error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (556)

Search Parameters:
Keywords = Beclin1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1855 KB  
Article
Purpurin Rescues Contrast-Induced Acute Rat Kidney Injury via Inducing Autophagy and Inhibiting Apoptosis
by Kangxu He, Xiaoying Sun, Xinhui Pan, Xiaoda Yang, Qi Wang and Kai Liao
Pharmaceuticals 2026, 19(1), 116; https://doi.org/10.3390/ph19010116 - 8 Jan 2026
Abstract
Objectives: Contrast-induced acute kidney injury (CIAKI) is a major cause of hospital-acquired renal injury, and strategies for its treatment are currently lacking. This study aimed to investigate the amelioration effect and mechanism of purpurin, a natural antioxidant, against CIAKI via an integrated [...] Read more.
Objectives: Contrast-induced acute kidney injury (CIAKI) is a major cause of hospital-acquired renal injury, and strategies for its treatment are currently lacking. This study aimed to investigate the amelioration effect and mechanism of purpurin, a natural antioxidant, against CIAKI via an integrated analysis of network pharmacology, bioinformatics, molecular docking, and animal experiments. Methods: Network pharmacology approaches were used to predict key targets of purpurin against CIAKI. The differential expression of these key targets was further investigated using bioinformatics analysis and molecular binding with purpurin by molecular docking. A CIAKI model was established in SD rats via iohexol administration, and they were treated with 2.5 mg/kg or 5 mg/kg purpurin. Related physiological and pathological indexes were detected to explore the intervention mechanism. Results: Key gene targets were screened from protein–protein interaction networks, of which Pik3c2a, Esr1, Aktip, HSP90AA1, Bcl2, Caspase3, and SRC in the CIAKI group of GSE189881 were significantly differentially expressed compared to the control group. Molecular docking results show that PI3K, ESR1, HSP90, CASP3, AKTI, and SRC had the highest level of connectivity with purpurin. In vivo experiments demonstrated that the Scr and BUN increased in CIAKI rats, the pathological morphology of renal tissue deteriorated, the levels of TNF-α, IL-1β, and IL-6 increased, the contents of MOD and NO in oxidative stress increased, and the activity of SOD and GSH-PX decreased. After administration of purpurin, the above indexes improved in a dose-dependent manner (<0.05). Western blotting showed that purpurin inhibited the Beclin1/Bcl-2/caspase-3 apoptotic cascade and induced the P62/LC3 autophagy pathway. Conclusions: This study provides experimental evidence supporting purpurin as a potential therapeutic agent for CIAKI and further explores its antioxidant mechanisms. Full article
(This article belongs to the Section Pharmacology)
18 pages, 2664 KB  
Article
The Protective Role of Curcumin in Osteoarthritis: Establishing Mitochondrial Homeostasis Through Autophagy Induction and Apoptosis Inhibition
by Kavitha Raja, Rajashree Patnaik, Dineshwary Suresh, Riah Varghese, Adam Eid, Thomas Nau, Yajnavalka Banerjee and Nerissa Naidoo
Int. J. Mol. Sci. 2026, 27(2), 609; https://doi.org/10.3390/ijms27020609 - 7 Jan 2026
Abstract
Osteoarthritis (OA) is a progressive joint disorder affecting over 250 million people globally and is characterized by chronic pain and disability. Among its key pathogenic mechanisms are mitochondrial dysfunction and elevated reactive oxygen species (ROS), often triggered by inflammatory mediators such as lipopolysaccharide [...] Read more.
Osteoarthritis (OA) is a progressive joint disorder affecting over 250 million people globally and is characterized by chronic pain and disability. Among its key pathogenic mechanisms are mitochondrial dysfunction and elevated reactive oxygen species (ROS), often triggered by inflammatory mediators such as lipopolysaccharide (LPS). This study evaluates the protective effects of curcumin on mitochondrial function, autophagy, and apoptosis in an in vitro model of OA. Human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes using MesenCult™-ACF medium. Differentiation was confirmed by histological staining for Type II Collagen, Alcian Blue, and Toluidine Blue. LPS was used to induce an OA-like inflammatory response. Mitochondrial membrane potential (ΔΨm) was assessed using Rhodamine 123 staining. Autophagy and apoptosis were evaluated using Acridine orange and propidium iodide staining, respectively. Western blotting was performed to analyze the expression of pro-caspase-3, Bcl-2, Beclin-1, LC3-I/II, and GAPDH. LPS significantly impaired mitochondrial function, limited autophagy, and enhanced apoptotic signaling (reduced pro-caspase-3). Curcumin (25 µM and 100 µM) restored ΔΨm, increased Beclin-1 and LC3-II, and maintained pro-caspase-3 expression, with Bcl-2 showing a non-monotonic response (higher at 25 µM than at 100 µM). Curcumin exerted cytoprotective effects in inflamed chondrocytes by stabilizing ΔΨm, promoting autophagy, and attenuating apoptotic activation, supporting its multi-target therapeutic potential in OA. Full article
Show Figures

Graphical abstract

29 pages, 21720 KB  
Article
5-Hydroxymethylfurfural and Isoverbascoside Alleviate Oxidative Damage INS-1 and MIN6 β-Cells by Activating Autophagy and Inhibiting Apoptosis
by Xianglong Meng, Yuting Li, Xiang Han, Ziang Li, Zhulin Bu, Yuhui Wu, Xiaofen Li, Shuosheng Zhang and Yuting Dai
Metabolites 2026, 16(1), 48; https://doi.org/10.3390/metabo16010048 - 6 Jan 2026
Abstract
Background/Objectives: In type 2 diabetes (T2DM), dysregulated glucose and lipid metabolism impair cellular energy sensing and inhibit autophagy, leading to the accumulation of dysfunctional cellular components, increased inflammation and oxidative stress, and activation of the intrinsic apoptotic pathway. Prepared Rehmannia glutinosa is [...] Read more.
Background/Objectives: In type 2 diabetes (T2DM), dysregulated glucose and lipid metabolism impair cellular energy sensing and inhibit autophagy, leading to the accumulation of dysfunctional cellular components, increased inflammation and oxidative stress, and activation of the intrinsic apoptotic pathway. Prepared Rehmannia glutinosa is an anti-diabetic traditional Chinese medicine whose active monomers, including 5-Hydroxymethylfurfural (5-HMF) and isoverbascoside, exhibit potential antioxidant and anti-apoptotic effects. However, their role in β-cell protection remains unexplored. This study aims to investigate the protective mechanisms of 5-HMF and isoverbascoside against H2O2-induced oxidative damage in pancreatic β-cells. Methods: INS-1 and MIN6 β-cells were treated with 5-HMF and isoverbascoside (20 μM, 40μM) for 24 h under H2O2-induced oxidative stress. Multiple techniques were employed, including transcriptomics, proteomics, machine learning, Western blot analysis, and molecular docking. Flow cytometry and Hoechst 33342 staining were used to assess apoptosis, while autophagy was evaluated via LC3 fluorescence intensity and Beclin-1 expression. Chloroquine (CQ), an autophagy inhibitor, was applied to further examine autophagy’s role. Conclusions: 5-HMF and isoverbascoside enhance autophagic activity in pancreatic β-cells, attenuate oxidative stress-induced apoptosis, and improve cell survival and proliferation. These findings underscore their potential as protective agents in T2DM by modulating the autophagy–apoptosis balance. Full article
(This article belongs to the Special Issue Metabolomics in Plant Natural Products Research, 2nd Edition)
Show Figures

Figure 1

20 pages, 1443 KB  
Review
Cannabinoid Signaling and Autophagy in Oral Disease: Molecular Mechanisms and Therapeutic Implications
by Undral Munkhsaikhan, Md Ataur Rahman, Alivia Shasteen, Karima Ait-Aissa, Amal M. Sahyoun, Rajat Das Gupta, Modar Kassan, Ehsanul Hoque Apu and Ammaar H. Abidi
Int. J. Mol. Sci. 2026, 27(1), 525; https://doi.org/10.3390/ijms27010525 - 4 Jan 2026
Viewed by 158
Abstract
Autophagy is a well-preserved biological mechanism that is essential for sustaining homeostasis by degradation and recycling damaged organelles, misfolded proteins, and other cytoplasmic detritus. Cannabinoid signaling has emerged as a prospective regulator of diverse cellular functions, including immunological modulation, oxidative stress response, apoptosis, [...] Read more.
Autophagy is a well-preserved biological mechanism that is essential for sustaining homeostasis by degradation and recycling damaged organelles, misfolded proteins, and other cytoplasmic detritus. Cannabinoid signaling has emerged as a prospective regulator of diverse cellular functions, including immunological modulation, oxidative stress response, apoptosis, and autophagy. Dysregulation of autophagy contributes to pathogenesis and treatment resistance of several oral diseases, including oral squamous cell carcinoma (OSCC), periodontitis, and gingival inflammation. This review delineates the molecular crosstalk between cannabinoid receptor type I (CB1) and type II (CB2) activation and autophagic pathways across oral tissues. Cannabinoids, including cannabidiol (CBD) and tetrahydrocannabinol (THC), modulate key regulators like mTOR, AMPK, and Beclin-1, thereby influencing autophagic flux, inflammation, and apoptosis. Experimental studies indicate that cannabinoids inhibit the PI3K/AKT/mTOR pathway, promote reactive oxygen species (ROS)-induced autophagy, and modulate cytokine secretion, mechanisms that underline their dual anti-inflammatory and anti-cancer capabilities. In addition, cannabinoid-induced autophagy has been shown to enhance stem cell survival and differentiation, offering promise for dental pulp regeneration. Despite these promising prospects, several challenges remain, including receptor selectivity, dose-dependent variability, limited oral bioavailability, and ongoing regulatory constraints. A deeper understanding of the context-dependent regulation of autophagy by cannabinoid signaling could pave the way for innovative therapeutic interventions in dentistry. Tailored cannabinoid-based formulations, engineered for receptor specificity, tissue selectivity, and optimized delivery, hold significant potential to revolutionize oral healthcare by modulating autophagy-related molecular pathways involved in disease resolution and tissue regeneration. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Protective Effects of miR-16-5p and miR-142-3p on Inflammation and Autophagy in Human Corneal Epithelial Cells Under Hyperosmotic Stress In Vitro
by Min-Ji Cha, Hyunsoo Cho, Yeji Yeon and Yu Jeong Kim
Int. J. Mol. Sci. 2026, 27(1), 422; https://doi.org/10.3390/ijms27010422 - 31 Dec 2025
Viewed by 140
Abstract
To investigate the regulatory effects of miR-16-5p and miR-142-3p on inflammation and autophagy in human corneal epithelial cells (HCEpiCs) exposed to hyperosmotic stress, a key pathogenic condition in dry eye disease, HCEpiCs were cultured under NaCl-induced hyperosmotic conditions (450 mOsm, 24 h) and [...] Read more.
To investigate the regulatory effects of miR-16-5p and miR-142-3p on inflammation and autophagy in human corneal epithelial cells (HCEpiCs) exposed to hyperosmotic stress, a key pathogenic condition in dry eye disease, HCEpiCs were cultured under NaCl-induced hyperosmotic conditions (450 mOsm, 24 h) and transfected with miR-16-5p or miR-142-3p mimics. Expression of inflammatory cytokines (IL-1β, IL-6, TNF-α, IRAK1), autophagy-related genes (ATG5, Beclin-1, ATG16L1, p62), and apoptotic markers (Bax, Bcl-2, caspase-3) was analyzed by qRT-PCR and Western blot. Reactive oxygen species (ROS), autophagic vesicles, and apoptosis were evaluated using DCFH-DA, DAPRed, and Annexin V assays. The expression levels of antioxidant proteins (SOD1, catalase, NRF2) were also measured. Hyperosmotic stress induces marked inflammatory activation and excessive autophagy in HCEpiCs, accompanied by increased ROS generation and apoptosis. Overexpression of miR-16-5p or miR-142-3p significantly attenuated these effects by suppressing NF-κB-mediated cytokine expression and downregulating ATG5 and ATG16L1 expression, while restoring p62 expression. Both miRNAs reduced oxidative stress and COX-2 expression, enhanced antioxidant defenses, and normalized the expression of apoptotic markers. miR-16-5p and miR-142-3p are important regulators of inflammation and autophagy under hyperosmotic stress. Our findings suggest that modulating intracellular miR-16-5p and miR-142-3p levels in corneal epithelial cells may represent a potential approach to protect the ocular surface under hyperosmotic stress, although their systemic roles in autoimmune dry eye require further clarification. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

20 pages, 1165 KB  
Review
Reprogramming the Apoptosis–Autophagy Axis in Glioblastoma: The Central Role of the Bcl-2:Beclin-1 Complex and Survival Signalling Networks
by Monika Christoff, Amelia Szczepańska, Joanna Jakubowicz-Gil and Adrian Zając
Cells 2026, 15(1), 53; https://doi.org/10.3390/cells15010053 - 27 Dec 2025
Viewed by 476
Abstract
Glioblastoma multiforme (GBM) exhibits remarkable resistance to therapy, mainly due to its capacity to modulate regulated cell death pathways. Among these, apoptosis and autophagy are dynamically interconnected, determining cell fate under therapeutic stress. The interaction between beclin-1 and Bcl-2 proteins may represent a [...] Read more.
Glioblastoma multiforme (GBM) exhibits remarkable resistance to therapy, mainly due to its capacity to modulate regulated cell death pathways. Among these, apoptosis and autophagy are dynamically interconnected, determining cell fate under therapeutic stress. The interaction between beclin-1 and Bcl-2 proteins may represent a key molecular switch that controls whether glioma cells undergo survival or death. This review highlights the crucial role of the Bcl-2:beclin-1 complex in controlling apoptosis–autophagy axis in GBM, emphasising how survival signalling networks, including PI3K/AKT/mTOR, Ras/Raf/MEK/ERK, and PLCγ1/PKC pathways regulated by the TrkB receptor, modulate this balance. We summarise recent insights into how these pathways coordinate the shift between apoptosis and autophagy in glioma cells, contributing to drug resistance. Furthermore, we highlight how modulating this crosstalk can sensitise GBM to conventional and emerging therapies. Integrating new concepts of cell death reprogramming and systems-level signalling analysis, we propose that targeting the Bcl-2:beclin-1 complex and its upstream regulators could overcome the adaptive plasticity of glioblastoma multiforme and open new directions for combination treatment strategies. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Graphical abstract

20 pages, 9855 KB  
Article
Melatonin Alleviates High-Fructose-Induced Renal Injury in Male Mice, Which Might Be Associated with the Regulation of Mitophagy and Fatty Acid Oxidation
by Yanzhen Ma, Dan Sun, Yixian Bai, Weiheng Liu, Xue Bai, Zhikang Liu, Tian Kong, Peng Wang, Xi Liang, Zhe Zhang, Hui Liang and Huaqi Zhang
Nutrients 2026, 18(1), 68; https://doi.org/10.3390/nu18010068 - 25 Dec 2025
Viewed by 284
Abstract
Objective: To explore the preventive effect and mechanism of melatonin on high-fructose-induced renal injury in mice. Methods: A total of forty male C57BL/6J mice aged six weeks were randomly assigned to four groups: control group (CON), melatonin group (MLT), fructose group [...] Read more.
Objective: To explore the preventive effect and mechanism of melatonin on high-fructose-induced renal injury in mice. Methods: A total of forty male C57BL/6J mice aged six weeks were randomly assigned to four groups: control group (CON), melatonin group (MLT), fructose group (FRU), and fructose + melatonin group (FRU + MLT). The concentration of the fructose solution was 30%, and the dose of melatonin was 10 mg/kg/day by intragastric administration. The experiment lasts for 10 weeks. Results: Liquid intake and energy intake were comparable between the FRU and FRU + MLT, both of which were significantly higher than that in the CON and MLT. MLT inhibited fructose-induced increased levels in serum creatinine (Cre), serum urea nitrogen (BUN), serum uric acid (UA), serum triglyceride (TG), renal kidney injury molecule-1 (KIM-1), and renal TG. Hematoxylin and Eosin (H&E) staining and Oil Red O (ORO) staining showed that MLT alleviated renal tubular dilatation, loss of brush border, epithelial cell detachment and lipid accumulation. Transmission electron microscope (TEM) observations showed that MLT increased autophagic vacuoles among mitochondria. Western blot analysis showed that, compared with the FRU, the FRU + MLT had elevated expression of AMP-activated protein kinase (AMPK) phosphorylation, along with a significant increase in the expression of its downstream mitophagy-related proteins (including PINK1, Parkin, LC3 II, and Beclin1), whereas the expression of p62 was markedly decreased. Furthermore, the expression levels of FAO-related proteins (including PPARα and CPT1A) in the FRU + MLT were significantly upregulated. Conclusions: MLT alleviates renal injury caused by high-fructose exposure in male mice and its mechanism might be associated with the regulation of mitophagy and fatty acid oxidation. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 2645 KB  
Article
Interplay Between NLRP3 Activation by DENV-2 and Autophagy and Its Impact on Lipid Metabolism in HMEC-1 Cells
by Giovani Visoso-Carvajal, Julio García-Cordero, Yandy Ybalmea-Gómez, Margarita Diaz-Flores, Moisés León-Juárez, Rosaura Hernández-Rivas, Porfirio Nava, Nicolás Villegas-Sepúlveda and Leticia Cedillo-Barrón
Pathogens 2025, 14(12), 1292; https://doi.org/10.3390/pathogens14121292 - 16 Dec 2025
Viewed by 362
Abstract
Dengue Virus (DENV) induces assembly of the NOD-like receptor (NLR) family pyrin domain containing-3 (NLRP3) inflammasome and autophagy, which are closely interconnected processes playing crucial roles in lipid metabolism and DENV replication. However, the autophagy–NLRP3 activation interplay during DENV infection in human endothelial [...] Read more.
Dengue Virus (DENV) induces assembly of the NOD-like receptor (NLR) family pyrin domain containing-3 (NLRP3) inflammasome and autophagy, which are closely interconnected processes playing crucial roles in lipid metabolism and DENV replication. However, the autophagy–NLRP3 activation interplay during DENV infection in human endothelial cells remains incompletely understood. We aimed to elucidate effects of NLRP3 activation on autophagy during DENV-2 infection. We investigated how autophagy-related molecules are altered by NLRP3 inhibition and how this regulation affects lipid metabolism, through the master lipid transcription factors SREBP-1 and 2, which increase the expression of their target lipid-synthesizing genes such as fatty acid synthase (FAS) in a model of microvascular endothelial cells (HMEC-1). We demonstrated a dynamic interplay between inflammasome activity and autophagy in DENV-infected HMEC-1 cells: autophagy increases early during infection and decreases as inflammasome activity increases. NLRP3 inflammasome inhibition affects viral replication. Glyburide (an inflammasome inhibitor) treatment partially inhibited DENV-induced NLRP3 inflammasome activation. Non-structural viral protein expression (NS3 and NS5) and infectious viral-particle formation were significantly reduced. NLRP3 inhibition also downregulated SREBP-1 and SREBP-2 activation. These findings provide new insights into the modulation of the interconnected NLRP3 inflammasome, autophagy, and lipid metabolism pathways, presenting a promising therapeutic strategy for severe clinical forms of dengue. Full article
Show Figures

Graphical abstract

26 pages, 2722 KB  
Article
Fish Oil Present in High-Fat Diet, Unlike Other Fats, Attenuates Oxidative Stress and Activates Autophagy in Murine Adipose Tissue
by Karolina Ciesielska, Jacek Wilczak, Adam Prostek, Piotr Karpiński, Rafał Sapierzyński, Alicja Majewska, Żaneta Dzięgelewska-Sokołowska and Małgorzata Gajewska
Nutrients 2025, 17(23), 3776; https://doi.org/10.3390/nu17233776 - 1 Dec 2025
Viewed by 706
Abstract
Background/Objectives: Increased fat intake and high content of saturated fatty acids in the diet are associated with higher body weight and an increased risk of obesity. This study aimed to determine the impact of a high-fat diet (HFD) on white adipose tissue (WAT) [...] Read more.
Background/Objectives: Increased fat intake and high content of saturated fatty acids in the diet are associated with higher body weight and an increased risk of obesity. This study aimed to determine the impact of a high-fat diet (HFD) on white adipose tissue (WAT) metabolism and to verify whether this effect depends on the sources of lipids in HFD. Methods: Male C57BL/6J mice, 7 weeks old, received a control (Ctrl.) or high-fat diet (HFD) with 10% and 45% energy from fat, respectively, for 15 weeks. Lard was used as the main dietary fat in the HFD group. Next, the HFD group was subdivided into HFD-L, HFD-CO, HFD-OO and HFD-FO groups differing in the lipid sources (lard, coconut oil, olive oil, fish oil, respectively). The experiment was continued for 12 consecutive weeks. The study analyzed the concentration of different fatty acids in visceral (VAT) and subcutaneous (ScAT) adipose tissue; the levels of autophagy markers: beclin1, Atg5, LC3, p62, AMPK; ER stress markers: phos-PERK, CHOP, XBP-1 and oxidative stress parameters: TAS and TBARS in VAT and ScAT. Results: Mice in all HFD groups showed increased body mass and adipose tissue hypertrophy. Blood glucose concentration remained elevated in the HFD-L group but normalized in other HFD groups by the end of the dietary intervention. Fatty acid content in VAT and ScAT reflected the dietary sources in HFD. The HFD-L, HFD-CO, HFD-OO groups showed increased beclin1, ATG5, and p62 levels in VAT but the LC3-II/LC3-I ratio was similar to the control, suggesting impaired autophagic flux. In the HFD-FO group, the LC-II/LC-I ratio was elevated, along with decreased p62 levels, indicating active autophagic degradation. Changes in autophagy activity were insignificant in ScAT. ER stress markers were also mostly unaffected by HFD in both adipose tissue depots. TAS and TBARS values in VAT and ScAT were similar in the HFD-L and HFD-CO groups, and the HFD-OO group showed increased TAS and decreased TBARS, while the HFD-FO reduced TBARS. Conclusions: Antioxidant capacity and autophagy activity in WAT depended on fat content and lipid source, especially in the visceral depot. Fish oil induced changes in cellular metabolism, especially in VAT, diminishing the detrimental effects of HFD. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

28 pages, 7715 KB  
Article
Functional pH-Responsive Nanoparticles for Immune Reprogramming in MSS Colorectal Cancer via ER Stress-Induced Proteostasis Disruption, PD-L1-Targeting miRNA, and TLR7 Activation
by Yu-Li Lo, Hua-Ching Lin, Ching-Yao Li, Bryant Huang, Ching-Ping Yang, Hui-Yen Chuang and Tsui-Fen Chou
Pharmaceutics 2025, 17(11), 1503; https://doi.org/10.3390/pharmaceutics17111503 - 20 Nov 2025
Viewed by 901
Abstract
Background: Colorectal cancer (CRC), particularly the microsatellite-stable (MSS) subtype, remains largely unresponsive to immune checkpoint inhibitors (ICIs) due to immune escape, tumor-associated macrophage (TAM) enrichment, and cytokine-driven suppression that sustain a TAM-dominant tumor microenvironment (TME). To overcome these barriers, a pH-responsive solid lipid [...] Read more.
Background: Colorectal cancer (CRC), particularly the microsatellite-stable (MSS) subtype, remains largely unresponsive to immune checkpoint inhibitors (ICIs) due to immune escape, tumor-associated macrophage (TAM) enrichment, and cytokine-driven suppression that sustain a TAM-dominant tumor microenvironment (TME). To overcome these barriers, a pH-responsive solid lipid nanoparticle (SLN) system was engineered to co-deliver CB-5083 (a VCP/p97 inhibitor), miR-142 (a PD-L1-targeting microRNA), and imiquimod (R, a TLR7 agonist) for spatially confined induction of endoplasmic reticulum stress (ERS) and immune reprogramming in MSS CRC. Methods: The SLNs were coated with PEG–PGA for pH-triggered de-shielding and functionalized with PD-L1- and EGFR-binding peptides plus an ER-homing peptide, enabling tumor-selective and subcellular targeting. Results: The nanoplatform displayed acid-triggered PEG–PGA detachment, selective CRC/TAM uptake, and ER localization. CB-mediated VCP inhibition activated IRE1α/XBP1s/LC3II, PERK/eIF2α/ATF4/CHOP, and JNK/Beclin signaling, driving apoptosis and autophagy, while miR-142 suppressed PD-L1 expression and epithelial–mesenchymal transition markers. R facilitated dendritic cell maturation and M1 polarization. Combined CB + miR + R/SLN-CSW suppressed IL-17, G-CSF, and CXCL1, increased infiltration of CD4+ and CD8+ T cells, reduced Tregs and M2-TAMs, and inhibited tumor growth in CT-26 bearing mice. The treatment induced immunogenic cell death, reprogramming the TME into a T cell-permissive state and conferring resistance to tumor rechallenge. Biodistribution analysis confirmed tumor-preferential accumulation with minimal off-target exposure, and biosafety profiling demonstrated low systemic toxicity. Conclusions: This TME-responsive nanoplatform therefore integrates ERS induction, checkpoint modulation, and cytokine suppression to overcome immune exclusion in MSS CRC, representing a clinically translatable strategy for chemo-immunotherapy in immune-refractory tumors. Full article
Show Figures

Graphical abstract

19 pages, 2606 KB  
Article
Dysregulated lncRNAs in Cisplatin-Induced Nephrotoxicity and Their Association with Apoptosis and Autophagy: An Exploratory In Vitro Study
by Yuliannis Lugones, Pía Loren, Carola E. Matus, Nelia M. Rodriguez, Pamela Leal-Rojas, Rody San Martín, Kathleen Saavedra, Nicolás Saavedra, Patricia Moriel and Luis A. Salazar
Int. J. Mol. Sci. 2025, 26(22), 11201; https://doi.org/10.3390/ijms262211201 - 19 Nov 2025
Viewed by 622
Abstract
Cisplatin is a widely used chemotherapeutic agent, but its clinical application is limited by nephrotoxicity. Conventional renal markers lack sensitivity for early cisplatin nephrotoxicity while long non-coding RNAs (lncRNAs) display cisplatin-responsive changes with exploratory value. The present study aimed to explore the differential [...] Read more.
Cisplatin is a widely used chemotherapeutic agent, but its clinical application is limited by nephrotoxicity. Conventional renal markers lack sensitivity for early cisplatin nephrotoxicity while long non-coding RNAs (lncRNAs) display cisplatin-responsive changes with exploratory value. The present study aimed to explore the differential expression of eight lncRNAs on in vitro model of cisplatin-induced nephrotoxicity. Human kidney cell lines HEK-293 and HK-2 were exposed to increasing concentrations of cisplatin for 24 h. Cell viability was determined by colorimetric assays to ascertain the concentrations resulting in 25% (IC25), 50% (IC50), and 75% (IC75) cell death (inhibitory concentration). Apoptotic and autophagy-related proteins were analyzed by Western blot, and reverse transcription–polymerase chain reaction was employed to evaluate the expression of the lncRNAs. Cisplatin-induced cell death with IC25, IC50, and IC75 values of 8.8, 15.43 and 27 μM for HEK-293 cells, and 8.1, 13.57, and 22.8 μM for HK-2 cells. Protein analysis showed an increase in cleaved caspase-9, reduction of caspase-3 and increased LC3-II/LC3-I ratio, with no changes in caspase 7 and Beclin-1. The lncRNAs UCA1, XLOC_032768, HOTAIR, LINC-ROR, and PRNCR1 were downregulated, whereas OIP5-AS1 was upregulated; in contrast, GAS5 and PVT1 remained unchanged. In conclusion, this exploratory in vitro study identifies cisplatin-responsive dysregulation of lncRNAs in human renal cells and delineates their associations with apoptosis and autophagy. Full article
Show Figures

Figure 1

21 pages, 1883 KB  
Article
Lactobacillus rhamnosus GG and Lactobacillus paracasei IMPC2.1 Mitigate LPS-Induced Epithelial Barrier Dysfunction: A Focus on Autophagy Regulation
by Antonella Orlando, Fatima Maqoud, Domenica Mallardi, Simona Drago, Eleonora Malerba, Guglielmina Chimienti and Francesco Russo
Int. J. Mol. Sci. 2025, 26(22), 11148; https://doi.org/10.3390/ijms262211148 - 18 Nov 2025
Viewed by 1184
Abstract
The intestinal epithelial barrier is critical for maintaining gut homeostasis, yet its integrity can be compromised by inflammation and microbial dysbiosis. Here, we demonstrate that Lactobacillus rhamnosus GG (LGG) and Lactobacillus paracasei IMPC2.1 (L. paracasei) show their effectiveness in enhancing epithelial [...] Read more.
The intestinal epithelial barrier is critical for maintaining gut homeostasis, yet its integrity can be compromised by inflammation and microbial dysbiosis. Here, we demonstrate that Lactobacillus rhamnosus GG (LGG) and Lactobacillus paracasei IMPC2.1 (L. paracasei) show their effectiveness in enhancing epithelial barrier function and modulating autophagy, counteract the epithelial barrier dysfunction, induced by Lipopolysaccharide (LPS), in Caco-2 cells by modulating tight junction (TJ) protein expression through regulation of inflammation and apoptosis. LPS exposure significantly reduced transepithelial electrical resistance (TEER) and increased paracellular permeability, effects that were partially reversed by both probiotic strains. Western blot analysis revealed that LPS downregulated ZO-1, Occludin, and p-mTOR, while upregulating autophagy markers LC3-II and Beclin1, without affecting p62 levels. The latter finding indicated an impairment of autophagy flux, confirmed by immunofluorescence experiments. Co-treatment with LGG or L. paracasei restored TJ protein expression and alleviated the LPS-induced impairment of autophagic flux. Both probiotics suppressed LPS-induced cyclooxygenase-2 (Cox-2) and Bax upregulation, suggesting anti-inflammatory and anti-apoptotic effects. In the complex interplay between inflammation, autophagy, and apoptosis, these findings highlight a key regulatory mechanism in probiotic-mediated epithelial protection, underscoring the therapeutic potential of LGG and L. paracasei in mitigating gut barrier dysfunction. Full article
(This article belongs to the Special Issue Gastrointestinal Microbes: Implications for Health and Disease)
Show Figures

Figure 1

15 pages, 13460 KB  
Article
Dynamic Alterations in Testicular Autophagy in Prepubertal Mice
by Dong Zhang, Xiaoyun Pang, Zhenxing Yan, Weitao Dong, Zihao Fang, Jincheng Yang, Yanyan Wang, Li Xue, Jiahao Zhang, Chen Xue, Hongwei Duan, Xianghong Du and Yuxuan He
J. Dev. Biol. 2025, 13(4), 42; https://doi.org/10.3390/jdb13040042 - 18 Nov 2025
Viewed by 588
Abstract
Autophagy has a potential regulatory effect on spermatogenesis and testicular development. Dynamic alterations in the testicular autophagy of prepubertal mice were analyzed, and the relationship between autophagy levels and testicular development was clarified using C57BL/6 mice aged 1, 2, 4, 6, and 8 [...] Read more.
Autophagy has a potential regulatory effect on spermatogenesis and testicular development. Dynamic alterations in the testicular autophagy of prepubertal mice were analyzed, and the relationship between autophagy levels and testicular development was clarified using C57BL/6 mice aged 1, 2, 4, 6, and 8 weeks. Transmission electron microscopy was used to identify autophagic vacuoles. The expression of autophagy-related proteins and PI3K/AKT/mTOR signaling pathway-related proteins was determined using Western blotting. Localization of microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (p62) in testicular tissues was determined using immunofluorescence and immunohistochemistry. Autophagic vacuoles in spermatogenic cells increased gradually from weeks 1 to 4, peaked at 2 weeks, decreased sharply at 6 weeks, and were undetectable at 8 weeks. The expression of Beclin 1 autophagy-related protein, LC3-II, and p62 was highest at 2 weeks among the five age groups, whereas LC3-II and p62 were mainly localized in spermatogonia and spermatocytes. Moreover, low mTOR expression and its increased expression were detected at 1–2 weeks and 2–8 weeks, respectively. These results show that testicular autophagic levels exhibit a dynamic pattern of “increase (1–2 weeks) followed by a decrease (2–8 weeks),” providing a reference in determining the relationship between autophagy levels and testicular development. Full article
Show Figures

Figure 1

13 pages, 2298 KB  
Article
Study on the Protective Mechanism of Dihydromyricetin Against Aflatoxin B1-Induced Injury in Madin–Darby Canine Kidney Cells
by He Zhai, Liuwei Xie, Baoan Li, Mingqiang Song, Xiao Li, Shu Xu, Yao Wang and Chao Xu
Curr. Issues Mol. Biol. 2025, 47(11), 947; https://doi.org/10.3390/cimb47110947 - 13 Nov 2025
Viewed by 400
Abstract
Aflatoxin B1 (AFB1) is a common contaminant in canine diets that can cause significant damage to metabolic organs with prolonged exposure. Dihydromyricetin (DMY), a flavonoid compound abundant in Ampelopsis grossedentata, is widely used in functional foods due to its [...] Read more.
Aflatoxin B1 (AFB1) is a common contaminant in canine diets that can cause significant damage to metabolic organs with prolonged exposure. Dihydromyricetin (DMY), a flavonoid compound abundant in Ampelopsis grossedentata, is widely used in functional foods due to its diverse biological activities. This study aimed to investigate the mechanism by which DMY alleviates AFB1-induced damage in MDCK cells. Four experimental groups were established: a control group with culture medium only (CON group), a group treated with 5 μg/mL AFB1 (AFB1 group), and two treatment groups treated with 5 μg/mL AFB1 combined with either 25 mmol/L or 50 mmol/L DMY—concentrations with more robust and stable protective effects than 100 mmol/L DMY, as confirmed by experimental screening. The results showed that AFB1 significantly reduced MDCK cell viability at concentrations of 5–30 μg/mL (p < 0.01), while DMY at 25–100 mmol/L markedly improved cell viability (p < 0.01). AFB1 treatment led to a significant increase in reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels, along with a reduction in superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.01). 25 mmol/L and 50 mmol/L DMY treatment reversed these effects, decreasing ROS, MDA, TNF-α, IL-6, and IL-1β levels while increasing SOD and CAT activities (p < 0.01). Furthermore, 25 mmol/L and 50 mmol/L DMY improved mitochondrial membrane potential (p < 0.01), counteracting AFB1’s inhibitory effects on autophagy-related proteins by promoting p-AMPK and Beclin-1 expression while inhibiting p-mTOR, p53, and p62 expression (p < 0.05). In conclusion, DMY mitigates AFB1-induced damage in MDCK cells by enhancing anti-inflammatory and antioxidant defenses and promoting autophagy, providing a theoretical foundation for future treatment strategies for canine kidney damage. Full article
Show Figures

Graphical abstract

18 pages, 3672 KB  
Article
C9ORF72 Is Pivotal to Maintain a Proper Protein Homeostasis in Mouse Skeletal Muscle
by Francesca Sironi, Paola Parlanti, Cassandra Margotta, Jessica Cassarà, Valentina Bonetto, Caterina Bendotti, Massimo Tortarolo and Valentina Cappello
Cells 2025, 14(22), 1765; https://doi.org/10.3390/cells14221765 - 11 Nov 2025
Viewed by 661
Abstract
The C9ORF72 gene mutation is a major cause of amyotrophic lateral sclerosis (ALS). Disease mechanisms involve both loss of C9ORF72 protein function and toxic effects from hexanucleotide repeat expansions. Although its role in neurons and the immune system is well studied, the impact [...] Read more.
The C9ORF72 gene mutation is a major cause of amyotrophic lateral sclerosis (ALS). Disease mechanisms involve both loss of C9ORF72 protein function and toxic effects from hexanucleotide repeat expansions. Although its role in neurons and the immune system is well studied, the impact of C9ORF72 deficiency on skeletal muscle is not yet well understood, despite muscle involvement being a key feature in ALS pathology linked to this mutation. This study examined skeletal muscle from C9ORF72 knockout mice and found a 19.5% reduction in large muscle fibers and altered fiber composition. Ultrastructural analysis revealed mitochondrial abnormalities, including smaller size, pale matrix, and disorganized cristae. Molecular assessments showed increased expression of Atrogin-1, indicating elevated proteasomal degradation, and markers of enhanced autophagy, such as elevated LC3BII/LC3BI ratio, Beclin-1, and reduced p62. Mitochondrial quality control was impaired, with a 3.6-fold increase in PINK1, upregulation of TOM20, reduced Parkin, and decreased PGC-1α, suggesting disrupted mitophagy and mitochondrial biogenesis. These changes led to the accumulation of damaged mitochondria. Overall, the study demonstrates that C9ORF72 is critical for maintaining muscle protein and mitochondrial homeostasis. While C9orf72-haploinsufficiency does not directly compromise muscle strength in mice, it may increase the vulnerability of skeletal muscle in C9ORF72-associated ALS. Full article
Show Figures

Figure 1

Back to TopTop