Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = Buongiorno nanofluid model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3988 KiB  
Article
Vibrational Radiative Double Diffusion in Buongiorno’s Nanofluid Model Within Inclined Chambers Filled with Non-Darcy Porous Elements
by Sumayyah Alabdulhadi, Zahra Hafed, Muflih Alhazmi and Sameh E. Ahmed
Processes 2025, 13(5), 1551; https://doi.org/10.3390/pr13051551 - 17 May 2025
Viewed by 365
Abstract
Vibrational double diffusion has gained increasing attention in recent studies due to its role in enhancing mixing, disrupting thermal boundary layers, and stabilizing convection structures, especially in nanofluids and porous media. This study focuses on the case of two-phase nanofluid flow in the [...] Read more.
Vibrational double diffusion has gained increasing attention in recent studies due to its role in enhancing mixing, disrupting thermal boundary layers, and stabilizing convection structures, especially in nanofluids and porous media. This study focuses on the case of two-phase nanofluid flow in the presence of vibrational effects. The flow domain is a fined chamber that is filled with a non-Darcy porous medium. Two concentration formulations are proposed for the species concentration and nanoparticle concentration. The thermal radiation is in both the x- and y-directions, while the flow domain is considered to be inclined. The solution technique depends on an effective finite volume method. The periodic behaviors of the stream function, Nusselt numbers, and Sherwood numbers against the progressing time are presented and interpreted. From the major results, a significant reduction in harmonic behaviors of the stream function is obtained as the lengths of the fins are raised while the gradients of the temperature and concentration are improved. Also, a higher rate of heat and mass transfer is obtained when the vibration frequency is raised. Furthermore, for fixed values of the Rayleigh number and vibration frequency (Ra = 104, σ = 500), the heat transfer coefficient improves by 27.2% as the fin length increases from 0.1 to 0.25. Full article
Show Figures

Figure 1

17 pages, 417 KiB  
Article
A Rational Extended Thermodynamic Model for Nanofluids
by Elvira Barbera and Annamaria Pollino
Fluids 2024, 9(8), 193; https://doi.org/10.3390/fluids9080193 - 22 Aug 2024
Cited by 1 | Viewed by 837
Abstract
A model of quasilinear differential equations is derived in the context of Rational Extended Thermodynamics to investigate some non-equilibrium phenomena in nanofluids. Following the classical Buongiorno approach, the model assumes nanofluids to be suspensions of two phases: nanoparticles and the base fluid. The [...] Read more.
A model of quasilinear differential equations is derived in the context of Rational Extended Thermodynamics to investigate some non-equilibrium phenomena in nanofluids. Following the classical Buongiorno approach, the model assumes nanofluids to be suspensions of two phases: nanoparticles and the base fluid. The field variables are the classical ones and, in addition, the stress tensors and the heat fluxes of both constituents. Balance laws for all field variables are assumed. The obtained system is not closed; therefore, universal physical principles, such as Galilean Invariance and the Entropy Principles, are invoked to close the set of field equations. The obtained model is also written in terms of the whole nanofluid and compared with the classical Buongiorno model. This allowed also the identifications of some parameters in terms of experimental data. The obtained set of field equations has the advantage to recover the Buongiorno model when the phenomena are near equilibrium. At the same time it consists of a hyperbolic set of field equations. Hyperbolicity guarantees finite speeds of propagation and more suitable descriptions of transient regimes. The present model can be used in order to investigate waves, shocks and other phenomena that can be easily described in hyperbolic systems. Furthermore, as a first application and in order to show the potential of the model, stationary 1D solutions are determined and some thermal properties of nanofluids are studied. The solution exhibits, already in the simplest case herein considered, a more accurate evaluation of some fields like the stress tensor components. Full article
Show Figures

Figure 1

15 pages, 4863 KiB  
Article
Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model
by Ming Shen, Yihong Liu, Qingan Yin, Hongmei Zhang and Hui Chen
Fractal Fract. 2024, 8(8), 491; https://doi.org/10.3390/fractalfract8080491 - 21 Aug 2024
Viewed by 1368
Abstract
This paper introduces fractional Brownian motion into the study of Maxwell nanofluids over a stretching surface. Nonlinear coupled spatial fractional-order energy and mass equations are established and solved numerically by the finite difference method with Newton’s iterative technique. The quantities of physical interest [...] Read more.
This paper introduces fractional Brownian motion into the study of Maxwell nanofluids over a stretching surface. Nonlinear coupled spatial fractional-order energy and mass equations are established and solved numerically by the finite difference method with Newton’s iterative technique. The quantities of physical interest are graphically presented and discussed in detail. It is found that the modified model with fractional Brownian motion is more capable of explaining the thermal conductivity enhancement. The results indicate that a reduction in the fractional parameter leads to thinner thermal and concentration boundary layers, accompanied by higher local Nusselt and Sherwood numbers. Consequently, the introduction of a fractional Brownian model not only enriches our comprehension of the thermal conductivity enhancement phenomenon but also amplifies the efficacy of heat and mass transfer within Maxwell nanofluids. This achievement demonstrates practical application potential in optimizing the efficiency of fluid heating and cooling processes, underscoring its importance in the realm of thermal management and energy conservation. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

12 pages, 3348 KiB  
Proceeding Paper
Evaluation of Combined Effect of Zero Flux and Convective Boundary Conditions on Magnetohydrodynamic Boundary-Layer Flow of Nanofluid over Moving Surface Using Buongiorno’s Model
by Purnima Rai and Upendra Mishra
Eng. Proc. 2023, 59(1), 245; https://doi.org/10.3390/engproc2023059245 - 10 Apr 2024
Cited by 2 | Viewed by 1081
Abstract
This study explores the synergistic impact of zero flux and convective boundary conditions on the magnetohydrodynamic (MHD) boundary-layer slip flow of nanofluid over a moving surface, utilizing Buongiorno’s model. In a landscape of expanding nanofluid applications, understanding boundary condition interactions is crucial. Employing [...] Read more.
This study explores the synergistic impact of zero flux and convective boundary conditions on the magnetohydrodynamic (MHD) boundary-layer slip flow of nanofluid over a moving surface, utilizing Buongiorno’s model. In a landscape of expanding nanofluid applications, understanding boundary condition interactions is crucial. Employing a systematic approach, we varied key parameters, including surface velocity, thermophoresis, Brownian motion, Eckert number, Prandtl number, and Lewis number, systematically investigating their effects on flow and heat transfer. Numerical simulations focused on critical metrics such as skin friction coefficients; Nusselt and Sherwood numbers; and temperature, concentration, and velocity profiles. Noteworthy findings include the amplifying effect of a magnetic field and viscous dissipation on temperature profiles and the dual impact of heightened velocity slip on temperature and velocity profiles, which result in a thicker concentration boundary layer. Beyond academia, we envision our research having practical applications in optimizing high-temperature processes, bio-sensors, paints, pharmaceuticals, coatings, cosmetics, and space technology. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

16 pages, 4659 KiB  
Article
Studying Alumina–Water Nanofluid Two-Phase Heat Transfer in a Novel E-Shaped Porous Cavity via Introducing New Thermal Conductivity Correlation
by Taher Armaghani, Mojtaba Sepehrnia, Maysam Molana, Manasik M. Nour and Amir Safari
Symmetry 2023, 15(11), 2057; https://doi.org/10.3390/sym15112057 - 13 Nov 2023
Cited by 3 | Viewed by 1310
Abstract
Investigating natural convection heat transfer of nanofluids in various geometries has garnered significant attention due to its potential applications across several disciplines. This study presents a numerical simulation of the natural convection heat transfer and entropy generation process in an E-shaped porous cavity [...] Read more.
Investigating natural convection heat transfer of nanofluids in various geometries has garnered significant attention due to its potential applications across several disciplines. This study presents a numerical simulation of the natural convection heat transfer and entropy generation process in an E-shaped porous cavity filled with nanofluids, implementing Buongiorno’s simulation model. Analyzing the behavior of individual nanoparticles, or even the entire nanofluid system at the molecular level, can be extremely computationally intensive. Symmetry is a fundamental concept in science that can help reduce this computational burden considerably. In this study, nanofluids are frequently conceived of as a combination of water and Al2O3 nanoparticles at a concentration of up to 4% by volume. A unique correlation was proposed to model the effective thermal conductivity of nanofluids. The average Nusselt number, entropy production, and Rayleigh number have been illustrated to exhibit a decreasing trend when the volume concentration of nanoparticles inside the porous cavity rises; the 4% vol. water–alumina NFs yield 17.35% less average Nu number compared to the base water. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 7035 KiB  
Article
Melting Heat Transfer Rheology in Bioconvection Cross Nanofluid Flow Confined by a Symmetrical Cylindrical Channel with Thermal Conductivity and Swimming Microbes
by Fuad A. Awwad, Emad A. A. Ismail, Taza Gul, Waris Khan and Ishtiaq Ali
Symmetry 2023, 15(9), 1647; https://doi.org/10.3390/sym15091647 - 25 Aug 2023
Cited by 6 | Viewed by 1410
Abstract
Nonlinear thermal transport of non-Newtonian polymer flows is an increasingly important area in materials engineering. Motivated by new developments in this area which entail more refined and more mathematical frameworks, the present analysis investigates the boundary-layer approximation and heat transfer persuaded by a [...] Read more.
Nonlinear thermal transport of non-Newtonian polymer flows is an increasingly important area in materials engineering. Motivated by new developments in this area which entail more refined and more mathematical frameworks, the present analysis investigates the boundary-layer approximation and heat transfer persuaded by a symmetrical cylindrical surface positioned horizontally. To simulate thermal relaxation impacts, the bioconvection Cross nanofluid flow Buongiorno model is deployed. The study examines the magnetic field effect applied to the nanofluid using the heat generated, as well as the melting phenomenon. The nonlinear effect of thermosolutal buoyant forces is incorporated into the proposed model. The novel mathematical equations include thermophoresis and Brownian diffusion effects. Via robust transformation techniques, the primitive resulting partial equations for momentum, energy, concentration, and motile living microorganisms are rendered into nonlinear ordinary equations with convective boundary postulates. An explicit and efficient numerical solver procedure in the Mathematica 11.0 programming platform is developed to engage the nonlinear equations. The effects of multiple governing parameters on dimensionless fluid profiles is examined using plotted visuals and tables. Finally, outcomes related to the surface drag force, heat, and mass transfer coefficients for different influential parameters are presented using 3D visuals. Full article
(This article belongs to the Special Issue Symmetry in System Theory, Control and Computing)
Show Figures

Figure 1

8 pages, 1982 KiB  
Proceeding Paper
Numerical Simulations on Heat Transfer Enhancement of Nanofluids in Microchannel Using Vortex Generator
by Yong-Bin Lee and Chuan-Chieh Liao
Eng. Proc. 2023, 38(1), 68; https://doi.org/10.3390/engproc2023038068 - 29 Jun 2023
Cited by 1 | Viewed by 1188
Abstract
Vortex-induced vibration (VIV) is the periodic motion of a bluff body caused by fluid flow and is widely discussed in the engineering field. With the advancement of science and technology, miniaturization and integration have become the mainstream trends in biomedical chips and electronic [...] Read more.
Vortex-induced vibration (VIV) is the periodic motion of a bluff body caused by fluid flow and is widely discussed in the engineering field. With the advancement of science and technology, miniaturization and integration have become the mainstream trends in biomedical chips and electronic systems, resulting in higher heat dissipation requirements per unit area. Therefore, the improvement of the heat dissipation effect of movable structures in the flow channel has been widely discussed. Among them, adding VIV motion in the microchannel generates a vortex structure, which improves heat transfer efficiency. Different from the direct displacement method of active vibration, the passive displacement of VIV is a multi-physics problem. It needs to integrate the flow field and the spring-mass system of the object for fluid–solid coupling, which greatly increases the difficulty of analysis. In this study, the Immersed-boundary method (IBM) combined with the equation of motion is used to numerically study a vortex generator that is elastically installed in a microfluidic channel and is then used to enhance the convective heat transfer of nanofluids in the channel. Unlike the common body-fitted mesh, IBM greatly reduces the computational resources required for mesh regeneration when simulating the problem of object movement in fluid–structure interaction. In addition, Buongiorno’s two-phase mixing model is used to simulate the convective heat transfer of nanofluids in microchannels by considering the Brownian motion and thermophoretic diffusion of nanoparticles in the carrier liquid. By changing the important parameters such as nanofluid concentration, Reynolds number, mass ratio, and Ur, the influence of the response characteristics of vortex-induced vibration on the heat flow field in the microfluidic channel is discussed, and the key factors for enhancing heat transfer are found out. Full article
Show Figures

Figure 1

26 pages, 12128 KiB  
Article
Cubic Chemical Autocatalysis and Oblique Magneto Dipole Effectiveness on Cross Nanofluid Flow via a Symmetric Stretchable Wedge
by Nor Ain Azeany Mohd Nasir, Tanveer Sajid, Wasim Jamshed, Gilder Cieza Altamirano, Mohamed R. Eid and Fayza Abdel Aziz ElSeabee
Symmetry 2023, 15(6), 1145; https://doi.org/10.3390/sym15061145 - 24 May 2023
Cited by 14 | Viewed by 2029
Abstract
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model [...] Read more.
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model along with its chemical processes via auto catalysts, inclined magnetic field phenomena, heat generation, Brownian movement, and thermophoresis phenomena over a symmetric shrinking (stretching) wedge. The transport of heat via nonuniform heat sources/sinks, the impact of thermophoretic diffusion, and Brownian motion are considered. The Buongiorno nanofluid model is used to investigate the impact of nanofluids on fluid flow. Modeled PDEs are transformed into ODEs by utilizing similarity variables and handling dimensionless ODEs numerically with the adoption of MATLAB’s developed bvp4c technique. This software performs a finite difference method that uses the collocation method with a three-stage LobattoIIIA strategy. Obtained outcomes are strictly for the case of a symmetric wedge. The velocity field lessens due to amplification in the magneto field variable. Fluid temperature is amplified through the enhancement of Brownian diffusion and the concentration field improves under magnification in a homogeneous reaction effect. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer with Symmetry)
Show Figures

Figure 1

15 pages, 3494 KiB  
Article
Heat and Mass Transport in Casson Nanofluid Flow over a 3-D Riga Plate with Cattaneo-Christov Double Flux: A Computational Modeling through Analytical Method
by Karuppusamy Loganathan, S. Eswaramoorthi, P. Chinnasamy, Reema Jain, Ramkumar Sivasakthivel, Rifaqat Ali and N. Nithya Devi
Symmetry 2023, 15(3), 725; https://doi.org/10.3390/sym15030725 - 14 Mar 2023
Cited by 15 | Viewed by 1872
Abstract
This work examines the non-Newtonian Cassonnanofluid’s three-dimensional flow and heat and mass transmission properties over a Riga plate. The Buongiorno nanofluid model, which is included in the present model, includes thermo-migration and random movement of nanoparticles. It also took into account the Cattaneo–Christov [...] Read more.
This work examines the non-Newtonian Cassonnanofluid’s three-dimensional flow and heat and mass transmission properties over a Riga plate. The Buongiorno nanofluid model, which is included in the present model, includes thermo-migration and random movement of nanoparticles. It also took into account the Cattaneo–Christov double flux processes in the mass and heat equations. The non-Newtonian Casson fluid model and the boundary layer approximation are included in the modeling of nonlinear partial differential systems. The homotopy technique was used to analytically solve the system’s governing equations. To examine the impact of dimensionless parameters on velocities, concentrations, temperatures, local Nusselt number, skin friction, and local Sherwood number, a parametric analysis was carried out. The velocity profile is augmented in this study as the size of the modified Hartmann number increases. The greater thermal radiative enhances the heat transport rate. When the mass relaxation parameter is used, the mass flux values start to decrease. Full article
(This article belongs to the Special Issue Symmetry in System Theory, Control and Computing)
Show Figures

Figure 1

15 pages, 4692 KiB  
Article
Non-Unique Solutions of Magnetohydrodynamic Stagnation Flow of a Nanofluid towards a Shrinking Sheet Using the Solar Radiation Effect
by Sumayyah Alabdulhadi, Anuar Ishak, Iskandar Waini and Sameh E. Ahmed
Micromachines 2023, 14(3), 565; https://doi.org/10.3390/mi14030565 - 27 Feb 2023
Viewed by 1423
Abstract
This study aims to investigate the magnetohydrodynamic flow induced by a moving surface in a nanofluid and the occurrence of suction and solar radiation effects using the Buongiorno model. The numerical findings are obtained using MATLAB software. The effects of various governing parameters [...] Read more.
This study aims to investigate the magnetohydrodynamic flow induced by a moving surface in a nanofluid and the occurrence of suction and solar radiation effects using the Buongiorno model. The numerical findings are obtained using MATLAB software. The effects of various governing parameters on the rates of heat and mass transfer along with the nanoparticles concentration and temperature profiles are elucidated graphically. Non-unique solutions are discovered for a specific variation of the shrinking strength. The temporal stability analysis shows that only one of them is stable as time passes. Furthermore, raising the Brownian motion parameter reduces both the local Sherwood number and the local Nusselt number for both solutions. It is also observed that increasing the thermophoresis parameter reduces the rate of heat transfer, whereas the opposite trend is observed for the rate of mass transfer. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Figure 1

19 pages, 7929 KiB  
Article
Thermal Onsets of Viscous Dissipation for Radiative Mixed Convective Flow of Jeffery Nanofluid across a Wedge
by Yogesh Dadhich, Nazek Alessa, Reema Jain, Abdul Razak Kaladgi, Karuppusamy Loganathan and V. Radhika Devi
Symmetry 2023, 15(2), 385; https://doi.org/10.3390/sym15020385 - 1 Feb 2023
Cited by 6 | Viewed by 2054
Abstract
The current analysis discusses Jeffery nanofluid’s thermally radiative flow with convection over a stretching wedge. It takes into account the Brownian movement and thermophoresis of the Buongiorno nanofluid model. The guiding partial differential equations (PDEs) are modified by introducing the symmetry variables, leading [...] Read more.
The current analysis discusses Jeffery nanofluid’s thermally radiative flow with convection over a stretching wedge. It takes into account the Brownian movement and thermophoresis of the Buongiorno nanofluid model. The guiding partial differential equations (PDEs) are modified by introducing the symmetry variables, leading to non-dimensional ordinary differential equations (ODEs). To solve the generated ODEs, the MATLAB function bvp4c is implemented. Examined are the impacts of different flow variables on the rate of transmission of heat transfer (HT), temperature, mass, velocity, and nanoparticle concentration (NC). It has been noted that the velocity and mass transfer were increased by the pressure gradient factor. Additionally, the thermal boundary layer (TBL) and nanoparticle concentration are reduced by the mixed convection (MC) factor. In order to validate the present research, the derived numerical results were compared to previous findings from the literature while taking into account the specific circumstances. It was found that there was good agreement in both sets of data. Full article
(This article belongs to the Special Issue Recent Advances in Conjugate Heat Transfer)
Show Figures

Figure 1

23 pages, 9090 KiB  
Article
Analysis of Motile Gyrotactic Micro-Organisms for the Bioconvection Peristaltic Flow of Carreau–Yasuda Bionanomaterials
by Zahid Nisar and Humaira Yasmin
Coatings 2023, 13(2), 314; https://doi.org/10.3390/coatings13020314 - 31 Jan 2023
Cited by 35 | Viewed by 2462
Abstract
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the [...] Read more.
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the examination of the thermodynamic and mass transfer of a Carreau–Yasuda magnetic bionanomaterial with gyrotactic micro-organisms, which is facilitated by radiative peristaltic transport. A compliant/elastic symmetric channel subject to partial slip constraints was chosen. The features of viscous dissipation and ohmic heating were incorporated into thermal transport. We use the Brownian and thermophoretic movement characteristics of the Buongiorno nanofluid model in this study. A set of nonlinear ordinary differential equations are created from the partial differential equations that control fluid flow. The governing system of differential equations is solved numerically via the shooting technique. The results of pertinent parameters are examined through velocity, temperature, motile micro-organisms, concentration, and heat transfer rate. Full article
Show Figures

Figure 1

14 pages, 978 KiB  
Article
The Flow of a Thermo Nanofluid Thin Film Inside an Unsteady Stretching Sheet with a Heat Flux Effect
by Mohammed Alrehili
Energies 2023, 16(3), 1160; https://doi.org/10.3390/en16031160 - 20 Jan 2023
Cited by 3 | Viewed by 1499
Abstract
This research investigated the flow and heat mass transmission of a thermal Buongiorno nanofluid film caused by an unsteady stretched sheet. The movement of the nanoparticles through the thin film layer is caused by the strength of the heat flow and the stretching [...] Read more.
This research investigated the flow and heat mass transmission of a thermal Buongiorno nanofluid film caused by an unsteady stretched sheet. The movement of the nanoparticles through the thin film layer is caused by the strength of the heat flow and the stretching force of the sheet working together. The thermal thin-film flow and heat mechanism, and the properties of mass transfer along the film layer, were comprehensively investigated. The consequences of the heat generation, magnetic field, and dissipation phenomenon were also thoroughly examined. Using appropriate dimensionless variables, the fundamental time-dependent equations of thin film nanofluid flow and heat mass transfer were modeled and converted to the ordinary differential equations system. Mathematica version 12 is the software that was used to build the numerical code here. Next, the shooting technique was applied to numerically solve the transformed equations. The elegance of the shooting technique and evidence of the consistency, dependability, and precision of our acquired results is that the results are more effective than those for the thin film nanofluid equations that are now available. There is a significant degree of consistency between the recently calculated results and the results that have been published for a limiting condition. Investigations were conducted into the effects of a variety of parameters on the flow of nanoliquid films, including the Nusselt number, skin friction, and Sherwood number. In addition, a detailed overview of the physical embedded parameters is provided through graphs and tables. However, the important features of the most relevant outcomes are the effects of higher porous and unsteadiness parameters on minimizing the thickness of the thin film; and the viscoelastic parameter has the reverse effect. Additionally, it is seen that the temperature profile improves as a result of higher thermophoresis and Brownian motion parameter values. Full article
Show Figures

Figure 1

23 pages, 21093 KiB  
Article
Effects of Hall Current and Viscous Dissipation on Bioconvection Transport of Nanofluid over a Rotating Disk with Motile Microorganisms
by Abdullah K. Alzahrani
Nanomaterials 2022, 12(22), 4027; https://doi.org/10.3390/nano12224027 - 16 Nov 2022
Cited by 7 | Viewed by 1612
Abstract
The study of rotating-disk heat-flow problems is relevant to computer storage devices, rotating machineries, heat-storage devices, MHD rotators, lubrication, and food-processing devices. Therefore, this study investigated the effects of a Hall current and motile microorganisms on nanofluid flow generated by the spinning of [...] Read more.
The study of rotating-disk heat-flow problems is relevant to computer storage devices, rotating machineries, heat-storage devices, MHD rotators, lubrication, and food-processing devices. Therefore, this study investigated the effects of a Hall current and motile microorganisms on nanofluid flow generated by the spinning of a disk under multiple slip and thermal radiation conditions. The Buongiorno model of a nonhomogeneous nanofluid under Brownian diffusion and thermophoresis was applied. Using the Taylor series, the effect of Resseland radiation was linearized and included in the energy equation. By implementing the appropriate transformations, the governing partial differential equations (PDEs) were simplified into a two-point ordinary boundary value problem. The classical Runge–Kutta dependent shooting method was used to find the numerical solutions, which were validated using the data available in the literature. The velocity, motile microorganism distribution, temperature, and concentration of nanoparticles were plotted and comprehensively analyzed. Moreover, the density number, Sherwood number, shear stresses, and Nusselt number were calculated. The radial and tangential velocity declined with varying values of magnetic numbers, while the concentration of nanoparticles, motile microorganism distribution, and temperature increased. There was a significant reduction in heat transfer, velocities, and motile microorganism distribution under the multiple slip conditions. The Hall current magnified the velocities and reduced the heat transfer. Thermal radiation improved the Nusselt number, while the thermal slip conditions reduced the Nusselt number. Full article
(This article belongs to the Special Issue Theory and Computational Model of Nanofluids)
Show Figures

Figure 1

19 pages, 4005 KiB  
Article
Entropy Minimization for Generalized Newtonian Fluid Flow between Converging and Diverging Channels
by Sohail Rehman, Hashim, Abdelaziz Nasr, Sayed M. Eldin and Muhammad Y. Malik
Micromachines 2022, 13(10), 1755; https://doi.org/10.3390/mi13101755 - 17 Oct 2022
Cited by 6 | Viewed by 2056
Abstract
The foremost focus of this article was to investigate the entropy generation in hydromagnetic flow of generalized Newtonian Carreau nanofluid through a converging and diverging channel. In addition, a heat transport analysis was performed for Carreau nanofluid using the Buongiorno model in the [...] Read more.
The foremost focus of this article was to investigate the entropy generation in hydromagnetic flow of generalized Newtonian Carreau nanofluid through a converging and diverging channel. In addition, a heat transport analysis was performed for Carreau nanofluid using the Buongiorno model in the presence of viscous dissipation and Joule heating. The second law of thermodynamics was employed to model the governing flow transport along with entropy generation arising within the system. Entropy optimization analysis is accentuated as its minimization is the best measure to enhance the efficiency of thermal systems. This irreversibility computation and optimization were carried out in the dimensional form to obtain a better picture of the system’s entropy generation. With the help of proper dimensionless transformations, the modeled flow equations were converted into a system of non-linear ordinary differential equations. The numerical solutions were derived using an efficient numerical method, the Runge–Kutta Fehlberg method in conjunction with the shooting technique. The computed results were presented graphically through different profiles of velocity, temperature, concentration, entropy production, and Bejan number. From the acquired results, we perceive that entropy generation is augmented with higher Brinkman and Reynolds numbers. It is significant to mention that the system’s entropy production grew near its two walls, where the irreversibility of heat transfer predominates, in contrast to the channel’s center, where the irreversibility of frictional force predominates. These results serve as a valuable guide for designing and optimizing channels with diverging–converging profiles required in several heat-transfer applications. Full article
(This article belongs to the Special Issue Heat and Mass Transfer in Micro/Nanoscale)
Show Figures

Figure 1

Back to TopTop