Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (736)

Search Parameters:
Keywords = Burning Index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2152 KB  
Article
Cone Calorimeter Reveals Flammability Dynamics of Tree Litter and Mixed Fuels in Central Yunnan
by Xilong Zhu, Shiying Xu, Weike Li, Sazal Ahmed, Junwen Liu, Mingxing Liu, Xiangxiang Yan, Weili Kou, Qiuyang Du, Shaobin Yang and Qiuhua Wang
Fire 2026, 9(1), 36; https://doi.org/10.3390/fire9010036 - 13 Jan 2026
Viewed by 240
Abstract
The characteristics of litter combustion have a significant impact on the spread of surface fires in the central Yunnan Province, a high-risk forest fire zone. The burning behavior of individual and mixed-species litter samples from five dominant tree species (Pinus yunnanensis Franch., [...] Read more.
The characteristics of litter combustion have a significant impact on the spread of surface fires in the central Yunnan Province, a high-risk forest fire zone. The burning behavior of individual and mixed-species litter samples from five dominant tree species (Pinus yunnanensis Franch., Keteleeria evelyniana Mast., Quercus variabilis Blume., Quercus aliena var. acutiserrata, and Alnus nepalensis D. Don.) was assessed in this study using cone calorimeter tests. Fern fronds and fine branches were included in additional tests to evaluate their effects on specific combustion parameters, such as Fire Performance Index (FPI), Flame Duration (FD), Time to Ignition (TTI), Mass Loss Rate (MLR), Residual Mass Fraction (RMF), Peak Heat Release Rate (PHRR), and Total Heat Release (THR). There were remarkable differences in the burning properties of the three types of litter (broadleaf, pine needles, and short pine needles). The THR and PHRR values of P. yunnanensis were the highest, whereas the PHRR of the other species varied very little. Short pine needle litter showed incomplete combustion and a long flame duration. When measured against pure pine needle litter, mixtures of P. yunnanensis and broadleaf litter showed lower PHRR. When set side by side to pure pine needle litter, P. yunnanensis and broadleaf litter showed lower PHRR. THR rose when fine branches were included, underlining the significance of fine woody fuels in fire behavior. The insertion of ferns increases the percentage of unburned biomass, prolongs TTI, and dramatically reduces PHRR. Full article
Show Figures

Figure 1

23 pages, 8140 KB  
Article
Comparative Assessment of Hyperspectral and Multispectral Vegetation Indices for Estimating Fire Severity in Mediterranean Ecosystems
by José Alberto Cipra-Rodriguez, José Manuel Fernández-Guisuraga and Carmen Quintano
Remote Sens. 2026, 18(2), 244; https://doi.org/10.3390/rs18020244 - 12 Jan 2026
Viewed by 173
Abstract
Assessing post-fire disturbance in Mediterranean ecosystems is essential for quantifying ecological impacts and guiding restoration strategies. This study evaluates fire severity following an extreme wildfire event (~28,000 ha) in northwestern Spain using vegetation indices (VIs) derived from PRISMA hyperspectral imagery, validated against field-based [...] Read more.
Assessing post-fire disturbance in Mediterranean ecosystems is essential for quantifying ecological impacts and guiding restoration strategies. This study evaluates fire severity following an extreme wildfire event (~28,000 ha) in northwestern Spain using vegetation indices (VIs) derived from PRISMA hyperspectral imagery, validated against field-based Composite Burn Index (CBI) measurements at the vegetation, soil, and site levels across three vegetation formations (coniferous forests, broadleaf forests, and shrublands). Hyperspectral VIs were benchmarked against multispectral VIs derived from Sentinel-2. Hyperspectral VIs yielded stronger correlations with CBI values than multispectral VIs. Vegetation-level CBI showed the highest correlations, reflecting the sensitivity of most VIs to canopy structural and compositional changes. Indices incorporating red-edge, near-infrared (NIR), and shortwave infrared (SWIR) bands demonstrated the greatest explanatory power. Among hyperspectral indices, DVIRED, EVI, and especially CAI performed best. For multispectral data, NDRE, CIREDGE, ENDVI, and GNDVI were the most effective. These findings highlight the strong potential of hyperspectral remote sensing for accurate, scalable post-fire severity assessment in heterogeneous Mediterranean ecosystems. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

23 pages, 9994 KB  
Article
Optimization of an Auxiliary Biomass Heating System in Solar Greenhouses: A CFD and Machine Learning Approach
by Zhanyang Xu, Hao Wu, Wenlu Shi, Feng Zhang and Cong Wang
Agriculture 2026, 16(2), 190; https://doi.org/10.3390/agriculture16020190 - 12 Jan 2026
Viewed by 144
Abstract
Maintaining adequate root-zone temperature in solar greenhouses during extreme cold is crucial for crop production. This study investigated the optimization of an auxiliary biomass heating system in a solar greenhouse. The heating performance was evaluated using an integrated methodology that combined orthogonal experimental [...] Read more.
Maintaining adequate root-zone temperature in solar greenhouses during extreme cold is crucial for crop production. This study investigated the optimization of an auxiliary biomass heating system in a solar greenhouse. The heating performance was evaluated using an integrated methodology that combined orthogonal experimental design, Computational Fluid Dynamics (CFD) simulation, and Machine Learning (ML) surrogate modeling. First, a reliable CFD model, validated against experimental data (Index of Agreement, IA = 0.954), was used to generate high-fidelity temperature field data for nine layout schemes. Parameter sensitivity analysis revealed that the burning cave Diameter is the dominant factor (R = 6.01), followed by burial Depth (R = 2.00), with inter-pool Spacing having the least impact (R = 0.89). Subsequently, six ML algorithms were compared for use as a predictive surrogate model, with Lasso Regression demonstrating superior performance (R2 = 0.934). Comprehensive optimization focused on maximizing the Suitable Area Ratio (Rs) in the critical 0.2 m depth root zone. The analysis conclusively identified the 2.5 m diameter group as optimal, achieving a maximum Rs of 90% and the lowest temperature standard deviation. The final recommended optimal design (2.5 m diameter, 0.7 m depth, 10 m spacing) significantly improves heating uniformity and efficiency. This integrated CFD-ML approach provides a scientific basis and a rapid assessment tool for the design and structural optimization of similar underground thermal systems in cold-climate agriculture. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 1489 KB  
Article
Sustainable Valorization of Framiré Sawdust: Extraction of Secondary Metabolites and Conversion of Residues into Fuel Briquettes
by Junior Maimou Nganko, Narcis Barsan, Paul Magloire Ekoun Koffi, Andrei Zaharia, Kouassi Esaie Kouadio Appiah, Echua Elisabeth Jasmine Bilé, Emilian Mosnegutu, Valex Nzouengo Djeukui, Florin-Marian Nedeff, Prosper Gbaha, Diana Mirila, Kouassi Benjamin Yao, Claudia Tomozei and Valentin Nedeff
Appl. Sci. 2026, 16(2), 716; https://doi.org/10.3390/app16020716 - 9 Jan 2026
Viewed by 257
Abstract
Faced with the depletion of fossil resources and the need to promote a circular economy, lignocellulosic biomass represents a solution for energy transition and bioeconomy. However, wood sawdust, which contains bioactive compounds (secondary metabolites), is often burned in the open by many sawmills. [...] Read more.
Faced with the depletion of fossil resources and the need to promote a circular economy, lignocellulosic biomass represents a solution for energy transition and bioeconomy. However, wood sawdust, which contains bioactive compounds (secondary metabolites), is often burned in the open by many sawmills. This study aims to valorize Framiré wood sawdust by extracting its secondary metabolites through maceration and infusion, then converting the depleted residue into combustible briquettes. The yellowness index of the extracts ranged from 73.490 ± 0.021 (maceration) to 81.720 ± 0.014 (infusion). The total phenolic content varied from 0.097 ± 0.001 to 0.63 ± 0.049 gGAE/100 g dry matter for maceration and infusion, respectively. The extraction of bioactive compounds did not significantly affect the energy or mechanical properties of the fuels. Their higher heating value ranged from 26,153 ± 92 to 26,201 ± 90 kJ/kg for fuels with and without secondary metabolites, respectively. The Shock Resistance Index ranged from 139.33 ± 7.51% (without metabolites) to 153.00 ± 5.20% (with metabolites). A significant difference was observed in the specific consumption of the fuels, decreasing from 1.400 ± 0.100 to 0.861 ± 0.001 kg/L for fuels without and with secondary metabolites, respectively. These results open promising prospects, particularly for the use of Framiré extracts to develop flame-retardant products for wood and its derivatives. Full article
Show Figures

Figure 1

15 pages, 5781 KB  
Article
Facile Fabrication of Attapulgite-Modified Chitosan Composite Aerogels with Enhanced Mechanical Strength and Flame Retardancy for Thermal Insulation
by Siyuan Cheng, Yuwen Shao, Meisi Chen, Chenfei Wang, Xinbao Zhu, Xiongfei Zhang and Bo Fu
Polymers 2026, 18(1), 98; https://doi.org/10.3390/polym18010098 - 29 Dec 2025
Viewed by 283
Abstract
Aerogels are recognized as exceptional thermal insulation materials, but poor mechanical strength and flammability problems hinder their application in high-temperature environments. Thermal management materials that combine high mechanical strength with superior flame retardancy are, therefore, critically important for thermal insulation. Herein, ultra-lightweight aerogels [...] Read more.
Aerogels are recognized as exceptional thermal insulation materials, but poor mechanical strength and flammability problems hinder their application in high-temperature environments. Thermal management materials that combine high mechanical strength with superior flame retardancy are, therefore, critically important for thermal insulation. Herein, ultra-lightweight aerogels were facilely fabricated using chitosan (CS) and acidified attapulgite (SATP) as the primary components. The optimal composite, CS-SATP30%, exhibited a compressive strength of 633.15 kPa at 80% strain, demonstrating significant improvement in mechanical properties. Structural analysis revealed that the hydroxyl groups and amino groups of CS molecules formed hydrogen bonds with SATP, ensuring excellent interfacial affinity among the constituents. Compared to pure CS aerogel, the total heat release (THR) and peak heat release rate (PHRR) of CS-SATP30% were substantially reduced to 3.83 MJ/m2 and 37.00 kW/m2, respectively. Furthermore, the limiting oxygen index (LOI) of CS-SATP30% increased to 34% and passed the vertical burning test (UL-94). This study provides a feasible way to construct advanced chitosan-based thermal insulation aerogels. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 1024 KB  
Article
A Blockchain Architecture for Hourly Electricity Rights and Yield Derivatives
by Volodymyr Evdokimov, Anton Kudin, Vakhtanh Chikhladze and Volodymyr Artemchuk
FinTech 2026, 5(1), 2; https://doi.org/10.3390/fintech5010002 - 24 Dec 2025
Viewed by 338
Abstract
The article presents a blockchain-based architecture for decentralized electricity trading that tokenizes energy delivery rights and cash-flows. Energy Attribute Certificates (EACs) are implemented as NFTs, while buy/sell orders are encoded as ERC-1155 tokens whose tokenId packs a time slot and price, enabling precise [...] Read more.
The article presents a blockchain-based architecture for decentralized electricity trading that tokenizes energy delivery rights and cash-flows. Energy Attribute Certificates (EACs) are implemented as NFTs, while buy/sell orders are encoded as ERC-1155 tokens whose tokenId packs a time slot and price, enabling precise matching across hours. A clearing smart contract (Matcher) burns filled orders, mints an NFT option, and issues two ERC-20 assets: PT, the right to consume kWh within a specified interval, and YT, the producer’s claim on revenue. We propose a simple, linearly increasing discounted buyback for YT within the slot and introduce an aggregating token, IndexYT, which accumulates YTs across slots, redeems them at par at maturity, and gradually builds on-chain reserves—turning IndexYT into a liquid, yield-bearing instrument. We outline the PT/YY lifecycle, oracle-driven policy controls for DSO (e.g., transfer/splitting constraints), and discuss transparency, resilience, and capital efficiency. The contribution is a Pendle-inspired split of electricity into Principal/Yield tokens combined with a time-stamped on-chain order book and IndexYT, forming a programmable market for short-term delivery rights and yield derivatives with deterministic settlement. Full article
(This article belongs to the Special Issue Fintech Innovations: Transforming the Financial Landscape)
Show Figures

Figure 1

25 pages, 3501 KB  
Article
Characterisation and Analysis of Large Forest Fires (LFFs) in the Canary Islands, 2012–2024
by Nerea Martín-Raya, Abel López-Díez and Álvaro Lillo Ezquerra
Fire 2026, 9(1), 7; https://doi.org/10.3390/fire9010007 - 23 Dec 2025
Viewed by 438
Abstract
In recent decades, forest fires have become one of the most disruptive and complex natural hazards from both environmental and territorial perspectives. The Canary Islands represent a particularly suitable setting for analysing wildfire risk. This study aims to characterise the Large Forest Fires [...] Read more.
In recent decades, forest fires have become one of the most disruptive and complex natural hazards from both environmental and territorial perspectives. The Canary Islands represent a particularly suitable setting for analysing wildfire risk. This study aims to characterise the Large Forest Fires (LFFs) that occurred across the archipelago between 2012 and 2024 through an integrative approach combining geospatial, meteorological, and socio-environmental information. A total of 13 LFFs were identified in Tenerife, Gran Canaria, La Palma, and La Gomera, affecting 55,167 hectares—equivalent to 7.4% of the islands’ total land area. The results indicate a temporal concentration during the summer months and an altitudinal range between 750 and 1500 m, corresponding to transitional zones between laurel forest and Canary pine woodland. Meteorological conditions showed average temperatures of 24.3 °C, minimum relative humidity of 23.7%, and thermal inversion layers at around 270 m a.s.l., creating an environment conducive to fire spread. Approximately 81% of the affected area lies within protected natural spaces, highlighting a high level of ecological vulnerability. Analysis of the Normalized Burn Ratio (NBR) index reveals a growing trend in fire severity, while social impacts include the evacuation of more than 43,000 people. These findings underscore the urgency of moving towards proactive territorial management that integrates prevention, ecological restoration, and climate change adaptation as fundamental pillars of any disaster risk reduction strategy. Full article
Show Figures

Figure 1

22 pages, 2558 KB  
Article
Post-Fire Restauration in Mediterranean Watersheds: Coupling WiMMed Modeling with LiDAR–Landsat Vegetation Recovery
by Edward A. Velasco Pereira and Rafael Mª Navarro Cerrillo
Remote Sens. 2026, 18(1), 26; https://doi.org/10.3390/rs18010026 - 22 Dec 2025
Viewed by 482
Abstract
Wildfires are among the most severe disturbances in Mediterranean ecosystems, altering vegetation structure, soil properties, and hydrological functioning. Understanding post-fire hydrological dynamics is crucial for predicting flood and erosion risks and vegetation restoration in fire-prone regions. This study investigates the hydrological responses of [...] Read more.
Wildfires are among the most severe disturbances in Mediterranean ecosystems, altering vegetation structure, soil properties, and hydrological functioning. Understanding post-fire hydrological dynamics is crucial for predicting flood and erosion risks and vegetation restoration in fire-prone regions. This study investigates the hydrological responses of Mediterranean watersheds following a wildfire event by integrating WiMMed (Watershed Integrated Management in Mediterranean Environments), a distributed, physically based hydrological model, with high-resolution vegetation data derived from LiDAR and Landsat imagery. A Priority Post-Fire Restoration Index (PPRI) was calculated as the weighted sum of the six parameters runoff (mm), flow accumulation (mm), distance to drainage network (m), slope (%), erodibility (K), lithology, and LiDAR index under a sediment reduction and runoff peak reduction scenario. The post-fire hydrological processes modeled with WiMMed described the dynamics of surface runoff and soil moisture redistribution across the upper soil layers after fire, and their gradual attenuation with vegetation regrowth. The spatial distribution of the PPRI identified specific zones within the burned watershed that require urgent restoration measures (10% and 4.55% under sediment reduction and peak reduction scenarios, respectively). The combined use of process-based modeling and remote sensing offers valuable insights into watershed-scale hydrological resilience and supports the design of post-fire restoration strategies in Mediterranean landscapes. Full article
Show Figures

Figure 1

17 pages, 2143 KB  
Article
Composition, Sources, and Health Risks of Polycyclic Aromatic Hydrocarbons in Commonly Consumed Fish and Crayfish from Caohai Lake, Southwest China
by Yupei Hao, Tianyao Yang, Xueqin Wei, Xu Zhang, Xiongyi Miao, Gaohai Xu, Sheping Yang, Xiaohua Zhou, Huifang Zhao and Wei Bao
Toxics 2025, 13(12), 1086; https://doi.org/10.3390/toxics13121086 - 17 Dec 2025
Cited by 1 | Viewed by 469
Abstract
This study investigated the occurrence, sources, and health risks of 16 polycyclic aromatic hydrocarbons (PAHs) in commonly consumed fish and crayfish from the Caohai Lake, a typical plateau lake in southwest China. Four dominant species (crucian carp, common carp, yellow catfish, and crayfish) [...] Read more.
This study investigated the occurrence, sources, and health risks of 16 polycyclic aromatic hydrocarbons (PAHs) in commonly consumed fish and crayfish from the Caohai Lake, a typical plateau lake in southwest China. Four dominant species (crucian carp, common carp, yellow catfish, and crayfish) were collected and analyzed. The results showed a generally low level of PAH contamination (mean: 26.7 μg/kg wet weight), with bioaccumulation tendency decreasing as the number of PAH rings increased. Crayfish exhibited the highest total concentration of PAHs, whereas yellow catfish accumulated the most carcinogenic PAHs. Positive matrix factorization (PMF) model identified four primary sources—petroleum leakage, coal combustion, traffic emissions, and biomass burning—with petroleum-derived PAHs being the most significant contributor. The assessment of health risk indicated that while the average hazard index (HI) was below 1, approximately 10% of the samples posed a potential non-carcinogenic risk, particularly from crayfish and yellow catfish. The incremental lifetime cancer risk (ILCR) for DahA, BaP, BaA, and BbF all exceeded the negligible risk level of 10−6 but remained below 10−4. Notably, the mean total ILCR (TILCR) approached 10−4, with yellow catfish presenting the highest carcinogenic risk, highlighting concerns of the carcinogenic risk of PAHs. Source-oriented risk assessment revealed that petroleum leakage was the dominant contributor to non-carcinogenic risk (>55%), while traffic emissions contributed most to carcinogenic risk (>57%). To mitigate carcinogenic risk, implementing stormwater diversion systems along the circular lakeside roads is recommended to reduce the input of traffic-derived PAHs. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

11 pages, 1669 KB  
Article
The Role of Prophylaxis and Dietotherapy in Gynecology in the Context of the Interdisciplinary Nature of Genital Discomfort—A Pilot Report
by Grażyna Jarząbek-Bielecka, Agata Puszcz, Mariola Pawlaczyk, Katarzyna Plagens-Rotman, Małgorzata Mizgier, Magdalena Pisarska-Krawczyk, Jakub Mroczyk and Witold Kędzia
J. Clin. Med. 2025, 14(24), 8863; https://doi.org/10.3390/jcm14248863 - 15 Dec 2025
Viewed by 348
Abstract
Background/Objectives: Genital discomfort, manifested by vulvar itching and burning, is a frequent complaint among women of all ages and has multifactorial origins—including dermatoses, infections, allergies, and hormonal disorders. The study aimed to determine whether selected medical history factors—age, obstetric history, and body mass [...] Read more.
Background/Objectives: Genital discomfort, manifested by vulvar itching and burning, is a frequent complaint among women of all ages and has multifactorial origins—including dermatoses, infections, allergies, and hormonal disorders. The study aimed to determine whether selected medical history factors—age, obstetric history, and body mass index (BMI)—influence the frequency of genital discomfort as a reason for gynecological consultation. Methods: A pilot study included 288 female patients aged 11–91 years who presented to outpatient gynecological clinics between September 2018 and February 2025 with symptoms of vulvar itching and genital discomfort. Qualitative data were expressed as numbers and percentages, and age was described using mean, median, quartiles, and range. Associations between categorical variables were assessed using Pearson’s chi-square test, with statistical significance set at p < 0.05. Results: The mean age of patients was 47.4 ± 20.3 years. Most were diagnosed with ICD-10 code N90 (82.6%), while 17.4% had N76. Genital discomfort was most frequently reported by women aged 41–50 years (p < 0.0001). Comorbidities (p < 0.0001) and obstetric history (p < 0.0001) significantly influenced the occurrence of genital discomfort, which was more prevalent among women with chronic conditions and those who had been pregnant. No significant associations were found with BMI (p = 0.2353) or menopausal status (p = 0.3458). Conclusions: Genital discomfort is a common and multifactorial condition requiring an interdisciplinary diagnostic and therapeutic approach. Collaboration among gynecologists, dermatologists, endocrinologists, and dietitians is crucial for effective management and prevention. Full article
(This article belongs to the Special Issue Prevention and Management of Sexual Dysfunction)
Show Figures

Figure 1

26 pages, 8977 KB  
Article
Post-Fire Vegetation Recovery Response: A Case Study of the 2020 Bobcat Fire in Los Angeles, California
by Andrew Alamillo, Jingjing Li, Alireza Farahmand, Madeleine Pascolini-Campbell and Christine Lee
Remote Sens. 2025, 17(24), 4023; https://doi.org/10.3390/rs17244023 - 13 Dec 2025
Cited by 1 | Viewed by 418
Abstract
Wildfires can drastically alter ecological landscapes in just a few days, while it takes years of post-fire recovery for vegetation to return to its former pre-fire state. Assessing changes in vegetation can help with understanding how the hydrological components in the wildfire-affected areas [...] Read more.
Wildfires can drastically alter ecological landscapes in just a few days, while it takes years of post-fire recovery for vegetation to return to its former pre-fire state. Assessing changes in vegetation can help with understanding how the hydrological components in the wildfire-affected areas contribute to potential vegetation shifts. This case study of the Los Angeles Bobcat Fire in 2020 uses Google Earth Engine (GEE) and Python 3.10.18 to access and visualize variations in Difference Normalized Burn Ratio (dNBR) area, Normalized Difference Vegetation Index (NDVI), and OpenET’s evapotranspiration (ET) across three dominant National Land Cover Database (NLCD) vegetation classes and dNBR classes via monthly time series and seasonal analysis from 2016 to 2024. Burn severity was determined based on Landsat-derived dNBR thresholds defined by the United Nations Office for Outer Space Affairs UN-Spider Knowledge Portal. Our study showed a general reduction in dNBR class area percentages, with High Severity (HS) dropping from 15% to 0% and Moderate Severity (MS) dropping from 45% to 10%. Low-Severity (LS) areas returned to 25% after increasing to 49% in May of 2022, led by vegetation growth. The remaining area was classified as Unburned and Enhanced Regrowth. Within our time series analysis, HS areas showed rapid growth compared to MS and LS areas for both ET and NDVI. Seasonal analysis showed most burn severity levels and vegetation classes increasing in median ET and NDVI values while 2024’s wet season median NDVI decreased compared to 2023’s wet season. Despite ET and NDVI continuing to increase post-fire, recent 2024 NLCD data shows most Forests and Shrubs remain as Grasslands, with small patches recovering to pre-fire vegetation. Using GEE, Python, and available satellite imagery demonstrates how accessible analytical tools and data layers enable wide-ranging wildfire vegetation studies, advancing our understanding of the impact wildfires have on ecosystems. Full article
(This article belongs to the Special Issue Remote Sensing for Risk Assessment, Monitoring and Recovery of Fires)
Show Figures

Figure 1

28 pages, 15780 KB  
Article
Towards Near-Real-Time Estimation of Live Fuel Moisture Content from Sentinel-2 for Fire Management in Northern Thailand
by Chakrit Chotamonsak, Duangnapha Lapyai and Punnathorn Thanadolmethaphorn
Fire 2025, 8(12), 475; https://doi.org/10.3390/fire8120475 - 11 Dec 2025
Viewed by 494
Abstract
Wildfires are a recurring dry-season hazard in northern Thailand, contributing to severe air pollution and trans-boundary haze. However, the region lacks the ground-based measurements necessary for monitoring Live Fuel Moisture Content (LFMC), a key variable influencing vegetation flammability. This study presents a preliminary [...] Read more.
Wildfires are a recurring dry-season hazard in northern Thailand, contributing to severe air pollution and trans-boundary haze. However, the region lacks the ground-based measurements necessary for monitoring Live Fuel Moisture Content (LFMC), a key variable influencing vegetation flammability. This study presents a preliminary framework for near-real-time (NRT) LFMC estimation using Sentinel-2 multispectral imagery. The system integrates normalized vegetation and moisture-related indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Infrared Index (NDII), and the Moisture Stress Index (MSI) with an NDVI-derived evapotranspiration fraction (ETf) within a heuristic modeling approach. The workflow includes cloud and shadow masking, weekly to biweekly compositing, and pixel-wise normalization to address the persistent cloud cover and heterogeneous land surfaces. Although currently unvalidated, the LFMC estimates capture the relative spatial and temporal variations in vegetation moisture across northern Thailand during the 2024 dry season (January–April). Evergreen forests maintained higher moisture levels, whereas deciduous forests and agricultural landscapes exhibited pronounced drying from January to March. Short-lag responses to rainfall suggest modest moisture recovery following precipitation, although the relationship is influenced by additional climatic and ecological factors not represented in the heuristic model. LFMC-derived moisture classes reflect broad seasonal dryness patterns but should not be interpreted as direct fire danger indicators. This study demonstrates the feasibility of generating regional LFMC indicators in a data-scarce tropical environment and outlines a clear pathway for future calibration and validation, including field sampling, statistical optimization, and benchmarking against global LFMC products. Until validated, the proposed NRT LFMC estimation product should be used to assess relative vegetation dryness and to support the refinement and development of future operational fire management tools, including early warnings, burn-permit regulation, and resource allocation. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

15 pages, 2270 KB  
Article
Modeling Moisture Factors in Grassland Fire Danger Index for Prescribed Fire Management in the Great Plains
by Mayowa B. George, Zifei Liu and Izuchukwu O. Okafor
Fire 2025, 8(12), 469; https://doi.org/10.3390/fire8120469 - 1 Dec 2025
Cited by 1 | Viewed by 822
Abstract
Prescribed fire is a critical land management practice in the Great Plains of North America, helping to maintain native rangelands and reduce wildfire risk. Barriers to prescribed fire practice remain due to concerns on potential fire escape and fire danger. A localized fire [...] Read more.
Prescribed fire is a critical land management practice in the Great Plains of North America, helping to maintain native rangelands and reduce wildfire risk. Barriers to prescribed fire practice remain due to concerns on potential fire escape and fire danger. A localized fire danger index can help address these concerns by providing clear, science-based guidance, encouraging safer and confident use of prescribed fire. Our goal is to support the development of a localized Grassland Fire Danger Index (GFDI) for prescribed fire management in the Great Plains. The specific objective of this study is to develop user-friendly sub-models for dead fuel moisture content (DFMC) and grass curing, which serve as components of the proposed GFDI. DFMC reflects short-term fuel moisture that affects ignition and fire spread, while grass curing represents seasonal drying that controls fuel availability. Both are critical for fire prediction and safe burns. Lower DFMC and higher grass curing levels are strongly associated with wildfire risks. Using Oklahoma Mesonet weather data, the DFMC sub-model improves the accuracy and sensitivity of existing models. The grass curing sub-model shows that 50% curing usually occurs around April 15–16, which matches the time for the most intensive prescribed fire activities in the region, indicating it as a safe and effective window for prescribed fire recognized by landowners. Our sub-models lay the foundation for development of GFDI in the region. Full article
Show Figures

Figure 1

11 pages, 2578 KB  
Case Report
Finger Joints Reconstructive Coverage with Cross-Arm (Colson) Flaps After Burn Injury: A Literature Review and Our Experience
by Ziyad Alharbi, Maysaa Alghamdi, Johannes Hertelendy, Khalid Khatib and Norbert Pallua
Healthcare 2025, 13(23), 3114; https://doi.org/10.3390/healthcare13233114 - 1 Dec 2025
Viewed by 320
Abstract
Background: Random pattern flaps are widely used in reconstructive surgery when inadequate vascularity precludes skin graft survival or when regional pedicled flaps are unavailable due to local burn injury. Here, thin tissue from the upper arm was utilized to cover exposed cartilage over [...] Read more.
Background: Random pattern flaps are widely used in reconstructive surgery when inadequate vascularity precludes skin graft survival or when regional pedicled flaps are unavailable due to local burn injury. Here, thin tissue from the upper arm was utilized to cover exposed cartilage over the proximal interphalangeal (PIP) joints of the contralateral hand. Methods/Technical Note: We report the uncommon application of multiple cross-arm (Colson) flaps to reconstruct dorsal skin defects over the PIP joints of the index, middle, and ring fingers following a high-voltage burn injury, in conjunction with a comprehensive literature review. Results: Three separate random-pattern flaps were harvested from the upper arm and transferred to the contralateral hand. All flaps demonstrated good perfusion, durable coverage, and a clean wound bed postoperatively, with preservation of joint mobility. Conclusions: To our knowledge, this represents one of the first reported reconstructions of multiple adjacent PIP joints using individual cross-arm flaps. This technique remains a dependable salvage option that should be considered in complex reconstructive scenarios when local or microsurgical options are not feasible. Full article
Show Figures

Figure 1

17 pages, 6113 KB  
Article
Bio-Based Chitosan/Agar/Phytic Acid Coating Enhanced Flame Retardancy of Wood Applied to Aircraft Cabin Interiors
by Lin Shi, Quanyi Liu and Pei Zhu
Fire 2025, 8(12), 461; https://doi.org/10.3390/fire8120461 - 27 Nov 2025
Viewed by 1063
Abstract
The aviation industry needs to develop sustainable, fire-safe cabin interior materials. Although wood is eco-friendly, its high flammability makes it challenging to meet flame retardant standards. Enhancing wood fire safety requires the creation of an environmentally friendly and flame retardant coating. In this [...] Read more.
The aviation industry needs to develop sustainable, fire-safe cabin interior materials. Although wood is eco-friendly, its high flammability makes it challenging to meet flame retardant standards. Enhancing wood fire safety requires the creation of an environmentally friendly and flame retardant coating. In this study, a new type of intumescent flame retardant (IFR) coating was applied to the wood surface using the layer-by-layer (LBL) technique, with fully bio-based chitosan (CS), agar, and phytic acid (PA) as key components. The coated wood demonstrated improved durability, flame resistance, and thermal stability. Particularly, the Wood-2 sample achieved a vertical burning test (UL-94) V-0 rate and a limiting oxygen index (LOI) of 53.1%, which exceeded most previous reported flame retardant coatings. Cone calorimeter test and infrared thermography analysis confirmed that a thick layer of intumescent char formed when the coating was exposed to heat, effectively hindering heat transfer and oxygen supply. This flame retardant effect is attributed to a synergistic mechanism involving nitrogen/phosphorus (N/P) elements. This study offers an environmentally friendly solution for wood flame retardancy and lays an experimental and theoretical foundation for the development of green aviation interior materials. Full article
(This article belongs to the Special Issue Aircraft Fire Safety)
Show Figures

Figure 1

Back to TopTop