Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = Bilayer-Couple

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2122 KiB  
Article
Membrane Stress Enhances Specific PQS–Lipid Interactions That Drive Bacterial Outer Membrane Vesicle Biogenesis
by Citrupa Gopal, Hasan Al Tarify, Emad Pirhadi, Eliza G. O’Brien, Anuradha Dagar, Xin Yong and Jeffrey W. Schertzer
Membranes 2025, 15(8), 247; https://doi.org/10.3390/membranes15080247 - 13 Aug 2025
Viewed by 320
Abstract
Gram-negative bacteria use outer membrane vesicles (OMVs) for toxin trafficking, immune interference, horizontal gene transfer, antibiotic protection, and cell–cell communication. Despite their direct contribution to many pathogenesis-related behaviors, our understanding of how OMVs are produced remains surprisingly incomplete. The Bilayer Couple model describes [...] Read more.
Gram-negative bacteria use outer membrane vesicles (OMVs) for toxin trafficking, immune interference, horizontal gene transfer, antibiotic protection, and cell–cell communication. Despite their direct contribution to many pathogenesis-related behaviors, our understanding of how OMVs are produced remains surprisingly incomplete. The Bilayer Couple model describes the induction of OMV formation resulting from the preferential accumulation of small molecules in the outer leaflet of the membrane, resulting in leaflet expansion and membrane bending. Previous work has highlighted the importance of the structure of the Pseudomonas Quinolone Signal (PQS) in driving OMV formation, but the nature of interactions with membrane lipids remains unclear. Our recent in silico analysis suggested that a new interaction, between the PQS ring nitrogen and Lipid A, is critical for PQS function. Here, we used chemical analogs to interrogate the importance of specific PQS functional groups in its ability to stimulate OMV biogenesis. We demonstrated that OMV induction requires the presence of all PQS functional groups together. Further modeling uncovered that PQS prefers interaction with the outer leaflet of the membrane, consistent with its unique ability to drive OMV biogenesis. This was explained by much greater hydrogen bond formation between PQS and Lipid A. Interestingly, the preference of PQS for the outer leaflet coincided with that leaflet becoming crowded. Thus, the initial insertion of PQS into the outer leaflet would be expected to encourage local accumulation of more PQS to drive the induction of membrane curvature and subsequent OMV formation. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 560
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

16 pages, 3610 KiB  
Article
Multiple-Q States in Bilayer Triangular-Lattice Systems with Bond-Dependent Anisotropic Interaction
by Satoru Hayami
Crystals 2025, 15(7), 663; https://doi.org/10.3390/cryst15070663 - 20 Jul 2025
Viewed by 320
Abstract
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram [...] Read more.
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram based on an effective spin model that also includes frustrated isotropic exchange interactions. Employing simulated annealing, we reveal the stabilization of three distinct double-Q phases in the absence of an external magnetic field, each characterized by noncoplanar spin textures with spatially modulated local scalar spin chirality. Under applied magnetic fields, we identify field-induced phase transitions among single-Q, double-Q, and triple-Q states, some of which exhibit a finite net scalar spin chirality indicative of topologically nontrivial order. These findings highlight centrosymmetric systems with sublattice-dependent Dzyaloshinskii–Moriya interactions as promising platforms for realizing a variety of multiple-Q spin textures. Full article
Show Figures

Figure 1

14 pages, 8428 KiB  
Article
Spin-Orbit-Coupling-Governed Optical Absorption in Bilayer MoS2 via Strain, Twist, and Electric Field Engineering
by Lianmeng Yu, Yingliang Chen, Weibin Zhang, Peizhi Yang and Xiaobo Feng
Nanomaterials 2025, 15(14), 1100; https://doi.org/10.3390/nano15141100 - 16 Jul 2025
Viewed by 360
Abstract
This paper investigates strain-, twist-, and electric-field-tuned optical absorption in bilayer MoS2, emphasizing spin-orbit coupling (SOC). A continuum model reveals competing mechanisms: geometric perturbations (strain/twist) and Stark effects govern one-/two-photon absorption, with critical thresholds (~9% strain, ~2.13° twist) switching spin-independent to [...] Read more.
This paper investigates strain-, twist-, and electric-field-tuned optical absorption in bilayer MoS2, emphasizing spin-orbit coupling (SOC). A continuum model reveals competing mechanisms: geometric perturbations (strain/twist) and Stark effects govern one-/two-photon absorption, with critical thresholds (~9% strain, ~2.13° twist) switching spin-independent to spin-polarized regimes. Strain gradients and twist enhance nonlinear responses through symmetry-breaking effects while electric fields dynamically modulate absorption via band alignment tuning. By linking parameter configurations to absorption characteristics, this work provides a framework for designing tunable spin-resolved optoelectronic devices and advancing light–matter control in 2D materials. Full article
Show Figures

Figure 1

12 pages, 3782 KiB  
Article
Structural, Magnetic and THz Emission Properties of Ultrathin Fe/L10-FePt/Pt Heterostructures
by Claudiu Locovei, Garik Torosyan, Evangelos Th. Papaioannou, Alina D. Crisan, Rene Beigang and Ovidiu Crisan
Nanomaterials 2025, 15(14), 1099; https://doi.org/10.3390/nano15141099 - 16 Jul 2025
Viewed by 356
Abstract
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In [...] Read more.
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In this work, we probe the mechanism of the ISHE by inserting a second ferromagnetic layer in the form of an alloy between the FM/NM system. In particular, by utilizing the co-sputtering technique, we fabricate Fe/L10-FePt/Pt ultra-thin heterostructures. We successfully grow the tetragonal phase of FePt (L10-phase) as revealed by X-ray diffraction and reflection techniques. We show the strong magnetic coupling between Fe and L10-FePt using magneto-optical and Superconducting Quantum Interference Device (SQUID) magnetometry. Subsequently, by utilizing THz time domain spectroscopy technique, we record the THz emission and thus we the reveal the efficiency of spin-to-charge conversion in Fe/L10-FePt/Pt. We establish that Fe/L10-FePt/Pt configuration is significantly superior to the Fe/Pt bilayer structure, regarding THz emission amplitude. The unique trilayer structure opens new perspectives in terms of material choices for the future spintronic THz sources. Full article
Show Figures

Figure 1

11 pages, 1525 KiB  
Article
Photodetection Enhancement via Dipole–Dipole Coupling in BA2MAPb2I7/PEA2MA2Pb3I10 Perovskite Heterostructures
by Bin Han, Bingtao Lian, Qi Qiu, Xingyu Liu, Yanren Tang, Mengke Lin, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(7), 240; https://doi.org/10.3390/inorganics13070240 - 11 Jul 2025
Viewed by 483
Abstract
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport [...] Read more.
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport (CT). To tackle this issue, we propose a BA2MAPb2I7/PEA2MA2Pb3I10 bilayer heterostructure, where efficient interlayer energy transfer (ET) facilitates compensation for the restricted charge transport across the organic spacer. Our findings reveal that under 532 nm light illumination, the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure photodetector exhibits a significant photocurrent enhancement compared with that of the pure PEA2MA2Pb3I10 device, mainly due to the contribution of the ET process. In contrast, under 600 nm light illumination, where ET is absent, the enhancement is rather limited, emphasizing the critical role of ET in boosting device performance. The overlap of the PL emission peak of BA2MAPb2I7 with the absorption spectra of PEA2MA2Pb3I10, alongside the PL quenching of BA2MAPb2I7 and the enhanced emission of PEA2MA2Pb3I10 provide confirmation of the existence of ET in the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure. Furthermore, the PL enhancement factor followed a 1/d2 relationship with the thickness of the hBN layer, indicating that ET originates from 2D-to-2D dipole–dipole coupling. This study not only highlights the potential of leveraging ET mechanisms to overcome the limitations of interlayer CT, but also contributes to the fundamental understanding required for engineering advanced 2D HOIP optoelectronic systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

16 pages, 2296 KiB  
Article
Magnetoelectric Effects in Bilayers of PZT and Co and Ti Substituted M-Type Hexagonal Ferrites
by Sujoy Saha, Sabita Acharya, Sidharth Menon, Rao Bidthanapally, Michael R. Page, Menka Jain and Gopalan Srinivasan
J. Compos. Sci. 2025, 9(7), 336; https://doi.org/10.3390/jcs9070336 - 27 Jun 2025
Viewed by 346
Abstract
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization [...] Read more.
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization in an applied magnetic field. The focus here is the nature of magnetoelectric (ME) interactions in the bilayers of ferroelectric PZT and Co and Ti substituted BaM and SrM. The ME coupling in the ferrite-PZT bilayers arise due to the transfer of magnetostriction-induced mechanical deformation in a magnetic field in the ferrite resulting in an induced electric field in PZT. Polycrystalline Co and Ti doped ferrites, Ba (CoTi)x Fe12−2xO19, (BCTx), and Sr (CoTi)x Fe12−2xO19 (SCTx) (x = 0–4) were found to be free of impurity phases for all x-values except for SCTx, which had a small amount of α-Fe2O3 in the X-ray diffraction patterns for x ≤ 2.0. The magnetostriction for the ferrites increased with applied filed H to a maximum value of around 2 to 6 ppm for H~5 kOe. BCTx/SCTx samples showed ferromagnetic resonance (FMR) for x = 1.5–2.0, and the estimated anisotropy field was on the order of 5 kOe. The magnetization increased with the amount of Co and Ti doping, and it decreased rapidly with x for x > 1.0. Measurements of ME coupling strengths were conducted on the bilayers of BCTx/SCTx platelets bonded to PZT. The bilayer was subjected to an AC and DC magnetic field H, and the magnetoelectric voltage coefficient (MEVC) was measured as a function of H and frequency of the AC field. For BCTx-PZT, the maximum value of MEVC at low frequency was ~5 mV/cm Oe, and a 40-fold increase at electromechanical resonance (EMR). SCTx–PZT composites also showed a similar behavior with the highest MEVC value of ~14 mV/cm Oe at low frequencies and ~200 mV/cm Oe at EMR. All the bilayers showed ME coupling for zero magnetic bias due to the magnetocrystalline anisotropy field in the ferrite that provided a built-in bias field. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

12 pages, 3592 KiB  
Article
Membrane-Embedded Anti-Cancer Peptide Causes a Minimal Structural Perturbation That Is Sufficient to Enhance Phospholipid Flip-Flop and Charge Permeation Rates
by Alfredo E. Cardenas and Ron Elber
Life 2025, 15(7), 1007; https://doi.org/10.3390/life15071007 - 25 Jun 2025
Viewed by 445
Abstract
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents [...] Read more.
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents the permeation of hydrophilic, well-solvated molecules across the lipid hydrophobic barrier. The barrier is not absolute, and several approaches are available for efficient translocation. Channels and pumps enable selective and efficient transport across membranes. Another transport mechanism is passive permeation, in which permeants, without assistance, directly transport across membranes. Passive transport is coupled to transient defects in the membrane structure that make crossing the hydrophobic bilayer easier—for example, displacements of head groups from aqueous solution–membrane interface into the membrane core. The defects, in turn, are rare unless assisted by passively permeating molecules such as cell-penetrating peptides that distort the membrane structure. One possible defect is a phospholipid molecule with a head pointing to the hydrophobic core. This membrane distortion allows head group flipping from one layer to the other. We show computationally, using atomically detailed simulations and the Milestoning theory, that the presence of a cell-penetrating peptide in a membrane greatly increases phospholipid flip-flop rate and hence defect formation and the permeability of membranes. Full article
(This article belongs to the Special Issue Applications of Molecular Dynamics to Biological Systems)
Show Figures

Figure 1

21 pages, 4620 KiB  
Article
PVP-Engineered WO3/TiO2 Heterostructures for High-Performance Electrochromic Applications with Enhanced Optical Modulation and Stability
by Pritam J. Morankar, Rutuja U. Amate, Mrunal K. Bhosale and Chan-Wook Jeon
Polymers 2025, 17(12), 1683; https://doi.org/10.3390/polym17121683 - 17 Jun 2025
Viewed by 447
Abstract
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic [...] Read more.
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic two-step strategy involving the electrochemical deposition of amorphous WO3 and the controlled hydrothermal crystallization of TiO2. Structural and morphological analyses confirm the formation of phase-pure heterostructures with a tunable TiO2 crystallinity governed by reaction time. The optimized WTi-5 configuration exhibits a hierarchically organized nanostructure that couples the fast ion intercalation dynamics of amorphous WO3 with the interfacial stability and electrochemical modulation capability of crystalline TiO2. Electrochromic characterization reveals pronounced redox activity, a high charge reversibility (98.48%), and superior coloration efficiency (128.93 cm2/C). Optical analysis confirms an exceptional transmittance modulation (ΔT = 82.16% at 600 nm) and rapid switching kinetics (coloration/bleaching times of 15.4 s and 6.2 s, respectively). A large-area EC device constructed with the WTi-5 electrode delivers durable performance, with only a 3.13% degradation over extended cycling. This study establishes interface-engineered WO3/TiO2 bilayers as a scalable platform for next-generation smart windows, highlighting the pivotal role of a heterostructure design in uniting a high contrast, speed, and longevity within a single EC architecture. Full article
(This article belongs to the Special Issue Smart Polymeric Materials for Electrochromic Energy Storage Systems)
Show Figures

Graphical abstract

9 pages, 1798 KiB  
Article
Magnetoplasmonic Resonators Designed with Hexagonally Arrayed Au/BIG Bilayer Nanodisks on Au Thin Film Layers for Enhanced MOKE and Refractive Index Sensing
by Ziqi Wang, Xiaojian Cui and Yujun Song
Coatings 2025, 15(5), 601; https://doi.org/10.3390/coatings15050601 - 18 May 2025
Viewed by 432
Abstract
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited [...] Read more.
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited by the hexagonal grating and the waveguide modes induced by Au-BIG-Au, which can significantly enhance the transverse magneto-optical Kerr effect. Interestingly, a new type of circular oscillating can be induced in the optical-transparent BIG layers as the thickness of BIG layers is between 2 nm and 22 nm. This circular oscillating exhibits a distinct thickness-dependent feature, which can be attributed to the near field interference of the excited localized plasmon resonance between the two interfaces formed by the middle BIG nanodiscs in the top Au nanodisks and the bottom Au thin film layers according to the simulation. These unique magnetoplasmonic features endow this kind of magnetoplasmonic resonators with a greatly enhanced refractive index sensing property, with a calculated figure of merit (FOM) value of up to 7527 RIU−1. Full article
Show Figures

Figure 1

29 pages, 5480 KiB  
Article
Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System
by Sergey Pirutin, Dmitrii Chaikovskii, Mikhail Shank, Mikhail Chivarzin, Shunchao Jia, Alexander Yusipovich, Oleg Suvorov, Yuehong Zhao, Dmitry Bezryadnov and Andrey Rubin
Pharmaceutics 2025, 17(4), 398; https://doi.org/10.3390/pharmaceutics17040398 - 21 Mar 2025
Viewed by 651
Abstract
Background/Objectives: The growing diversity of novel nanoparticle synthesis methods, particularly for silver nanoparticles (AgNP), coupled with their significant biological activity and wide range of applications across various medical fields, necessitates a comprehensive investigation into the consequences of particle-induced cellular damage. This study [...] Read more.
Background/Objectives: The growing diversity of novel nanoparticle synthesis methods, particularly for silver nanoparticles (AgNP), coupled with their significant biological activity and wide range of applications across various medical fields, necessitates a comprehensive investigation into the consequences of particle-induced cellular damage. This study aimed to investigate AgNP-induced damage to macrophage plasma membranes, focusing on concentration, temperature, incubation time, and the role of pro- and antioxidant factors, using model systems based on mouse peritoneal macrophages. Methods: Mouse peritoneal macrophages were incubated with AgNP (0.1–10 μg/mL) at temperatures ranging from 4 °C to 37 °C. Membrane integrity was assessed via microfluorimetric analysis. The influence of prooxidant (UV-B) and antioxidant (serotonin) factors was also examined. A mathematical model was developed to describe the interaction between AgNP and macrophages. Results: The diameter of our synthesized silver nanoparticles, assessed via dynamic light scattering (DLS), ranged from 5 to 170 nm, with a predominant size distribution peak at 70 nm. AgNP caused dose- and temperature-dependent membrane damage, which was more pronounced at 4 °C and 37 °C than at 22 °C and increased with incubation time. UV-B enhanced membrane damage, while serotonin mitigated it. The mathematical model correlated strongly with the experimental data, emphasizing the role of ROS in membrane disruption. AgNP also dose-dependently increased ROS generation by macrophages. Conclusions: AgNP, in doses of 0.1–10 μg/mL, induces dose-dependent membrane damage in macrophages. The developed model is a useful tool for predicting nanoparticle toxicity. Together with the experimental findings, it highlights the critical role of ROS, lipid peroxidation, the lipid bilayer state, and antioxidant defenses in AgNP-induced membrane damage. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

13 pages, 5601 KiB  
Review
Ordering Enhancement of Ion Bombardment-Induced Nanoripple Patterns: A Review
by Ying Liu, Hengbo Li, Chongyu Wang, Gaoyuan Yang, Frank Frost and Yilin Hong
Nanomaterials 2025, 15(6), 438; https://doi.org/10.3390/nano15060438 - 13 Mar 2025
Viewed by 594
Abstract
Low-energy ion bombardment (IB) has emerged as a promising, maskless nanofabrication tool for quasi-periodic nanoripples, marked by a high throughput and low cost. As templates, these IB-induced, self-organized surface nanoripples have shown potential for applications in diverse fields. However, the challenge of tailoring [...] Read more.
Low-energy ion bombardment (IB) has emerged as a promising, maskless nanofabrication tool for quasi-periodic nanoripples, marked by a high throughput and low cost. As templates, these IB-induced, self-organized surface nanoripples have shown potential for applications in diverse fields. However, the challenge of tailoring the ordering of these ripple patterns is preventing the widespread application of IB. Moreover, the enhancement of the ordering of these self-organized nanostructures involves the fundamental academic questions of nanoripple coupling (or superimposition) and guided self-organization. This review first focuses on the experimental progress made in developing representative strategies for the ordering enhancement of IB-induced nanoripples in terms of ion beams and targets. Second, we present our understanding of these developments from the perspectives of ripple superposition and guided self-organization. In particular, the basic conditions for ripple superposition under the non-conservation of mass are deduced based on the common features of the results from rocking bombardments of a single material and the bombardment of bilayer systems, providing insight into the mechanisms at play and deepening our understanding of these experimental observations. Finally, areas for future research are given, with the aim of improving ripple ordering from the viewpoints of ripple superimposition and guided self-organization. All this may re-stimulate interest in this field and will be of importance in advancing the academic research and practical applications of IB-induced nanopatterns. Full article
(This article belongs to the Special Issue Nanomanufacturing Using Ion Beam Technology)
Show Figures

Graphical abstract

26 pages, 12100 KiB  
Article
Molecular Profiling of A549 Cell-Derived Exosomes: Proteomic, miRNA, and Interactome Analysis for Identifying Potential Key Regulators in Lung Cancer
by Alexandros Giannopoulos-Dimitriou, Aikaterini Saiti, Andigoni Malousi, Athanasios K. Anagnostopoulos, Giannis Vatsellas, Passant M. Al-Maghrabi, Anette Müllertz, Dimitrios G. Fatouros and Ioannis S. Vizirianakis
Cancers 2024, 16(24), 4123; https://doi.org/10.3390/cancers16244123 - 10 Dec 2024
Cited by 1 | Viewed by 2445
Abstract
Background/Objectives: Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This [...] Read more.
Background/Objectives: Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This study aims to decipher the molecular profile and interactome of lung adenocarcinoma A549 cell-derived exosomes using multi-omics and bioinformatics approaches. Methods: We performed comprehensive morphological and physicochemical characterization of exosomes isolated from cell culture supernatant of A549 cells in vitro, using DLS, cryo-TEM, Western blot, and flow cytometry. Proteomic and miRNA high-throughput profiling, coupled with bioinformatics network analysis, were applied to elucidate the exosome molecular cargo. A comparative miRNA analysis was also conducted with exosomes derived from normal lung fibroblast MRC-5 cells. Results: Exosomes exhibited an average size of ~40 nm and disk-shaped lipid bilayer structures, with tetraspanins CD9 and CD63 validated as exosomal markers. Proteomic analysis identified 68 proteins, primarily linked to the extracellular matrix organization and metabolic processes. miRNA sequencing revealed 72 miRNAs, notably hsa-miR-619-5p, hsa-miR-122-5p, hsa-miR-9901, hsa-miR-7704, and hsa-miR-151a-3p, which are involved in regulating metabolic processes, gene expression, and tumorigenic pathways. Th integration of proteomic and miRNA data through a proteogenomics approach identified dually affected genes including ERBB2, CD44, and APOE, impacted by both exosomal miRNA targeting and protein interactions through synergistic or antagonistic interactions. Differential analysis revealed a distinct miRNA profile in A549 exosomes, associated with cancer-related biological processes, compared to MRC-5 exosomes; notably, hsa-miR-619-5p emerged as a promising candidate for future clinical biomarker studies. The network analysis also revealed genes targeted by multiple upregulated tumor-associated miRNAs in potential exosome-recipient cells. Conclusions: This integrative study provides insights into the molecular interactome of lung adenocarcinoma A549 cell-derived exosomes, providing a foundation for future research on exosomal cargo and its role in tumor cell communication, growth, and progression. Full article
(This article belongs to the Special Issue Lung Cancer Proteogenomics: New Era, New Insights)
Show Figures

Figure 1

12 pages, 929 KiB  
Article
Spontaneous Magnetization Induced by Antiferromagnetic Toroidal Ordering
by Satoru Hayami
Nanomaterials 2024, 14(21), 1729; https://doi.org/10.3390/nano14211729 - 29 Oct 2024
Cited by 1 | Viewed by 1517
Abstract
The magnetic toroidal dipole moment, which is induced by a vortex-type spin texture, manifests itself in parity-breaking physical phenomena, such as a linear magnetoelectric effect and nonreciprocal transport. We elucidate that a staggered alignment of the magnetic toroidal dipole can give rise to [...] Read more.
The magnetic toroidal dipole moment, which is induced by a vortex-type spin texture, manifests itself in parity-breaking physical phenomena, such as a linear magnetoelectric effect and nonreciprocal transport. We elucidate that a staggered alignment of the magnetic toroidal dipole can give rise to spontaneous magnetization even under antiferromagnetic structures. We demonstrate the emergence of uniform magnetization by considering the collinear antiferromagnetic structure with the staggered magnetic toroidal dipole moment on a bilayer zigzag chain. Based on the model calculations, we show that the interplay between the collinear antiferromagnetic mean field and relativistic spin-orbit coupling plays an important role in inducing the magnetization. Full article
(This article belongs to the Special Issue Nanoscale Spintronics and Magnetism: From Fundamentals to Devices)
Show Figures

Figure 1

17 pages, 3637 KiB  
Article
Mobile and Immobile Obstacles in Supported Lipid Bilayer Systems and Their Effect on Lipid Mobility
by Luisa Coen, Daniel Alexander Kuckla, Andreas Neusch and Cornelia Monzel
Colloids Interfaces 2024, 8(5), 54; https://doi.org/10.3390/colloids8050054 - 24 Sep 2024
Cited by 2 | Viewed by 2589
Abstract
Diffusion and immobilization of molecules in biomembranes are essential for life. Understanding it is crucial for biomimetic approaches where well-defined substrates are created for live cell assays or biomaterial development. Here, we present biomimetic model systems consisting of a supported lipid bilayer and [...] Read more.
Diffusion and immobilization of molecules in biomembranes are essential for life. Understanding it is crucial for biomimetic approaches where well-defined substrates are created for live cell assays or biomaterial development. Here, we present biomimetic model systems consisting of a supported lipid bilayer and membrane coupled proteins to study the influence of lipid–lipid and lipid–protein interactions on membrane mobility. To characterize the diffusion of lipids or proteins, the continuous photobleaching technique is used. Either Neutravidin coupled to DOPE-cap-Biotin lipids or GFP coupled to DOGS-NTA lipids is studied at 0.005–0.5 mol% concentration of the linker lipid. Neutravidin creates mobile obstacles in the membrane, while GFP coupling results in immobile obstacles. By actin filament coupling to Neutravidin-lipid complexes, obstacles are crosslinked, resulting in lipid mobility reduction along with the appearance of a membrane texture. Theoretical considerations accurately describe lipid diffusion changes at high obstacle concentration as a function of obstacle size and viscous effects. The mobility of membrane lipids depends on the concentration of protein-binding lipids and on the concentration and charge of the coupled protein. Next to diffusion and friction coefficients, we determine the effective obstacle size as well as a charge-dependent effect that dominates the decrease in lipid mobility. Full article
Show Figures

Graphical abstract

Back to TopTop