Nonlinear Heat Effects of Building Material Stock in Chinese Megacities
Abstract
Highlights
- The BMS of eight Chinese megacities in China is 9,175.07 Mt.
- Nonlinear relationship exists between BMS and LST especially at nighttime.
- Building height leads the nonlinear relationship exists between BMS and LST.
- Optimize building forms to achieve heat mitigation in areas with high BMS.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Data Source
2.3.1. Detailed Building Information
2.3.2. MODIS Product
2.3.3. Population Data
2.4. Methods
2.4.1. Building Material Stock Estimation and Validation
2.4.2. Building Form Indicators
2.4.3. The Relationship Between BMS and LST
- (1)
- Partial dependence plots
- (2)
- Local bivariate spatial autocorrelation
3. Results
3.1. The BMS in Chinese Megacities
3.2. The Spatiotemporal Relationship Between BMS and LST
3.3. The Influence of Building Form on the Nonlinear Relationship Between BMS and LST
4. Discussion
4.1. The Mechanism of How Building Material Stock Influences LST
4.2. Implications for Urban Planning
4.3. Advantages and Limitations in Our Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Tang, B.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Venter, Z.S.; Krog, N.H.; Barton, D.N. Linking green infrastructure to urban heat and human health risk mitigation in oslo, norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef] [PubMed]
- Fuladlu, K.; Altan, H. Examining land surface temperature and relations with the major air pollutants: A remote sensing research in case of tehran. Urban Clim. 2021, 39, 100958. [Google Scholar] [CrossRef]
- Mishra, V.; Sadhu, A. Towards the effect of climate change in structural loads of urban infrastructure: A review. Sustain. Cities Soc. 2023, 89, 104352. [Google Scholar] [CrossRef]
- Wang, P.; Yu, P.; Lu, J.; Zhang, Y. The mediation effect of land surface temperature in the relationship between land use-cover change and energy consumption under seasonal variations. J. Clean. Prod. 2022, 340, 130804. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, J.; Yang, X.; Fang, C.; Liang, Y. Quantifying the seasonal contribution of coupling urban land use types on urban heat island using land contribution index: A case study in wuhan, china. Sustain. Cities Soc. 2019, 44, 666–675. [Google Scholar] [CrossRef]
- Esha, E.J.; Rahman, M.T.U. Simulation of future land surface temperature under the scenario of climate change using remote sensing & gis techniques of northwestern rajshahi district, bangladesh. Environ. Chall. 2021, 5, 100365. [Google Scholar]
- Guo, L.; Di, L.; Zhang, C.; Lin, L.; Chen, F.; Molla, A. Evaluating contributions of urbanization and global climate change to urban land surface temperature change: A case study in lagos, nigeria. Sci. Rep. 2022, 12, 14168. [Google Scholar] [CrossRef] [PubMed]
- Heisel, F.; McGranahan, J.; Ferdinando, J.; Dogan, T. High-resolution combined building stock and building energy modeling to evaluate whole-life carbon emissions and saving potentials at the building and urban scale. Resour. Conserv. Recycl. 2022, 177, 106000. [Google Scholar] [CrossRef]
- Palladino, D. Energy performance gap of the italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions. Appl. Energy 2023, 345, 121365. [Google Scholar] [CrossRef]
- Rajaratnam, D.; Stewart, R.A.; Liu, T.; Vieira, A.S. Building stock mining for a circular economy: A systematic review on application of gis and remote sensing. Resour. Conserv. Recycl. Adv. 2023, 18, 200144. [Google Scholar] [CrossRef]
- Esch, T.; Brzoska, S.E.; Dech, B.; Leutner, D.; Palacios-Lopez, A.; Metz-Marconcini, A.; Marconcini, M.; Roth, A.; Zeidler, J. World settlement footprint 3d-a first three-dimensional survey of the global building stock. Remote Sens. Environ. 2022, 270, 112877. [Google Scholar] [CrossRef]
- Marinova, S.; Deetman, S.; van der Voet, E.; Daioglou, V. Global construction materials database and stock analysis of residential buildings between 1970–2050. J. Clean. Prod. 2020, 247, 119146. [Google Scholar] [CrossRef]
- Zhong, X.; Hu, M.; Deetman, S.; Steubing, B.; Lin, H.X.; Hernandez, G.A.; Harpprecht, C.; Zhang, C.; Tukker, A. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 2021, 12, 6126. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.; Xu, L.; Liu, B.; Cai, W. China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model. Appl. Energy 2022, 325, 119828. [Google Scholar] [CrossRef]
- Lu, M.; Lai, J. Review on carbon emissions of commercial buildings. Renew. Sustain. Energy Rev. 2020, 119, 109545. [Google Scholar] [CrossRef]
- Mao, R.; Bao, Y.; Duan, H.; Liu, G. Global urban subway development, construction material stocks, and embodied carbon emissions. Humanit. Soc. Sci. Commun. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Guo, F.; Mastrucci, A.; Zhang, S.; Yang, Z.; Yan, D. Assessing the potential of decarbonizing china’s building construction by 2060 and synergy with industry sector. J. Clean. Prod. 2022, 359, 132086. [Google Scholar] [CrossRef]
- Zhou, W.; Moncaster, A.; O’Neill, E.; Reiner, D.M.; Wang, X.; Guthrie, P. Modelling future trends of annual embodied energy of urban residential building stock in china. Energy Policy 2022, 165, 112932. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Z.; Yin, G.; Ren, S.; Yan, X.; Qi, J. Quantifying the impact of building material stock and green infrastructure on urban heat island intensity. Build. Environ. 2025, 280, 113068. [Google Scholar] [CrossRef]
- Song, J.; Chen, W.; Zhang, J.; Huang, K.; Hou, B.; Prishchepov, A.V. Effects of building density on land surface temperature in china: Spatial patterns and determinants. Landsc. Urban Plan. 2020, 198, 103794. [Google Scholar] [CrossRef]
- Derbal, R.; Defer, D.; Chauchois, A.; Antczak, E. A simple method for building materials thermophysical properties estimation. Constr. Build. Mater. 2014, 63, 197–205. [Google Scholar] [CrossRef]
- Li, B.; Cheng, C. Quantifying the impact of buildings on land surface temperature: Intrinsic structure and extrinsic morphology. Build. Environ. 2024, 259, 111680. [Google Scholar] [CrossRef]
- Jonnala, S.N.; Gogoi, D.; Devi, S.; Kumar, M.; Kumar, C. A comprehensive study of building materials and bricks for residential construction. Constr. Build. Mater. 2024, 425, 135931. [Google Scholar] [CrossRef]
- Basyouni, Y.A.; Mahmoud, H. Affordable green materials for developed cool roof applications: A review. Renew. Sustain. Energy Rev. 2024, 202, 114722. [Google Scholar] [CrossRef]
- Matias, M.; Lopes, A. Lcz thermal and exoatmospheric albedo assessment using landsat 8 land surface temperature and reflectance dataset: Case study of lisbon. Remote Sens. Appl. Soc. Environ. 2024, 34, 101163. [Google Scholar] [CrossRef]
- Okumus, D.E.; Terzi, F. Evaluating the role of urban fabric on surface urban heat island: The case of istanbul. Sustain. Cities Soc. 2021, 73, 103128. [Google Scholar] [CrossRef]
- Teichmann, F.; Baumgartner, C.M.; Horvath, A.; Luisser, M.; Korjenic, A. Simulation of urban microclimate with uhisolver: Software validation using simplified material data. Ecol. Process. 2021, 10, 1–23. [Google Scholar] [CrossRef]
- Wonorahardjo, S.; Sutjahja, I.M.; Mardiyati, Y.; Andoni, H.; Thomas, D.; Achsani, R.A.; Steven, S. Characterising thermal behaviour of buildings and its effect on urban heat island in tropical areas. Int. J. Energy Environ. Eng. 2020, 11, 129–142. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the urban heat island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Spyrou, G.; Ioannou, B.; Souliotis, M.; Savvides, A.L.; Fokaides, P.A. The adaptability of cities to climate change: Evidence from cities’ redesign towards mitigating the uhi effect. Sustainability 2023, 15, 6133. [Google Scholar] [CrossRef]
- Augiseau, V.; Barles, S. Studying construction materials flows and stock: A review. Resour. Conserv. Recycl. 2017, 123, 153–164. [Google Scholar] [CrossRef]
- Langevin, J.; Reyna, J.L.; Ebrahimigharehbaghi, S.; Sandberg, N.; Fennell, P.; Nägeli, C.; Laverge, J.; Delghust, M.; Mata, É.; Van Hove, M. Developing a common approach for classifying building stock energy models. Renew. Sustain. Energy Rev. 2020, 133, 110276. [Google Scholar] [CrossRef]
- Buffat, R.; Froemelt, A.; Heeren, N.; Raubal, M.; Hellweg, S. Big data GIS analysis for novel approaches in building stock modelling. Appl. Energy 2017, 208, 277–290. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Schug, F.; Frantz, D.; Vira, D.; Plutzar, C.; Gruhler, K.; Lederer, J.; Schiller, G.; Fishman, T. High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environ. Sci. Technol. 2021, 55, 3368–3379. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Bao, Y.; Huang, Z.; Liu, Q.; Liu, G. High-resolution mapping of the urban built environment stocks in beijing. Environ. Sci. Technol. 2020, 54, 5345–5355. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Mapping pedestrian network level outdoor heat hazard distributions in Philadelphia. Environ. Plan. B Urban Anal. City Sci. 2025, 52, 899–912. [Google Scholar] [CrossRef]
- Xiang, Y.; Yuan, C.; Cen, Q.; Huang, C.; Wu, C.; Teng, M.; Zhou, Z. Heat risk assessment and response to green infrastructure based on local climate zones. Build. Environ. 2024, 248, 111040. [Google Scholar] [CrossRef]
- Han, C.; Man, Q.; Dong, P.; Yang, X.; Zhang, B.; Wu, J.; Liu, C.; Zhou, C.; Tan, Z. Exploring the influence of urban morphology on summer daytime and nighttime LST based on sdgsat-1. Int. J. Digit. Earth 2025, 18, 2482101. [Google Scholar] [CrossRef]
- Wang, H.; Yi, T.; Lu, Y.; Wang, Y.; Wu, J. Patterns of nighttime surface urban heat island patch in mega urban agglomerations: A case study in the pearl river delta, China. Sustain. Cities Soc. 2025, 128, 106465. [Google Scholar] [CrossRef]
- Ding, S.; Chen, A. Comprehensive assessment of daytime, nighttime and compound heatwave risk in east China. Nat. Hazards 2024, 120, 7245–7263. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Li, Y.; Zhu, H.; Yang, X.; Li, S.; Tang, G. Is 3D building morphology really related to land surface temperature? Insights from a new homogeneous unit. Build. Environ. 2024, 266, 112101. [Google Scholar] [CrossRef]
- Dab’at, A.A.; Alqadi, S. The impact of urban morphology on energy demand of a residential building in a Mediterranean climate. Energy Build. 2024, 325, 114989. [Google Scholar] [CrossRef]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.J.S.B. Mapping essential urban land use categories in china (euluc-china): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Guo, J.; Sun, L.; Shi, F. Urban buildings material intensity in china from 1949 to 2015. Resour. Conserv. Recycl. 2020, 159, 104824. [Google Scholar] [CrossRef]
- Huang, Z.; Bao, Y.; Mao, R.; Wang, H.; Yin, G.; Wan, L.; Qi, H.; Li, Q.; Tang, H.; Liu, Q.J.E. Big geodata reveals spatial patterns of built environment stocks across and within cities in china. Engineering 2024, 34, 143–153. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, H.; Mao, S.; Zhang, G.; Jin, Y.; Luo, Y.; Huo, W.; Pan, Z.; An, P.; Lun, F. Exploring surface urban heat island (suhi) intensity and its implications based on urban 3d neighborhood metrics: An investigation of 57 chinese cities. Sci. Total Environ. 2022, 847, 157662. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. Geoda: An introduction to spatial data analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 73–89. [Google Scholar]
- Zhang, X.; Zhang, D.; Yiwen, Z. Temporal changes and spatial driving mechanisms of water ecological footprints in the context of urbanization: Taking three major urban agglomerations in china’s yangtze river economic belt as an example. Water 2023, 15, 760. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Schrijvers, P.; Jonker, H.; Kenjereš, S.; De Roode, S. Breakdown of the night time urban heat island energy budget. Build. Environ. 2015, 83, 50–64. [Google Scholar] [CrossRef]
- Masson, V. A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Lee, X.; Stone, B., Jr.; Knievel, J.; Bell, M.L.; Seto, K.C. Persistent increases in nighttime heat stress from urban expansion despite heat island mitigation. J. Geophys. Res. Atmos. 2021, 126, e2020JD033831. [Google Scholar] [CrossRef]
- Loh, N.; Bhiwapurkar, P. Urban heat-mitigating building form and façade framework. Archit. Sci. Rev. 2022, 65, 57–71. [Google Scholar] [CrossRef]
- Carpentieri, M.; Robins, A.G. Influence of urban morphology on air flow over building arrays. J. Wind. Eng. Ind. Aerodyn. 2015, 145, 61–74. [Google Scholar] [CrossRef]
Data | Time | Resolution | Usage | Source |
---|---|---|---|---|
Building data | 2020 | Vector data | Calculating building area and building height | https://lbsyun.baidu.com/ (accessed on 7 June 2024) |
Real estate information | 2020 | Vector data | Identifying building age and building structure | https://www.anjuke.com/ (accessed on 21 May 2024) https://www.lianjia.com/ (accessed on 21 May 2024) |
MYD11A1 | 2020 | 1 km | Calculating LST during daytime and nighttime | https://modis.gsfc.nasa.gov/ (accessed on 23 May 2024) |
WorldPop | 2020 | 100 m | Analyzing the relationship between population and BMS | https://hub.worldpop.org/ (accessed on 17 June 2024) |
MOD13A1 | 2020 | 500 m | Analyzing the influence of vegetation on the relationship between BMS and LST | https://modis.gsfc.nasa.gov/ (accessed on 23 May 2024) |
Global Urban Boundaries | 2020 | Vector data | Extracting urban boundaries | http://data.ess.tsinghua.edu.cn (accessed on 1 July 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhou, Y.; Tan, L.; Jiang, R. Nonlinear Heat Effects of Building Material Stock in Chinese Megacities. Smart Cities 2025, 8, 119. https://doi.org/10.3390/smartcities8040119
Liu L, Zhou Y, Tan L, Jiang R. Nonlinear Heat Effects of Building Material Stock in Chinese Megacities. Smart Cities. 2025; 8(4):119. https://doi.org/10.3390/smartcities8040119
Chicago/Turabian StyleLiu, Leizhen, Yi Zhou, Liqing Tan, and Rukun Jiang. 2025. "Nonlinear Heat Effects of Building Material Stock in Chinese Megacities" Smart Cities 8, no. 4: 119. https://doi.org/10.3390/smartcities8040119
APA StyleLiu, L., Zhou, Y., Tan, L., & Jiang, R. (2025). Nonlinear Heat Effects of Building Material Stock in Chinese Megacities. Smart Cities, 8(4), 119. https://doi.org/10.3390/smartcities8040119