Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (888)

Search Parameters:
Keywords = Beijing urban area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

13 pages, 2384 KiB  
Article
Legacy and Luxury Effects: Dual Drivers of Tree Diversity Dynamics in Beijing’s Urbanizing Residential Areas (2006–2021)
by Xi Li, Jicun Bao, Yue Li, Jijie Wang, Wenchao Yan and Wen Zhang
Forests 2025, 16(8), 1269; https://doi.org/10.3390/f16081269 - 3 Aug 2025
Viewed by 142
Abstract
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. [...] Read more.
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. In this study we selected 20 residential settlements and 7 key socio-economic properties to investigate the change trend of tree diversity (2006–2021) and its socio-economic driving factors in Beijing. Our results demonstrate significant increases in total, native, and exotic tree species richness between 2006 and 2021 (p < 0.05), with average increases of 36%, 26%, and 55%, respectively. Total and exotic tree Shannon-Wiener indices, as well as exotic tree Simpson’s index, were also significantly higher in 2021 (p < 0.05). Housing prices was the dominant driver shaping total and exotic tree diversity, showing significant positive correlations with both metrics. In contrast, native tree diversity exhibited a strong positive association with neighborhood age. Our findings highlight two dominant mechanisms: legacy effect, where older neighborhoods preserve native diversity through historical planting practices, and luxury effect, where affluent communities drive exotic species proliferation through ornamental landscaping initiatives. These findings elucidate the dual dynamics of legacy conservation and luxury-driven cultivation in urban forest development, revealing how historical contingencies and contemporary socioeconomic forces jointly shape tree diversity patterns in urban ecosystems. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

27 pages, 7810 KiB  
Article
Mutation Interval-Based Segment-Level SRDet: Side Road Detection Based on Crowdsourced Trajectory Data
by Ying Luo, Fengwei Jiao, Longgang Xiang, Xin Chen and Meng Wang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 299; https://doi.org/10.3390/ijgi14080299 - 31 Jul 2025
Viewed by 205
Abstract
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side [...] Read more.
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side road detection method based on crowdsourced trajectory data: First, considering the geometric and dynamic characteristics of trajectories, SRDet introduces a trajectory lane-change pattern recognition method based on mutation intervals to distinguish the heterogeneity of lane-change behaviors between main and side roads. Secondly, combining geometric features with spatial statistical theory, SRDet constructs multimodal features for trajectories and road segments, and proposes a potential side road segment classification model based on random forests to achieve precise detection of side road segments. Finally, based on mutation intervals and potential side road segments, SRDet utilizes density peak clustering to identify main and side road access points, completing the fitting of side roads. Experiments were conducted using 2021 Beijing trajectory data. The results show that SRDet achieves precision and recall rates of 84.6% and 86.8%, respectively. This demonstrates the superior performance of SRDet in side road detection across different areas, providing support for the precise updating of urban road navigation information. Full article
Show Figures

Figure 1

21 pages, 3203 KiB  
Article
Spatiotemporal Patterns of Tourist Flow in Beijing and Their Influencing Factors: An Investigation Using Digital Footprint
by Xiaoyuan Zhang, Jinlian Shi, Qijun Yang, Xinru Chen, Xiankai Huang, Lei Kong and Dandan Gu
Sustainability 2025, 17(15), 6933; https://doi.org/10.3390/su17156933 - 30 Jul 2025
Viewed by 299
Abstract
Amid ongoing societal development, tourists’ travel behavior patterns have been undergoing substantial transformations, and understanding their evolution has emerged as a key area of scholarly interest. Taking Beijing as a case study, this research aims to uncover the spatiotemporal evolution patterns of tourist [...] Read more.
Amid ongoing societal development, tourists’ travel behavior patterns have been undergoing substantial transformations, and understanding their evolution has emerged as a key area of scholarly interest. Taking Beijing as a case study, this research aims to uncover the spatiotemporal evolution patterns of tourist flows and their underlying driving mechanisms. Based on digital footprint relational data, a dual-perspective analytical framework—“tourist perception–tourist flow network”—is constructed. By integrating the center-of-gravity model, social network analysis, and regression models, the study systematically examines the dynamic spatial structure of tourist flows in Beijing from 2012 to 2024. The findings reveal that in the post-pandemic period, Beijing tourists place greater emphasis on the cultural connotation and experiential aspects of destinations. The gravitational center of tourist flows remains relatively stable, with core historical and cultural blocks retaining strong appeal, though a slight shift has occurred due to policy influences and emerging attractions. The evolution of the spatial network structure reveals that tourism flows have become more dispersed, while the influence of core scenic spots continues to intensify. Government policy orientation, tourism information retrieval, and the agglomeration of tourism resources significantly promote the structure of tourist flows, whereas the general level of tourism resources exerts no notable influence. These findings offer theoretical insights and practical guidance for the sustainable development and regional coordination of tourism in Beijing, and provide a valuable reference for the spatial restructuring of urban tourism in the post-COVID-19 era. Full article
Show Figures

Figure 1

26 pages, 7277 KiB  
Article
Characteristics and Driving Factors of the Spatial and Temporal Evolution of County Urban–Rural Integration—Evidence from the Beijing–Tianjin–Hebei Region, China
by Jian Tian, Junqi Ma, Suiping Zeng and Yu Bai
Land 2025, 14(8), 1563; https://doi.org/10.3390/land14081563 - 30 Jul 2025
Viewed by 367
Abstract
Urban–rural integration realises the coordinated development and prosperity of urban and rural areas as a whole by optimising the allocation of resources and the flow of factors, and its connotations have been extended from a single dimension to multiple dimensions such as people, [...] Read more.
Urban–rural integration realises the coordinated development and prosperity of urban and rural areas as a whole by optimising the allocation of resources and the flow of factors, and its connotations have been extended from a single dimension to multiple dimensions such as people, land and industry. The Beijing–Tianjin–Hebei Region has a typical “Core–Periphery Structure”, and this paper took the 187 county units within the region as the research object, taking into account indicators of development and coordination to construct an evaluation index system of urban–rural integration of the Beijing–Tianjin–Hebei region counties in the dimensions of “people–land–industry”. Global principal component analysis was used to measure the evolutionary pattern of the urban–rural integration level between 2005 and 2020, and its spatiotemporal drivers were analysed by using the Geographical and Temporal Weighted Regression model (GTWR). The results of the study show that (1) the level of urban–rural integration in the Beijing–Tianjin–Hebei region showed an increasing trend during the 15-year study period, the high-value areas of urban–rural integration were mainly distributed in Beijing and the Bohai Rim region in the eastern part of the Tianjin–Hebei region, and the level of urban–rural integration of the peri-urban county units of the city was better than that of the remote counties and cities as a whole. (2) In terms of spatial agglomeration, all dimensions were characterised by significant spatial agglomeration. The degree of agglomeration was categorised as urban–rural comprehensive integration (U-RCI) > urban–rural industry integration (U-RII) > urban–rural land integration (U-RLI) > urban–rural people integration (U-RPI). (3) In terms of spatial and temporal driving factors for urban–rural integration, the driving role of U-RPI, U-RLI and U-RII for U-RCI has gradually weakened during the past 15 years, and urban–rural integration in the counties shifted from a single role to a more central coordinated and multidimensional driving role. Full article
Show Figures

Figure 1

22 pages, 3025 KiB  
Article
Exploring the Spatial Association Between Spatial Categorical Data Using a Fuzzy Geographically Weighted Colocation Quotient Method
by Ling Li, Lian Duan, Meiyi Li and Xiongfa Mai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 296; https://doi.org/10.3390/ijgi14080296 - 29 Jul 2025
Viewed by 162
Abstract
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to [...] Read more.
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to define the scale effect, which can lead to scale sensitivity and discontinuity results. To address these limitations, this study introduces the Fuzzy Geographically Weighted Colocation Quotient (FGWCLQ) method. By integrating fuzzy theory, FGWCLQ replaces binary distance cutoffs with continuous membership functions, providing a more flexible and stable approach to spatial association mining. Using Point of Interest (POI) data from the Beijing urban area, FGWCLQ was applied to explore both intra- and inter-category spatial association patterns among star hotels, transportation facilities, and tourist attractions at different fuzzy neighborhoods. The results indicate that FGWCLQ can reliably discover global prevalent spatial associations among diverse facility types and visualize the spatial heterogeneity at various spatial scales. Compared to the deterministic GWCLQ method, FGWCLQ delivers more stable and robust results across varying spatial scales and generates more continuous association surfaces, which enable clear visualization of hierarchical clustering. Empirical findings provide valuable insights for optimizing the location of star hotels and supporting decision-making in urban planning. The method is available as an open-source Matlab package, providing a practical tool for diverse spatial association investigations. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

19 pages, 13565 KiB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 255
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

21 pages, 2399 KiB  
Article
An HUL Assessment for Small Cultural Heritage Sites in Urban Areas: Framework, Methodology, and Empirical Research
by Shiyang Zhang, Haochen Sun, Muye Jiang and Jingrui Zhao
Land 2025, 14(8), 1513; https://doi.org/10.3390/land14081513 - 23 Jul 2025
Viewed by 311
Abstract
The research is grounded in the perspective of urban historical landscape (HUL), exploring the connections between cultural heritage and a broader urban context, as well as the general public and communities. It also focuses on small cultural heritage sites (SCHSs) in urban areas [...] Read more.
The research is grounded in the perspective of urban historical landscape (HUL), exploring the connections between cultural heritage and a broader urban context, as well as the general public and communities. It also focuses on small cultural heritage sites (SCHSs) in urban areas that have been overlooked in previous studies. By integrating various types of data, an assessment framework and methodology comprising six dimensions and 24 indicators were established and applied to the empirical research of 30 SCHSs in the Beijing section of the Grand Canal. The empirical research demonstrated the operability, effectiveness, and flexibility of the HUL assessment for SCHSs. The research findings are as follows. (1) The method provides differentiated recommendations for the formulation of tailored policies and planning management schemes based on heritage types, conservation levels, and the urban districts in which they are located. (2) The comprehensive quality of the open spaces where SCHSs are situated is critical for the cognition of the general public and community residents. (3) The overall conservation of the community areas containing SCHSs is highly significant, and the linkage between social development levels and cultural resources enhances public cognition of the SCHSs. (4) Cluster analysis offers guidance for the refined improvement of different SCHSs. The research aims to establish an action-oriented assessment framework, with a dimensional framework responding to the requirements of HULs and allowing for indicator flexibility. This study is significant for supporting the conservation and utilization of SCHSs in urban areas and for promoting their sustainable development. Full article
Show Figures

Figure 1

34 pages, 26037 KiB  
Article
Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region
by Jingyuan Ni and Fang Xu
Remote Sens. 2025, 17(15), 2546; https://doi.org/10.3390/rs17152546 - 22 Jul 2025
Viewed by 489
Abstract
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim [...] Read more.
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim of quantitatively evaluating the coupled effects of climate change and land use change on future ecosystem resilience. In the first stage of the study, the SD-PLUS coupled modeling framework was employed to simulate land use patterns for the years 2030 and 2060 under three representative combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Building upon these simulations, ecosystem resilience was comprehensively evaluated and predicted on the basis of three key attributes: resistance, adaptability, and recovery. This enabled a quantitative investigation of the spatio-temporal dynamics of ecosystem resilience under each scenario. The results reveal the following: (1) Temporally, ecosystem resilience exhibited a staged pattern of change. From 2020 to 2030, an increasing trend was observed only under the SSP1-2.6 scenario, whereas, from 2030 to 2060, resilience generally increased in all scenarios. (2) In terms of scenario comparison, ecosystem resilience typically followed a gradient pattern of SSP1-2.6 > SSP2-4.5 > SSP5-8.5. However, in 2060, a notable reversal occurred, with the highest resilience recorded under the SSP5-8.5 scenario. (3) Spatially, areas with high ecosystem resilience were primarily distributed in mountainous regions, while the southeastern plains and coastal zones consistently exhibited lower resilience levels. The results indicate that climate and land use changes jointly influence ecosystem resilience. Rainfall and temperature, as key climate drivers, not only affect land use dynamics but also play a crucial role in regulating ecosystem services and ecological processes. Under extreme scenarios such as SSP5-8.5, these factors may trigger nonlinear responses in ecosystem resilience. Meanwhile, land use restructuring further shapes resilience patterns by altering landscape configurations and recovery mechanisms. Our findings highlight the role of climate and land use in reshaping ecological structure, function, and services. This study offers scientific support for assessing and managing regional ecosystem resilience and informs adaptive urban governance in the face of future climate and land use uncertainty, promotes the sustainable development of ecosystems, and expands the applicability of remote sensing in dynamic ecological monitoring and predictive analysis. Full article
Show Figures

Graphical abstract

20 pages, 2546 KiB  
Article
Positive Relationships Between Soil Organic Carbon and Tree Physical Structure Highlights Significant Carbon Co-Benefits of Beijing’s Urban Forests
by Rentian Xie, Syed M. H. Shah, Chengyang Xu, Xianwen Li, Suyan Li and Bingqian Ma
Forests 2025, 16(8), 1206; https://doi.org/10.3390/f16081206 - 22 Jul 2025
Viewed by 332
Abstract
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on [...] Read more.
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on 146 soil samples collected at plot locations selected across Beijing, we examined relationships between soil organic carbon (SOC) and key characteristics of urban forests, including their spatial structure and species complexity. The results showed that SOC in the topsoil with a depth of 20 cm was highest over forested plots (6.384 g/kg–20.349 g/kg) and lowest in soils without any vegetation cover (5.586 g/kg–6.783 g/kg). The plots with herbaceous/shrub vegetation but no tree cover had SOC values in between (5.586 g/kg–15.162 g/kg). The plot data revealed that SOC was better correlated with the physical structure than the species diversity of Beijing’s urban trees. The correlation coefficients (r) between SOC and five physical structure indicators, including average diameter at breast height (DBH), average tree height, basal area density, and the diversity of DBH and tree height, ranged from 0.32 to 0.52, whereas the r values for four species diversity indicators ranged from 0.10 to 0.25, two of which were not statistically different from 0. Stepwise linear regression analyses revealed that the species diversity indicators were not very sensitive to SOC variations among a large portion of the plots and were about half as effective as the physical structure indicators for explaining the total variance of SOC. These results suggest that urban planning and greenspace management policies could be tailored to maximize the carbon co-benefits of urban land. Specifically, trees should be planted in urban areas wherever possible, preferably as densely as what can be allowed given other urban planning considerations. Protection of large, old trees should be encouraged, as these trees will continue to sequester and store large quantities of carbon in above- and belowground biomass as well as in soil. Such policies will enhance the contribution of urban land, especially urban forests and other greenspaces, to nature-based solutions (NBS) to climate change. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
Show Figures

Figure 1

16 pages, 26966 KiB  
Article
Nonlinear Heat Effects of Building Material Stock in Chinese Megacities
by Leizhen Liu, Yi Zhou, Liqing Tan and Rukun Jiang
Smart Cities 2025, 8(4), 119; https://doi.org/10.3390/smartcities8040119 - 17 Jul 2025
Viewed by 295
Abstract
Urbanization is accompanied by an increased use of building materials. However, the lack of high-resolution building material stock (BMS) maps limits our understanding of the relationship between BMS and urban heat. To address this, we estimated BMS across eight typical Chinese megacities using [...] Read more.
Urbanization is accompanied by an increased use of building materials. However, the lack of high-resolution building material stock (BMS) maps limits our understanding of the relationship between BMS and urban heat. To address this, we estimated BMS across eight typical Chinese megacities using multi-source geographic data and investigated the relationship between BMS and land surface temperature (LST). The results showed that (1) the total BMS for the eight megacities was 9175.07 Mt, with Beijing and Shanghai having the largest shares. While BMS correlated significantly with population, growth patterns varied across cities. (2) Spatial autocorrelation between BMS and LST was evident. Around 16% of urban areas exhibited High–High clustering between BMS and LST, decreasing to 10% during the daytime. The relationship between BMS and LST is nonlinear, and also prominent at night, especially in Beijing. (3) Diverse building forms, especially building height, contribute to a nonlinear relationship between BMS and LST. Full article
Show Figures

Figure 1

18 pages, 6142 KiB  
Article
Study on the Effect of Shortwave Radiation in Land Surface Temperature Downscaling over Rugged Terrain
by Shumin Wang, Jie Cheng and Qiang Liu
Remote Sens. 2025, 17(14), 2436; https://doi.org/10.3390/rs17142436 - 14 Jul 2025
Viewed by 207
Abstract
Land surface temperature (LST) is an important parameter in the surface system with drastic variation in spatial and temporal domains. The protection of the ecological environment in mountainous areas and the monitoring of natural disasters require the support of surface temperature data with [...] Read more.
Land surface temperature (LST) is an important parameter in the surface system with drastic variation in spatial and temporal domains. The protection of the ecological environment in mountainous areas and the monitoring of natural disasters require the support of surface temperature data with high spatiotemporal resolution. LST downscaling is an effective method to improve the spatial and temporal resolution of remote sensing LST data. However, at present, the LST downscaling research mainly focuses on plain and urban areas, while the area of rugged terrain is less studied, and the accuracy of LST in rugged terrain is lower than in plain and urban areas. In the few studies that discuss auxiliary parameters for LST downscaling in rugged terrain, only elevation is considered as an auxiliary parameter. In this study, we selected parameters that have evident correlation with LST as potential auxiliary factors and discussed the benefits of adding shortwave radiation to the LST downscaling process. We chose four scene images in the Beijing suburbs and the Loess Plateau and conducted the LST downscaling experiments. In this study, we used the Taylor expansion method for LST downscaling. We selected Landsat 8 and MODSI LST data as fine and coarse study datasets, respectively. The results show that the accuracy of LST downscaling in rugged terrain areas can be improved by using elevation and shortwave radiation as auxiliary factors, and the benefits of shortwave radiation is independent of that of elevation. Therefore, it is suggested that these two parameters be simultaneously used to achieve the best LST downscaling result over rugged terrain areas. Full article
(This article belongs to the Special Issue Land Surface Temperature Estimation Using Remote Sensing II)
Show Figures

Graphical abstract

26 pages, 6762 KiB  
Article
Temporal-Spatial Thermal Comfort Across Urban Blocks with Distinct Morphologies in a Hot Summer and Cold Winter Climate: On-Site Investigations in Beijing
by Tengfei Zhao and Tong Ma
Atmosphere 2025, 16(7), 855; https://doi.org/10.3390/atmos16070855 - 14 Jul 2025
Viewed by 287
Abstract
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly [...] Read more.
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly rely on microclimate numerical simulations, while comparative assessments of OTC from the human thermal perception perspective remain limited. This study employs the thermal walk method, integrating microclimatic measurements with thermal perception questionnaires, to conduct on-site OTC investigations across three urban blocks with contrasting spatial morphologies—a business district (BD), a residential area (RA), and a historical neighborhood (HN)—in Beijing, a hot summer and cold winter climate city. The results reveal substantial OTC differences among the blocks. However, these differences demonstrated great seasonal and temporal variations. In summer, BD exhibited the best OTC (mTSV = 1.21), while HN performed the worst (mTSV = 1.72). In contrast, BD showed the poorest OTC in winter (mTSV = −1.57), significantly lower than HN (−1.11) and RA (−1.05). This discrepancy was caused by the unique morphology of different blocks. The sky view factor emerged as a more influential factor affecting OTC over building coverage ratio and building height, particularly in RA (r = 0.689, p < 0.01), but its impact varied by block, season, and sunlight conditions. North–South streets generally perform better OTC than East–West streets, being 0.26 units cooler in summer and 0.20 units warmer in winter on the TSV scale. The study highlights the importance of incorporating more applicable physical parameters to optimize OTC in complex urban contexts and offering theoretical support for designing climate adaptive urban spaces. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 283
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

Back to TopTop