
Citation: Alabdulhadi, S.; Ishak, A.;

Waini, I.; Ahmed, S.E. Non-Unique

Solutions of Magnetohydrodynamic

Stagnation Flow of a Nanofluid

towards a Shrinking Sheet Using the

Solar Radiation Effect. Micromachines

2023, 14, 565. https://doi.org/

10.3390/mi14030565

Academic Editor: Aiqun Liu

Received: 10 January 2023

Revised: 24 February 2023

Accepted: 26 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Non-Unique Solutions of Magnetohydrodynamic Stagnation
Flow of a Nanofluid towards a Shrinking Sheet Using the Solar
Radiation Effect
Sumayyah Alabdulhadi 1,2, Anuar Ishak 1,* , Iskandar Waini 3 and Sameh E. Ahmed 4,5

1 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia (UKM), Bangi 43600, Malaysia

2 Department of Mathematics, Faculty of Science, Qassim University, Qassim 52571, Saudi Arabia
3 Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka,

Durian Tunggal, Melaka 76100, Malaysia
4 Department of Mathematics, Faculty of Science, King Khaild University, Abha 62529, Saudi Arabia
5 Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
* Correspondence: anuar_mi@ukm.edu.my

Abstract: This study aims to investigate the magnetohydrodynamic flow induced by a moving surface
in a nanofluid and the occurrence of suction and solar radiation effects using the Buongiorno model.
The numerical findings are obtained using MATLAB software. The effects of various governing
parameters on the rates of heat and mass transfer along with the nanoparticles concentration and
temperature profiles are elucidated graphically. Non-unique solutions are discovered for a specific
variation of the shrinking strength. The temporal stability analysis shows that only one of them
is stable as time passes. Furthermore, raising the Brownian motion parameter reduces both the
local Sherwood number and the local Nusselt number for both solutions. It is also observed that
increasing the thermophoresis parameter reduces the rate of heat transfer, whereas the opposite trend
is observed for the rate of mass transfer.

Keywords: stagnation-point flow; nanofluid; solar energy; dual solutions; stability analysis

1. Introduction

Renewable energy is becoming more popular as a way to minimize reliance on finite
fossil fuel supplies and alleviate the effects of climate change. Since it transforms solar
energy directly into heat and electricity without emitting greenhouse gases, solar energy has
been established as the greatest and most inexpensive renewable energy source [1]. Studies
during the past few years on solar energy have indicated that nanofluids play a major
role in enhancing efficiency in solar systems due to their outstanding ability to transfer
heat [2–5]. Choi and Eastman [6] pioneered the discovery of nanofluids by combining
nanometer-sized particles with conventional fluids. Nanofluids are superior coolants in
transportation, nuclear reactors, lubricants, thermal storage, domestic refrigerators, optical
devices, and cancer therapeutics since nanoparticles have more thermal conductivity
compared to base fluid [7–10]. Two models have been proposed by Tiwari and Das [11]
and Buongiorno [12] for investigating the nanofluid properties. It is notable to mention
that the model by Buongiorno is a non-homogeneous two-phase model with a slip velocity
for the base fluid as well as nanoparticles that are not equal to zero. This model has
several slip mechanisms: Brownian diffusion, gravity, thermophoresis, diffusiophoresis,
fluid drainage, the Magnus effect, and inertia. Meanwhile, the Tiwari and Das model is
a homogeneous single-phase model that investigates the influence of the solid volume
fraction of nanoparticles on nanofluid behavior. Multiple scholars have utilized these two
models to examine the characteristics of flow and heat transmission of a nanofluid under
different physical situations [13–16].
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Magnetohydrodynamic (MHD) is a field of study that investigates the magnetic field
effect on electrically conductive fluids. In recent times, the study of magnetohydrodynamic
has attracted numerous scholars given its wide implementations in engineering and in-
dustry, such as nuclear reactors, crystal growth, optical fiber filters, optical grafting, liquid
metals, petroleum industries, and metallurgical processes [17]. Lund et al. [18] investigated
the MHD mixed convection flow over a shrinking/stretching sheet in a nanofluid with
a viscous dissipation effect. The results revealed that various solutions were produced;
nevertheless, the first solution was determined to be the most stable. With the occurrence
of injection/suction parameters, Naramgari and Sulochana [19] investigated the chemical
reaction and thermal radiation effects on the constant magnetohydrodynamic flow of a
nanofluid driven by a permeable shrinking/stretching surface. They discovered that as
thermophoresis parameters and Brownian motion enhance, the nanoparticle concentration
decreases while the mass transfer rate increases. The magnetic field influence on the free
convection flow in a corrugated container loaded with nanofluids was investigated by
Ahmed and Rashed [20]. The topic of hydromagnetic flow of third-grade nanofluid caused
by a nonlinear deformable sheet under the impact of activation energy and chemical reac-
tions was considered by Hayat et al. [21]. Afterward, Ayub et al. [22] used the Lorentz force
impact to study the Carreau nanofluid flow, taking into account the influence of infinite
shear rate viscosity. Ayub et al. [23] researched the infinite shearing rate influence on MHD
Carreau nanofluid flow induced by a cylindrical channel. They discovered that increasing
the impact of an inclined magnetic dipole tends to raise the energy while decreasing the
velocity.

The stagnation flow demonstrates the behavior of fluid movement close to the stag-
nation point. Considering its wide applications in both scientific and industrial areas, the
research of stagnation point flow is of great significance. In addition, Hiemenz [24] was
the earliest to investigate the flow past a flat sheet at a two-dimensional stagnation point.
Moreover, Dzulkifli et al. [25] examine the heat transfer rate and unstable stagnation-point
flow towards an exponentially stretching surface in nanofluids, considering the velocity
slip effect. Yashkun et al. [26] investigated the features of the stagnation point flow and
heat transfer across a shrinking/stretching sheet with a suction effect. Subsequently, Ka-
mal et al. [27] investigated the mixed effects of injection/suction, chemical reaction, and
magnetic field on the flow in a nanofluid caused by a permeable shrinking/stretching
surface. Finally, the constant two-dimensional magnetohydrodynamic stagnation flow of
a nanofluid via a shrinking sheet was considered by Aladdin et al. [28]. It was inferred
during the examination that when the magnetic field was enhanced, the fluid velocity, heat,
and mass transmission rates increased. Still, the rate of heat and mass transfer is reduced
when the thermophoresis parameter is enhanced. Since then, a great number of studies
on the stagnation point flow have been completed in many respects in fluid dynamics, for
instance [29–34].

Existing literature confirmed that no investigation has been done before on the mag-
netohydrodynamic flow of a nanofluid towards a shrinking sheet in the presence of solar
radiation and suction using the Buongiorno model. To fill the above knowledge gap,
a mathematical formulation of the current study is created with reference to the study
conducted by Ghasemi and Hatami [35]. This research is different from that considered
by Ghasemi and Hatami [35], where we consider a shrinking sheet with suction effects.
The impact of the various physical parameters on the Sherwood number and the Nusselt
number, along with the nanoparticles’ concentration and temperature profiles, are depicted
in the tabular form and graph. Besides, the emergence of non-unique solutions as well as
their stability are discussed.

2. Mathematical Formulation

The two-dimensional magnetohydrodynamic flow towards a stretching/shrinking
surface with solar radiation and suction effects is considered, as illustrated in Figure 1.
It is assumed that uw(x) = ax is the surface velocity and u∞(x) = bx is the free stream



Micromachines 2023, 14, 565 3 of 15

velocity, where a and b are the positive constants. It is noted that a > 0 is for stretching and
a < 0 is for shrinking. Moreover, the ambient fluid temperature and the convective surface
temperature are signified as T∞ and Tf , respectively. A magnetic field of uniform strength
B0 is implemented parallel to the direction of the flow. Given the previous assumptions,
the governing equations can be written as [35]:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= u∞
du∞

dx
+ v f

∂2u
∂y2 −

σeB2
0

ρ f
(u− u∞) (2)

subject to the boundary conditions:

u = uW(x) = ax, v = vw(x) at y = 0 (3)

u→ u∞(x) = bx as y→ ∞
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Here u and v denote the component of velocity in the x and y axes, respectively, vw(x)
implies the mass flux velocity, ν f represents the kinematic viscosity, σe signifies the electrical
conductivity, and B0 indicates constant magnetic field in the y direction. The following
similarity transformation is employed to solve Equations (1)–(3):

η =

√
b
ν f

y, ψ =
√

ν f bx f (η), u = bx f ′(η), v = −
√

bν f f (η) (4)

By utilizing the similarity transformation (4), the continuity Equation (1) is satisfied,
while Equations (2) and (3) reduce to

f ′′′ + f f ′′ − f ′2 + 1−M
(

f ′ − 1
)
= 0 (5)

f (0) = s, f ′(0) = ε , f ′(+∞)→ 1 (6)

where M = σeB2
0/ρ f b indicates the magnetic parameter, ε = a/b symbolizes the stretch-

ing/shrinking parameter, and s = −vw/√aν f signifies the suction/injection parameter.
On the other hand, the energy and concentration equations are respectively given by

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 −

1
(ρc) f

(
∂qr

∂y

)
+ τDB

[
∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
]

(7)
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u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 (8)

where T represents the temperature, C f the allusion to the specific heat capacity, α implies
the thermal diffusivity, and C denotes the nanoparticle concentration. The thermophoretic
diffusion coefficient and the Brownian motion coefficient are signified by DT and DB,
respectively. Further, qr addresses the radiative heat flux and τ = (ρc)p/(ρc) f refers to
the proportion between the nanoparticle effective heat capacity and the heat capacity of
the fluid. By utilizing the Rosseland approximations, we get the radiative heat flux in the
following form (see Raptis [36], Brewster [37], and Sparrow and Cess [38]).

qr = −
4σ∗

3k∗
∂T4

∂y
= −16σ∗

3k∗
T3 ∂T

∂y
(9)

In Equation (9), σ∗ represents Stefan-Boltzman constant, while k∗ denotes the mean
absorption coefficient. By utilizing Equation (9), Equation (7) becomes

u
∂T
∂x

+ v
∂T
∂y

=
∂

∂y

[(
α +

16σ∗T3

3(ρc) f k∗

)
∂T
∂y

]
+ τDB

[
∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
]

(10)

The boundary constraints are expressed as

−k
∂T
∂x

= h
(

Tf − T
)

, C = CW at y = 0 T → T∞ , C → C∞ as y→ ∞ (11)

The non-dimensional temperature profile can be defined as θ(η) = (T− T∞)/(Tf − T∞)
with T = T∞(1 + (θw − 1)θ) and θw = Tf /T∞. The third term of Equation (10) can be

expressed as α ∂
∂y

[
∂T
∂y
(
1 + Rd

(
1 + (θw − 1)θ3))] where Rd = 16σ∗T3

∞/3kk∗ stands for the
radiation parameter, and there is no thermal radiation effect when Rd = 0. The last
expression is then reduced to the following form:

b(Tf − T∞)

Pr

[(
1 + Rd

(
1 + (θw − 1)θ3

))
θ′
]′

(12)

where Pr = ν f /α denotes the Prandtl number.
Equations (8) and (10) are transformed to the following form:

1
Pr

[(
1 + Rd

(
1 + (θw − 1)θ3

))
θ′
]′
+ f θ′ + Nbθ′ϕ′ + Ntθ

′2 = 0 (13)

ϕ′′ + Le f ϕ′ +
Nt

Nb
θ′′ = 0 (14)

subject to the transformed boundary conditions:

θ′(0) = −(Bi)[1− θ(0)] , ϕ(0) = 1, θ(+∞)→ 0 , ϕ(+∞)→ 0 (15)

Here ϕ(η) = c− c∞/cw − c∞ and Bi iis the Biot number, Nt is the thermophoresis pa-
rameter; and Nb is the Brownian motion parameter, which are expressed as
Bi = h/k

√
ν f /α, Nt = τDT(Tw − T∞)/T∞ν f and Nb = τDB(Cw − C∞)/ν f , respectively.

The surface heat and mass fluxes are expressed as:

qw = −k
(

∂T
∂y

)
y=0

+ (qr)w = −k
(

Tf − T∞

)√ b
ν f

[
1 + Rdθ3

w

]
θ′(0)

jw = −DB

(
∂C
∂y

)
y=0

= −DB(CW − C∞)

√
b
ν f

ϕ′(0) (16)
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By using (16), the local Nusselt number Nux = xqw/k(Tf − T∞) and the local Sher-
wood number Shx = xjw/DB(CW − C∞) become

Nux√
Rex

= −[1 + Rdθ3
w]θ
′(0),

Shx√
Rex

= −ϕ′(0) (17)

where Rex = b/ν f x2 is the local Reynolds number.

3. Stability Analysis

The numerical results demonstrate that there are two solutions for specific parameter
values. As a result, it is necessary to look into the temporal stability of these solutions,
to see which one is stable as time evolves. To perform a stability analysis of the dual
solutions, as per Weidman et al. [39], this issue must be regarded in an unsteady form by
introducing the new dimensionless time parameter τ. The unsteady case for the governing
Equations (2), (8), and (10) is:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= u∞
du∞

dx
+ v f

∂2u
∂y2 −

σeB2
0

ρ f
(u− u∞) (18)

∂u
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
∂

∂y

[(
α +

16σ∗T3

3(ρC) f k∗

)
∂T
∂y

]
+ τDB

[
∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
]

(19)

∂u
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 (20)

where t refers to the time, the new similarity transformation is expressed as follows:

η =

√
b
ν f

y, ψ =
√

ν f bx f (η, τ), θ(η, τ) =
T − T∞

Tf − T∞
, ϕ(η, τ) =

c− c∞

cw − c∞
, τ = bt (21)

Applying Equation (21) into Equations (18)–(20), the following equations are obtained:

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ 1−M

(
∂ f
∂η
− 1
)
− ∂2 f

∂η∂τ
= 0 (22)

1
Pr

[(
1 + Rd

(
1 + (θw − 1)θ3

)) ∂θ

∂η

]′
+ f

∂θ

∂η
+ Nb

∂θ

∂η

∂ϕ

∂η
+ Nt

(
∂θ

∂η

)2
− ∂θ

∂τ
= 0 (23)

∂2 ϕ

∂η2 + Le f
∂ϕ

∂η
+

Nt

Nb

∂2θ

∂η2 −
∂ϕ

∂τ
= 0 (24)

subjected to

f (0, τ) = 0,
∂ f
∂η

(0, τ) = ε,
∂θ

∂η
(0, τ) = −(Bi)[1− θ(0)], ϕ(0, τ) = 1

∂ f
∂η

(η, τ) = 1, θ(η, τ) = 0, ϕ(η, τ) = 0 , as η → ∞ = 0 (25)

The following perturbations are introduced to investigate the flow stability in the
long run, with f = f0(η), θ = θ0(η), and ϕ = ϕ0(η) which satisfy Equations (22)–(24) (see
Weidman et al. [39]),

f (η.τ) = f0(η) + e−γτ F(η)

θ(η.τ) = θ0(η) + e−γτG(η)i (26)

ϕ(η.τ) = ϕ0(η) + e−γτ H(η)
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where γ is an unknown eigenvalue. The linearized problems are obtained by incorporating
Equation (26) into Equations (22)–(25):

F′′′ + f0F′′ −
(
2 f ′0 + M− γ

)
F′ + f ′′0 F = 0 (27)

1
Pr

[(
1 + Rd

(
1 + (θw − 1)θ0

3
))

G′
]′
+ ( f0 + Nbϕ′0 + 2Ntθ′0)G

′ + θ′0F

+Nbθ′0H′ + γG = 0
(28)

H′′ + Le
(

f0H′ + ϕ′0F
)
+

Nt
Nb

G′′ + γH = 0 (29)

and are subjected to the boundary conditions

F(0) = 0, F′(0) = 0, G′(0),= Bi G(0), H(0) = 0

F′(η)→ 0 , G(η)→ 0 , H(η)→ 0 as η → ∞ (30)

Here, the least eigenvalue γ determines the stability of the steady flow solutions
f0(η), θ0(η) and ϕ0(η). Based on the study by Harris et al. [40], relaxation of the boundary
condition on F(η), G(η) or H(η) is required to obtain the possible eigenvalues. Thus, the
condition F′0(η)→ 0 as η → ∞ is relaxed, where the system (26)–(29) is solved along with
the new boundary condition F′′0 = 1.

4. Findings and Discussion

MATLAB software (MATLAB R2022a, MathWorks, Inc., Natick, MA, USA) is em-
ployed to obtain the numerical solutions to the ordinary differential equations (ODEs)
(5), (13), and (14) aligned with the boundary conditions (6) and (15). The impacts of the
governing parameters on the local Nusselt number NuxRe−1/2

x (refers to the heat transfer
rate) and local Sherwood number ShxRe−1/2

x (refers to the mass transfer rate), along with
the temperature profile θ(η), and concentration profile ϕ(η) are addressed graphically in
Figures 2–9. It is prominent to note that the dual solutions are discovered to exist at a speci-
fied level of the parameters towards the shrinking region (ε > εc) and a unique solution
is obtained when ε = εc. However, no solutions have been discovered for ε < εc, where
εc signifies the critical value of ε for which solutions exist. Moreover, a comparison of the
heat transfer rate as well as the mass transfer rate is done with those recorded by Ghasemi
and Hatami [35] and Khan and Pop [41], as shown in Tables 1 and 2. The comparison
shows excellent agreement. As a result, the accuracy of the findings reported in this study
is assured.

Table 1. Comparison data for the values of NuxRe−1/2
x for various values of Nb when Pr = Le = 10,

Nt = 0.1, and Rd = 0.

Nb Present Results Ghasemi and Hatami [35] Khan and Pop [41]

0.1 0.952377 0.9528 0.9524
0.2 0.505581 0.5057 0.5056
0.3 0.252156 0.2527 0.2522
0.4 0.119406 0.1196 0.1194
0.5 0.054253 0.0546 0.0543
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Table 2. Comparison data for the values of ShxRe−1/2
x for various values of Nt when Pr = Le = 10,

Nt = 0.1, and Rd = 0.

Nt Present Results Ghasemi and Hatami [35] Khan and Pop [41]

0.1 2.129393 2.1295 2.1294
0.2 2.274020 2.2744 2.2740
0.3 2.528636 2.5288 2.5286
0.4 2.795168 2.7955 2.7952
0.5 3.035140 3.0353 3.0351
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Figure 9. The concentration profile ϕ(η) for diverse values of Nt.

Figures 2 and 3 illustrate the Brownian motion parameter Nb impacts on the local
Sherwood number as well as local Nusselt number with certain values of ε when Pr = 6.2,
Nt = 0.1, Rd = 0.1, θw = 0.3, Le = 3, Bi = 1, M = 0.1, and s = 0.1, respectively. Clearly,
for both branches of solutions, increasing of Nb decreases the Sherwood number as well as
the Nusselt number. This is caused as the Brownian motion parameter Nb is enhanced; the
number of collisions between base fluid particles and nanoparticles increases, resulting in
an increase of the thermal as well as the concentration boundary layer thickness. The local
Sherwood and Nusselt numbers reduce as a result of this behavior. In Figures 4 and 5, the
graphical findings are displayed for the Nusselt number and Sherwood number at selected
values of the thermophoresis parameter Nt against ε when Pr = 6.2, Nb = 0.3, Rd = 0.1,
θw = 0.3, Le = 3, Bi = 1, M = 0.1, and s = 0.1, respectively. In Figure 4, the reducing
trends of the local Nusselt number in both solutions as the thermophoresis parameter
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Nt rises. This is due to the fact that the thermophoresis effect assists nanoparticles in
transitioning from hot to cold regions, leading to a thicker thermal boundary layer and
therefore reducing the heat transfer rate at the surface. Contrary to this, displays reverse
behavior when the increment of the thermophoresis parameter Nt augments the local
Sherwood number. The influence of thermophoresis will help the nanoparticles with high
thermal conductivity penetrate further into the fluid, resulting in a thinner concentration
boundary layer. Hence, the concentration gradient increases, which enhances the rate of
mass transfer at the surface.

Moreover, the behavior of the temperature profile θ(η) as well as the concentration
profile ϕ(η) with a variety of Brownian motion parameter Nb, where Pr = 6.2, Nt = 0.1,
Rd = 0.1, θw = 0.3, Le = 3, Bi = 1, M = 0.1, s = 0.1, and ε = −1.2 are demonstrated
in Figures 6 and 7. The augmentation in the values of θ(η) and ϕ(η) for both branches
of solutions are observed with an upsurge in Nb values. This result is expected since the
Brownian motion parameter causes the nanoparticles to agitate from a high concentration
to a low concentration, driving more nanoparticles away from the shrinking surface. The
concentration and thermal boundary layers will thicken as a result of this. The concentration
and temperature gradients decrease as the thickness of the thermal and concentration
boundary layers increase. As a result, the local Sherwood and Nusselt numbers declined.
The temperature profile θ(η) as well as the concentration profile ϕ(η) for chosen values of
the thermophoresis parameter Nt where Pr = 6.2, Nb = 0.3, Rd = 0.1, θw = 0.3, Le = 3,
Bi = 1, M = 0.1, s = 0.1 and ε = −1.2 are depicted in Figures 8 and 9, respectively. In
both solutions, raising the thermophoresis parameter Nt boosts the temperature θ(η) while
decreasing the concentration ϕ(η). Additionally, the thermal boundary layer thickness rises
as the thermophoresis parameter Nt rises, but the concentration boundary layer thickness
drops. This culminates in a reduction in the temperature gradient and an elevation in the
concentration gradient, resulting in a reduction in the heat transfer rate and an elevation of
the mass transfer rate, as observed in Figures 4 and 5. Note that the thermophoresis force
acts opposite the gradient of the temperature in nanofluids as well as helping nanoparticles
migrate from the hot surface to the cold ambient fluid.

Lastly, by utilizing the bvp4c function in Matlab to solve Equations (27)–(30), an
analysis of stability is executed. In Figure 10, the smallest eigenvalues γ for dual solutions
when Pr = 6.2, Nb = 0.3, Nt = 0.1, Rd = 0.1, θw = 0.3, Le = 3, Bi = 1, M = 0.1,
and s = 0.1 are presented for several values of ε. The eigenvalues play a crucial role
in determining the dual solutions stability. Provided that the smallest eigenvalue γ is
positive, this signifies that the solution appears stable and indicates that the flow has just
slight disturbances that have no effect on the flow characteristics or physical appearance.
Otherwise, a negative value for the smallest eigenvalues indicates that the solution is
unstable, implying that the disturbance impacting the flow system is growing. Moreover,
we may deduce from Figure 10 that the first solution is stable, whereas the other solution is
not, as time evolves.
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5. Conclusions

The mathematical model of the MHD flow of a nanofluid over a shrinking sheet
under influenced by suction and solar radiation has been investigated. By employing
the proper similarity variables, the governing PDEs are transformed to ODEs, which are
subsequently numerically solved by employing the bvp4c solver in Matlab software. The
primary outcomes obtained are summarized below:

• The outcomes deduce that the existence of dual (non-unique) solutions is provable for
a given shrinking strength range (ε < −1).

• According to the temporal stability study, only the first solution is stable and, hence,
physically significant.

• The Sherwood number as well as the Nusselt number decreases when the Brownian
motion parameter upsurges.

• The rate of heat transfer reduces when the thermophoresis parameter Nt is elevated;
however, the rate of mass transfer is found to increase. The concentration augments
by incrementing the Brownian motion parameter Nb but reduces by elevating the
thermophoresis parameter Nt.

• The influence of the Brownian motion parameter Nb and the thermophoresis parame-
ter Nt on the temperature profile reveals that the thermal boundary layer thicknesses
as well as the temperature increase for both solutions.
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Nomenclature

a, b constants
Bi Biot number
B0 uniform magnetic field (T)
C nanoparticles concentration (kgm−3)

C f skin friction coefficient
Cp specific heat capacity (Jkg−1K−1)

Cw wall nanoparticles concentration (kgm−3)

C∞ ambient nanoparticle concentration (kgm−3)

DB Brownian diffusion coefficient (m2s−1)

DT thermophoretic diffusion coefficient (kgm−3)

f dimensionless velocity
h convective heat transfer coefficient
jw surface mass flux
k thermal conductivity of the fluid (Wm−1K−1)

k∗ mean absorption coefficient
Le Lewis number
M magnetic parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Nux local Nusselt number
Pr Prandtl number
qr radiative heat flux (Wm−2)

qw surface heat flux (Wm−2)

Rd thermal radiation
Rex local Reynolds number
Shx local Sherwood number
s constant mass flux
T fluid temperature (K)

Tf convective surface temperature (K)

T∞ ambient temperature (K)

t time (s)
uw velocity of the stretching/shrinking sheet (ms−1)

u∞ velocity of the free stream (ms−1)

u, v velocity component in the x and y directions (ms−1)

vw velocity of the wall mass transfer (ms−1)

x, y Cartesian coordinates (m)

Greek symbols
α thermal diffusivity of the nanofluid (m2s−1)

ε stretching/shrinking parameter
η similarity variable
γ eigenvalue
µ dynamic viscosity (kgm−1s−1)

ν kinematic viscosity (m2s−1)

ϕ dimensionless nanoparticle volume fraction
ψ stream function (m2s−1)

ρ fluid density (kgm−3)

(ρc) f heat capacity of the fluid (JK−1m−3)

(ρc)p heat capacity of the nanoparticles (JK−1m−3)

σe electrical conductivity
σ∗ Stefan-Boltzman constant
τ dimensionless time variable
θ dimensionless temperature
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Subscripts
w condition at the wall
∞ ambient condition
Superscript
′ differentiation with respect to η
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