodone are effective antiseizure treatments in a zebrafish model of STXBP1 disorder. Epilepsia Open 2022, 7, 504–511. [Google Scholar] [PubMed]
- Al-Khfaji, K.M.S.; Zamani, N.K.; Arefian, E. HSV-1 latency-associated transcript miR-H3 and miR-H4 target STXBP1 and GABBR2 genes. J. Neurovirol. 2023, 29, 669–677. [Google Scholar] [PubMed]
- Freibauer, A.; Wohlleben, M.; Boelman, C. STXBP1-Related Disorders: Clinical Presentation, Molecular Function, Treatment, and Future Directions. Genes 2023, 14, 2179. [Google Scholar] [CrossRef]
- Levy, N.S.; Borisov, V.; Lache, O.; Levy, A.P. Molecular insights into IQSEC2 disease. Int. J. Mol. Sci. 2023, 24, 4984. [Google Scholar] [CrossRef]
- Choi, M.-H.; Yang, J.O.; Min, J.-S.; Lee, J.-J.; Jun, S.-Y.; Lee, Y.-J.; Yoon, J.-Y.; Jeon, S.-J.; Byeon, I.; Kang, J.-W. A Novel X-Linked Variant of IQSEC2 is Associated with Lennox–Gastaut Syndrome and Mild Intellectual Disability in Three Generations of a Korean Family. Genet. Test. Mol. Biomark. 2020, 24, 54–58. [Google Scholar]
- Jabarin, R.; Levy, N.; Abergel, Y.; Berman, J.H.; Zag, A.; Netser, S.; Levy, A.P.; Wagner, S. Pharmacological modulation of AMPA receptors rescues specific impairments in social behavior associated with the A350V Iqsec2 mutation. Transl. Psychiatry 2021, 11, 234. [Google Scholar]
- Sidra Medicine, Qatar Cardiovascular Research Center. A Novel Approach for the Treatment of IQSEC2-Mediated Disease. Available online: https://www.orphandiseasecenter.med.upenn.edu/awarded-grants/a-novel-approach-for-the-treatment-of-iqsec2-mediated-disease (accessed on 20 December 2024).
- Kane, O.; McCoy, A.; Jada, R.; Borisov, V.; Zag, L.; Zag, A.; Schragenheim-Rozales, K.; Shalgi, R.; Levy, N.S.; Levy, A.P. Characterization of spontaneous seizures and EEG abnormalities in a mouse model of the human A350V IQSEC2 mutation and identification of a possible target for precision medicine based therapy. Epilepsy Res. 2022, 182, 106907. [Google Scholar] [PubMed]
- Bleazard, W.; McCaffery, J.M.; King, E.J.; Bale, S.; Mozdy, A.; Tieu, Q.; Nunnari, J.; Shaw, J.M. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1999, 1, 298–304. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Ruggiero, S.M.; Gelot, A.; Soardi, F.C.; Ribeiro, B.F.; Pires, D.E.; Ascher, D.B.; Schmitt, A.; Rambaud, C.; Represa, A. A recurrent de novo splice site variant involving DNM1 exon 10a causes developmental and epileptic encephalopathy through a dominant-negative mechanism. Am. J. Hum. Genet. 2022, 109, 2253–2269. [Google Scholar] [CrossRef]
- Von Spiczak, S.; Helbig, K.L.; Shinde, D.N.; Huether, R.; Pendziwiat, M.; Lourenço, C.; Nunes, M.E.; Sarco, D.P.; Kaplan, R.A.; Dlugos, D.J. DNM1 encephalopathy: A new disease of vesicle fission. Neurology 2017, 89, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Bonnycastle, K.; Dobson, K.L.; Blumrich, E.-M.; Gajbhiye, A.; Davenport, E.C.; Pronot, M.; Steinruecke, M.; Trost, M.; Gonzalez-Sulser, A.; Cousin, M.A. Reversal of cell, circuit and seizure phenotypes in a mouse model of DNM1 epileptic encephalopathy. Nat. Commun. 2023, 14, 5285. [Google Scholar] [CrossRef]
- Aimiuwu, O.V.; Fowler, A.M.; Sah, M.; Teoh, J.J.; Kanber, A.; Pyne, N.K.; Petri, S.; Rosenthal-Weiss, C.; Yang, M.; Harper, S.Q. RNAi-based gene therapy rescues developmental and epileptic encephalopathy in a genetic mouse model. Mol. Ther. 2020, 28, 1706–1716. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.J.; Soundararajan, D.; Taylor, N.K.; Aimiuwu, O.V.; Mathkar, P.; Shore, A.; Teoh, J.J.; Wang, W.; Sands, T.T.; Weston, M.C.; et al. Effective knockdown-replace gene therapy in a novel mouse model of DNM1 developmental and epileptic encephalopathy. Mol. Ther. 2024, 32, 3318–3330. [Google Scholar] [CrossRef]
- Samanta, D. Evolving treatment strategies for early-life seizures in Tuberous Sclerosis Complex: A review and treatment algorithm. Epilepsy Behav. 2024, 161, 110123. [Google Scholar] [CrossRef]
- Bebin, E.M.; Peters, J.M.; Porter, B.E.; McPherson, T.O.; O’Kelley, S.; Sahin, M.; Taub, K.S.; Rajaraman, R.; Randle, S.C.; McClintock, W.M.; et al. Early Treatment with Vigabatrin Does Not Decrease Focal Seizures or Improve Cognition in Tuberous Sclerosis Complex: The PREVeNT Trial. Ann. Neurol. 2024, 95, 16–25. [Google Scholar] [CrossRef]
- Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021, 89, 304–314. [Google Scholar] [CrossRef]
- Samanta, D. Chance Bias Arising from TSC2 Mutation Imbalance in the PREVeNT Trial. Ann. Neurol. 2024, 95, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Appleton, R.E. Vigabatrin in the management of generalized seizures in children. Seizure 1995, 4, 45–48. [Google Scholar] [CrossRef]
- Feucht, M.; Brantner-Inthaler, S. γ-Vinyl-GABA (Vigabatrin) in the Therapy of Lennox-Gastaut Syndrome: An Open Study. Epilepsia 1994, 35, 993–998. [Google Scholar] [CrossRef]
- French, J.A.; Lawson, J.A.; Yapici, Z.; Ikeda, H.; Polster, T.; Nabbout, R.; Curatolo, P.; de Vries, P.J.; Dlugos, D.J.; Berkowitz, N. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): A phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016, 388, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.W.; Wang, Y.Y.; Zhang, M.N.; Xu, Y.; Lu, Q.; He, W.; Chen, H.M.; Liu, L.Y.; Pang, L.Y.; Wang, Q.H.; et al. Sirolimus treatment for tuberous sclerosis complex prior to epilepsy: Evidence from a registry-based real-world study. Seizure 2022, 97, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. Cannabidiol: A Review of Clinical Efficacy and Safety in Epilepsy. Pediatr. Neurol. 2019, 96, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. A scoping review on cannabidiol therapy in tuberous sclerosis: Current evidence and perspectives for future development. Epilepsy Behav. 2022, 128, 108577. [Google Scholar] [CrossRef]
- Cheah, P.S.; Prabhakar, S.; Yellen, D.; Beauchamp, R.L.; Zhang, X.; Kasamatsu, S.; Bronson, R.T.; Thiele, E.A.; Kwiatkowski, D.J.; Stemmer-Rachamimov, A.; et al. Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin. Sci. Adv. 2021, 7, eabb1703. [Google Scholar] [CrossRef]
- Moran, C.P., Jr. RNA polymerase and transcription factors. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics; American Society for Microbiology: Washington, DC, USA, 1993; pp. 651–667. [Google Scholar]
- Lennartsson, A.; Ekwall, K. Histone modification patterns and epigenetic codes. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 863–868. [Google Scholar]
- Selvi, R.B.; Kundu, T.K. Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics. Biotechnol. J. Healthc. Nutr. Technol. 2009, 4, 375–390. [Google Scholar]
- Murawska, M.; Brehm, A. CHD chromatin remodelers and the transcription cycle. Transcription 2011, 2, 244–253. [Google Scholar]
- Chen, J.; Zhang, J.; Liu, A.; Zhang, L.; Li, H.; Zeng, Q.; Yang, Z.; Yang, X.; Wu, X.; Zhang, Y. CHD2-related epilepsy: Novel mutations and new phenotypes. Dev. Med. Child Neurol. 2020, 62, 647–653. [Google Scholar]
- Melikishvili, G.; Striano, P.; Shojeinia, E.; Gachechiladze, T.; Kurua, E.; Tabatadze, N.; Melikishvili, M.; Koniashvili, O.; Khachiashvili, G.; Epitashvili, N. Effectiveness of add-on acetazolamide in children with drug-resistant CHD2-related epilepsy and in a zebrafish CHD2 model. Epilepsia Open 2024, 9, 1972–1980. [Google Scholar]
- Prince, S.; Bonkowski, E.; McGraw, C.; SanInocencio, C.; Mefford, H.C.; Carvill, G.; Broadbent, B. A roadmap to cure CHD2-related disorders. Ther. Adv. Rare Dis. 2024, 5, 26330040241283749. [Google Scholar]
- Rom, A.; Melamed, L.; Gil, N.; Goldrich, M.J.; Kadir, R.; Golan, M.; Biton, I.; Perry, R.B.-T.; Ulitsky, I. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat. Commun. 2019, 10, 5092. [Google Scholar]
- LaFlamme, C.W.; Rastin, C.; Sengupta, S.; Pennington, H.E.; Russ-Hall, S.J.; Schneider, A.L.; Bonkowski, E.S.; Almanza Fuerte, E.P.; Allan, T.J.; Zalusky, M.P.-G. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat. Commun. 2024, 15, 6524. [Google Scholar] [PubMed]
- Jakimiec, M.; Paprocka, J.; Śmigiel, R. CDKL5 deficiency disorder—A complex epileptic encephalopathy. Brain Sci. 2020, 10, 107. [Google Scholar] [CrossRef]
- La Montanara, P. First Insights on the Signaling Pathways Related to CDKL5 Regulation and on Its Possible Involvement in Synaptic Plasticity. Ph.D. Thesis, University of Insubria, Varese, Italy, 2013. [Google Scholar]
- Devinsky, O.; King, L.; Bluvstein, J.; Friedman, D. Ataluren for drug-resistant epilepsy in nonsense variant-mediated Dravet syndrome and CDKL5 deficiency disorder. Ann. Clin. Transl. Neurol. 2021, 8, 639–644. [Google Scholar]
- Knight, E.M.P.; Amin, S.; Bahi-Buisson, N.; Benke, T.A.; Cross, J.H.; Demarest, S.T.; Olson, H.E.; Specchio, N.; Fleming, T.R.; Aimetti, A.A. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022, 21, 417–427. [Google Scholar]
- Downs, J.; Jacoby, P.; Specchio, N.; Cross, H.; Amin, S.; Bahi-Buisson, N.; Rajaraman, R.; Suter, B.; Devinsky, O.; Aimetti, A. Effects of ganaxolone on non-seizure outcomes in CDKL5 Deficiency Disorder: Double-blind placebo-controlled randomized trial. Eur. J. Paediatr. Neurol. 2024, 51, 140–146. [Google Scholar] [PubMed]
- Devinsky, O.; King, L.; Schwartz, D.; Conway, E.; Price, D. Effect of fenfluramine on convulsive seizures in CDKL5 deficiency disorder. Epilepsia 2021, 62, e98–e102. [Google Scholar] [CrossRef] [PubMed]
- Demarest, S.; Jeste, S.; Agarwal, N.; Arkilo, D.; Asgharnejad, M.; Hsiao, S.; Thibert, R. Efficacy, safety, and tolerability of soticlestat as adjunctive therapy for the treatment of seizures in patients with Dup15q syndrome or CDKL5 deficiency disorder in an open-label signal-finding phase II study (ARCADE). Epilepsy Behav. 2023, 142, 109173. [Google Scholar] [CrossRef]
- Sampedro-Castañeda, M.; Baltussen, L.L.; Lopes, A.T.; Qiu, Y.; Sirvio, L.; Mihaylov, S.R.; Claxton, S.; Richardson, J.C.; Lignani, G.; Ultanir, S.K. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2. 3, altering inactivation kinetics and neuronal excitability. Nat. Commun. 2023, 14, 7830. [Google Scholar]
- Panteli, J.T.; Wei, J.; Potter, S.; Li, J.; Warren, J. Development of UX055 AAV Gene Therapy for Cyclin-Dependent Kinase-Like 5 (CDKL5) Deficiency Disorder (CDD), a Rare Neurological Disorder. Mol. Ther. 2023, 31, 633–634. [Google Scholar]
- California Institude for Regenerative Medicine. AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder. Available online: https://www.cirm.ca.gov/our-progress/awards/aav-dcas9-epigenetic-editing-cdkl5-deficiency-disorder/ (accessed on 6 March 2025).
- Snowball, A.; Chabrol, E.; Wykes, R.C.; Shekh-Ahmad, T.; Cornford, J.H.; Lieb, A.; Hughes, M.P.; Massaro, G.; Rahim, A.A.; Hashemi, K.S. Epilepsy gene therapy using an engineered potassium channel. J. Neurosci. 2019, 39, 3159–3169. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhao, W.; Li, W.; Lv, P.; Dong, X. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain☆. Neural Regen. Res. 2013, 8, 1307–1315. [Google Scholar]
- Zhang, F.; Zhao, W.; Li, W.; Dong, C.; Zhang, X.; Wu, J.; Li, N.; Liang, C. Neuropeptide Y gene transfection inhibits post-epileptic hippocampal synaptic reconstruction☆. Neural Regen. Res. 2013, 8, 1597–1605. [Google Scholar]
- Gøtzsche, C.R.; Nikitidou, L.; Sørensen, A.T.; Olesen, M.V.; Sørensen, G.; Christiansen, S.H.; Ängehagen, M.; Woldbye, D.P.; Kokaia, M. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures. Neurobiol. Dis. 2012, 45, 288–296. [Google Scholar] [PubMed]
- Powell, K.L.; Fitzgerald, X.; Shallue, C.; Jovanovska, V.; Klugmann, M.; Von Jonquieres, G.; O’Brien, T.J.; Morris, M.J. Gene therapy mediated seizure suppression in genetic generalised epilepsy: Neuropeptide Y overexpression in a rat model. Neurobiol. Dis. 2018, 113, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, K.M.; Carvill, G.L.; Becker, A.J.; Conboy, K.; Goldman, A.M.; Kobow, K.; Lopes-Cendes, I.; Reid, C.A.; van Vliet, E.A.; Henshall, D.C. Epigenetic genes and epilepsy—Emerging mechanisms and clinical applications. Nat. Rev. Neurol. 2022, 18, 530–543. [Google Scholar] [CrossRef]
- Hlebokazov, F.; Dakukina, T.; Ihnatsenko, S.; Kosmacheva, S.; Potapnev, M.; Shakhbazau, A.; Goncharova, N.; Makhrov, M.; Korolevich, P.; Misyuk, N. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: An open label study. Adv. Med. Sci. 2017, 62, 273–279. [Google Scholar] [CrossRef]
- Hlebokazov, F.; Dakukina, T.; Potapnev, M.; Kosmacheva, S.; Moroz, L.; Misiuk, N.; Golubeva, T.; Slobina, E.; Krasko, O.; Shakhbazau, A. Clinical benefits of single vs repeated courses of mesenchymal stem cell therapy in epilepsy patients. Clin. Neurol. Neurosurg. 2021, 207, 106736. [Google Scholar]
- Milczarek, O.; Jarocha, D.; Starowicz–Filip, A.; Kwiatkowski, S.; Badyra, B.; Majka, M. Multiple autologous bone marrow-derived CD271+ mesenchymal stem cell transplantation overcomes drug-resistant epilepsy in children. Stem Cells Transl. Med. 2018, 7, 20–33. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Chulpanova, D.S.; Mullagulova, A.I.; Afawi, Z.; Gamirova, R.G.; Solovyeva, V.V.; Rizvanov, A.A. Gene and cell therapy for epilepsy: A mini review. Front. Mol. Neurosci. 2022, 15, 868531. [Google Scholar]
- Falcicchia, C.; Paolone, G.; Emerich, D.F.; Lovisari, F.; Bell, W.J.; Fradet, T.; Wahlberg, L.U.; Simonato, M. Seizure-suppressant and neuroprotective effects of encapsulated BDNF-producing cells in a rat model of temporal lobe epilepsy. Mol. Ther. Methods Clin. Dev. 2018, 9, 211–224. [Google Scholar] [PubMed]
- Nikitidou, L.; Torp, M.; Fjord-Larsen, L.; Kusk, P.; Wahlberg, L.U.; Kokaia, M. Encapsulated galanin-producing cells attenuate focal epileptic seizures in the hippocampus. Epilepsia 2014, 55, 167–174. [Google Scholar] [PubMed]
- Paolone, G.; Falcicchia, C.; Lovisari, F.; Kokaia, M.; Bell, W.J.; Fradet, T.; Barbieri, M.; Wahlberg, L.U.; Emerich, D.F.; Simonato, M. Long-term, targeted delivery of GDNF from encapsulated cells is neuroprotective and reduces seizures in the pilocarpine model of epilepsy. J. Neurosci. 2019, 39, 2144–2156. [Google Scholar]
- Walker, M.C.; Kullmann, D.M. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 2020, 168, 107751. [Google Scholar]
- Krook-Magnuson, E.; Armstrong, C.; Oijala, M.; Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 2013, 4, 1376. [Google Scholar]
- Mueller, J.-S.; Tescarollo, F.C.; Sun, H. DREADDs in epilepsy research: Network-based review. Front. Mol. Neurosci. 2022, 15, 863003. [Google Scholar]
- Kätzel, D.; Nicholson, E.; Schorge, S.; Walker, M.C.; Kullmann, D.M. Chemical–genetic attenuation of focal neocortical seizures. Nat. Commun. 2014, 5, 3847. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A. The new international league against epilepsy (ILAE) definition of Lennox-Gastaut syndrome: Practical implications and limitations. J. Clin. Neurosci. 2023, 115, 43–46. [Google Scholar]
- Nightscales, R.; Chen, Z.; Barnard, S.; Auvrez, C.; Tao, G.; Sivathamboo, S.; Bennett, C.; Rychkova, M.; D’Souza, W.; Berkovic, S.F. Applying the ILAE diagnostic criteria for Lennox-Gastaut syndrome in the real-world setting: A multicenter retrospective cohort study. Epilepsia Open 2024, 9, 602–612. [Google Scholar]
- Grinspan, Z.M.; Patel, A.D.; Shellhaas, R.A.; Berg, A.T.; Axeen, E.T.; Bolton, J.; Clarke, D.F.; Coryell, J.; Gaillard, W.D.; Goodkin, H.P. Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system. Epilepsia 2021, 62, 198–216. [Google Scholar] [CrossRef]
- Chong, D.; Jones, N.C.; Schittenhelm, R.B.; Anderson, A.; Casillas-Espinosa, P.M. Multi-omics integration and epilepsy: Towards a better understanding of biological mechanisms. Prog. Neurobiol. 2023, 227, 102480. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Estévez, V.; Hsieh, J. Human brain organoid models of developmental epilepsies. Epilepsy Curr. 2020, 20, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Simkin, D.; Ambrosi, C.; Marshall, K.A.; Williams, L.A.; Eisenberg, J.; Gharib, M.; Dempsey, G.T.; George, A.L.; McManus, O.B.; Kiskinis, E. ‘Channeling’therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol. Sci. 2022, 43, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Haneef, Z.; Albert, G.W.; Naik, S.; Reeders, P.C.; Jain, P.; Abel, T.J.; Al-Ramadhani, R.; Ibrahim, G.M.; Warren, A.E. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav. 2024, 160, 110067. [Google Scholar] [CrossRef]
- Knowles, J.K.; Helbig, I.; Metcalf, C.S.; Lubbers, L.S.; Isom, L.L.; Demarest, S.; Goldberg, E.M.; George, A.L., Jr.; Lerche, H.; Weckhuysen, S. Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia 2022, 63, 2461–2475. [Google Scholar] [CrossRef]
- Defelippe, V.M.; Brilstra, E.H.; Otte, W.M.; Cross, H.J.; O’Callaghan, F.; De Giorgis, V.; Poduri, A.; Lerche, H.; Sisodiya, S.; Braun, K.P. N-of-1 trials in epilepsy: A systematic review and lessons paving the way forward. Epilepsia 2024, 65, 3119–3137. [Google Scholar] [CrossRef]
Molecular Mechanism | Gene/Protein | Precision Treatments |
---|---|---|
Channelopathies | ||
Sodium Channel | SCN2A (NaV1.2) |
|
SCN8A (NaV1.6) |
| |
Potassium Channel | KCNQ2 (Kv7.2) |
|
KCNA2 (Kv1.2) |
| |
KCNT1 |
| |
Calcium Channel | CACNA1A (Cav2.1) |
|
Receptor- and Ligand-Mediated Dysfunction | ||
GABA Receptor | GABRA1, GABRA2, GABRB2, GABRB3 |
|
GABA Transporter | SLC6A1 (GAT-1) |
|
Glutamate Receptor | GRIN2B, GRIN1, GRIN2A, GRIN2D |
|
GRIN2B, GRIN2A |
| |
Synaptopathies | ||
Synaptic Vesicle Release | STXBP1 (Munc18-1) |
|
AMPA Receptor Trafficking | IQSEC2 |
|
Synaptic Vesicle Endocytosis | DNM1 (Dynamin 1) |
|
Cell Signaling Dysfunction | ||
mTOR Pathway | TSC1, TSC2 |
|
Epigenopathies/Chromatinopathies | ||
Chromatin Remodeling | CHD2 |
|
Dysfunction in Neuronal Formation and Maturation | ||
Neurodevelopmental Signaling | CDKL5 |
|
Gene Therapy Approach | Mechanism of Action | Examples | Significance to LGS |
---|---|---|---|
Ex Vivo Gene Therapy | Cells are removed, genetically modified outside the body, and reintroduced to the patient. |
| Could be used for cell-based therapies to repair brain circuitry. Encapsulated cell biodelivery (ECB), a specialized form of ex vivo gene therapy, has been used to deliver glial cell line-derived neurotrophic factor (GDNF) to the epileptic focus, preventing spontaneous recurrent seizures in an animal model. |
In Vivo Gene Therapy (Non-Viral) | Direct gene delivery to the body using lipid nanoparticles or polymer-based systems. |
| Could be used to introduce functional copies of genes like CDKL5, DNM1, etc., that are mutated in LGS. Another approach to reducing neuronal excitability involves the overexpression of neuromodulatory peptides such as neuropeptide Y (NPY) and galanin. |
Epigenetic Modulation | Modifies gene expression through altering epigenetic marks like methylation or histone modifications. |
| Can be used to modulate genes involved in epileptogenesis in LGS, especially genes like CHD2 and CDKL5. |
Optogenetic and Chemogenetic Approaches | Use light or chemicals to control gene expression or cellular activity in specific cells. |
| Network firing rates in human hippocampal slices, recorded using high-density microelectrode arrays under various hyperactivity-inducing conditions, were reduced through Adeno-associated virus-mediated optogenetic interventions. Potential for controlling abnormal neural circuits in LGS models, possibly reducing seizure frequency or severity. |
CRISPR/Cas9 Gene Editing | Precise editing of genes to correct mutations at the DNA level, including base and prime editing. |
| Could be used to correct point mutations in SCN2A, CHD2, or other genes causing LGS, offering a long-term solution. |
Antisense Oligonucleotides (ASOs) | Short DNA or RNA molecules designed to bind to specific RNA sequences, modulating gene expression or correcting splicing defects. |
| SCN2A, SCN8A, KCNT1, CHD2 |
MicroRNAs (miRNAs) | Small non-coding RNA molecules that regulate gene expression by binding to target mRNA, leading to its degradation or translation inhibition. |
| Research has identified that specific microRNAs can regulate STXBP1 expression, potentially impacting the levels of the Munc18-1 protein. |
Small Interfering RNAs (siRNAs) | Short RNA molecules that degrade target mRNA, preventing gene expression. |
| Potential to silence harmful mutations or regulate overactive genes involved in LGS pathophysiology. |
Strategic Area | Current Challenges | Proposed Approaches | Potential Impact |
---|---|---|---|
Diagnostic Accuracy | High rates of misdiagnosis | Computable phenotypes from EHR and EEG data | Improved patient stratification for trials |
Molecular Subgrouping | Diverse etiologies converging on the LGS phenotype | Multi-omics integration (genomics, transcriptomics, proteomics), study the functional consequences of specific genetic mutations(in vitro electrophysiological techniques (patch-clamp) or in vivo models; investigate synaptic activity by measuring excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) in neuronal cultures or brain slices; animal models; neuroimaging studies; clinical and biomarker studies | Identification of shared targetable pathways |
Drug Development | Focus on seizures rather than comorbidities | High-throughput screening of small molecules, gene therapies, or biologics that modulate the identified shared pathways | Holistic treatments addressing cognitive deficits |
Gene-Targeted Therapies | Delivery challenges, off-target effects | Optimized ASOs, RNAi, and CRISPR-based strategies | Disease-modifying potential for monogenic causes |
Neuromodulation | Limited personalization | Closed-loop DBS, RNS, targeted stimulation | Network-based interventions for drug-resistant cases |
Clinical Trial Design | Traditional designs are inadequate for rare variants | Adaptive designs, basket trials, n-of-1 studies | Accelerated evaluation of precision treatments |
Equitable Implementation | High costs, limited access | Expanded genetic testing access, public healthcare integration | Prevention of treatment disparities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samanta, D. Precision Therapeutics in Lennox–Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy. Children 2025, 12, 481. https://doi.org/10.3390/children12040481
Samanta D. Precision Therapeutics in Lennox–Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy. Children. 2025; 12(4):481. https://doi.org/10.3390/children12040481
Chicago/Turabian StyleSamanta, Debopam. 2025. "Precision Therapeutics in Lennox–Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy" Children 12, no. 4: 481. https://doi.org/10.3390/children12040481
APA StyleSamanta, D. (2025). Precision Therapeutics in Lennox–Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy. Children, 12(4), 481. https://doi.org/10.3390/children12040481