Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (597)

Search Parameters:
Keywords = Bayes tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8496 KiB  
Article
Comparative Performance of Machine Learning Models for Landslide Susceptibility Assessment: Impact of Sampling Strategies in Highway Buffer Zone
by Zhenyu Tang, Shumao Qiu, Haoying Xia, Daming Lin and Mingzhou Bai
Appl. Sci. 2025, 15(15), 8416; https://doi.org/10.3390/app15158416 - 29 Jul 2025
Viewed by 138
Abstract
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, [...] Read more.
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, including Naïve Bayes (NB), Support Vector Machine (SVM), SVM-Random Forest hybrid (SVM-RF), and XGBoost. The study area is a 2 km buffer zone along the Duku Highway in Xinjiang, China, with 102 landslide and 102 non-landslide points extracted by aforementioned sampling methods. Models were tested using ROC curves and non-parametric significance tests based on 20 repetitions of 5-fold spatial cross-validation data. GLHM sampling consistently improved AUROC and accuracy across all models (e.g., AUROC gains: NB +8.44, SVM +7.11, SVM–RF +3.45, XGBoost +3.04; accuracy gains: NB +11.30%, SVM +8.33%, SVM–RF +7.40%, XGBoost +8.31%). XGBoost delivered the best performance under both sampling strategies, reaching 94.61% AUROC and 84.30% accuracy with GLHM sampling. SHAP analysis showed that GLHM sampling stabilized feature importance rankings, highlighting STI, TWI, and NDVI as the main controlling factors for landslides in the study area. These results highlight the importance of hazard-informed sampling to enhance landslide susceptibility modeling accuracy and interpretability. Full article
Show Figures

Figure 1

22 pages, 12611 KiB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 138
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 666 KiB  
Article
Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring
by Rajni Goel, Mahmoud M. Abdelwahab and Mustafa M. Hasaballah
Axioms 2025, 14(8), 573; https://doi.org/10.3390/axioms14080573 - 25 Jul 2025
Viewed by 166
Abstract
Accurate modeling of product lifetimes is vital in reliability analysis and engineering to ensure quality and maintain competitiveness. This paper proposes the progressively randomly censored Maxwell distribution, which incorporates both progressive Type-II and random censoring within the Maxwell distribution framework. The model allows [...] Read more.
Accurate modeling of product lifetimes is vital in reliability analysis and engineering to ensure quality and maintain competitiveness. This paper proposes the progressively randomly censored Maxwell distribution, which incorporates both progressive Type-II and random censoring within the Maxwell distribution framework. The model allows for the planned removal of surviving units at specific stages of an experiment, accounting for both deliberate and random censoring events. It is assumed that survival and censoring times each follow a Maxwell distribution, though with distinct parameters. Both frequentist and Bayesian approaches are employed to estimate the model parameters. In the frequentist approach, maximum likelihood estimators and their corresponding confidence intervals are derived. In the Bayesian approach, Bayes estimators are obtained using an inverse gamma prior and evaluated through a Markov Chain Monte Carlo (MCMC) method under the squared error loss function (SELF). A Monte Carlo simulation study evaluates the performance of the proposed estimators. The practical relevance of the methodology is demonstrated using a real data set. Full article
Show Figures

Figure 1

30 pages, 6810 KiB  
Article
Interpretable Machine Learning Framework for Non-Destructive Concrete Strength Prediction with Physics-Consistent Feature Analysis
by Teerapun Saeheaw
Buildings 2025, 15(15), 2601; https://doi.org/10.3390/buildings15152601 - 23 Jul 2025
Viewed by 307
Abstract
Non-destructive concrete strength prediction faces limitations in validation scope, methodological comparison, and interpretability that constrain deployment in safety-critical construction applications. This study presents a machine learning framework integrating polynomial feature engineering, AdaBoost ensemble regression, and Bayesian optimization to achieve both predictive accuracy and [...] Read more.
Non-destructive concrete strength prediction faces limitations in validation scope, methodological comparison, and interpretability that constrain deployment in safety-critical construction applications. This study presents a machine learning framework integrating polynomial feature engineering, AdaBoost ensemble regression, and Bayesian optimization to achieve both predictive accuracy and physics-consistent interpretability. Eight state-of-the-art methods were evaluated across 4420 concrete samples, including statistical significance testing, scenario-based assessment, and robustness analysis under measurement uncertainty. The proposed PolyBayes-ABR methodology achieves R2 = 0.9957 (RMSE = 0.643 MPa), showing statistical equivalence to leading ensemble methods, including XGBoost (p = 0.734) and Random Forest (p = 0.888), while outperforming traditional approaches (p < 0.001). Scenario-based validation across four engineering applications confirms robust performance (R2 > 0.93 in all cases). SHAP analysis reveals that polynomial features capture physics-consistent interactions, with the Curing_age × Er interaction achieving dominant importance (SHAP value: 4.2337), aligning with established hydration–microstructure relationships. When accuracy differences fall within measurement uncertainty ranges, the framework provides practical advantages through enhanced uncertainty quantification (±1.260 MPa vs. ±1.338 MPa baseline) and actionable engineering insights for quality control and mix design optimization. This approach addresses the interpretability challenge in concrete engineering applications where both predictive performance and scientific understanding are essential for safe deployment. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 3468 KiB  
Article
A Hybrid CNN–BiLSTM Framework Optimized with Bayesian Search for Robust Android Malware Detection
by Ibrahim Mutambik
Systems 2025, 13(7), 612; https://doi.org/10.3390/systems13070612 - 19 Jul 2025
Viewed by 370
Abstract
With the rapid proliferation of Android smartphones, mobile malware threats have escalated significantly, underscoring the need for more accurate and adaptive detection solutions. This work proposes an innovative deep learning hybrid model that combines Convolutional Neural Networks (CNNs) with Bidirectional Long Short-Term Memory [...] Read more.
With the rapid proliferation of Android smartphones, mobile malware threats have escalated significantly, underscoring the need for more accurate and adaptive detection solutions. This work proposes an innovative deep learning hybrid model that combines Convolutional Neural Networks (CNNs) with Bidirectional Long Short-Term Memory (BiLSTM) networks for learning both local features and sequential behavior in Android applications. To improve the relevance and clarity of the input data, Mutual Information is applied for feature selection, while Bayesian Optimization is adopted to efficiently optimize the model’s parameters. The designed system is tested on standard Android malware datasets and achieves an impressive detection accuracy of 99.3%, clearly outperforming classical approaches such as Support Vector Machines (SVMs), Random Forest, CNN, and Naive Bayes. Moreover, it delivers strong outcomes across critical evaluation metrics like F1-score and ROC-AUC. These findings confirm the framework’s high efficiency, adaptability, and practical applicability, making it a compelling solution for Android malware detection in today’s evolving threat landscape. Full article
(This article belongs to the Special Issue Cyber Security Challenges in Complex Systems)
Show Figures

Figure 1

15 pages, 3145 KiB  
Article
Probabilistic Prediction of Spudcan Bearing Capacity in Stiff-over-Soft Clay Based on Bayes’ Theorem
by Zhaoyu Sun, Pan Gao, Yanling Gao, Jianze Bi and Qiang Gao
J. Mar. Sci. Eng. 2025, 13(7), 1344; https://doi.org/10.3390/jmse13071344 - 14 Jul 2025
Viewed by 215
Abstract
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit [...] Read more.
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit limited accuracy as they fail to account for uncertainties in seabed stratigraphy and soil properties. To address this limitation, based on a database of centrifuge model tests, a probabilistic prediction framework for the peak resistance and corresponding depth is developed by integrating empirical prediction formulas based on Bayes’ theorem. The proposed Bayesian methodology effectively refines prediction accuracy by quantifying uncertainties in soil parameters, spudcan geometry, and computational models. Specifically, it establishes prior probability distributions of peak resistance and depth through Monte Carlo simulations, then updates these distributions in real time using field monitoring data during spudcan penetration. The results demonstrate that both the recommended method specified in ISO 19905-1 and an existing deterministic model tend to yield conservative estimates. This approach can significantly improve the predicted accuracy of the peak resistance compared with deterministic methods. Additionally, it shows that the most probable failure zone converges toward the actual punch-through point as more monitoring data is incorporated. The enhanced prediction capability provides critical decision support for mitigating punch-through potential during offshore jack-up operations, thereby advancing the safety and reliability of marine engineering practices. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 2297 KiB  
Article
Detecting Fake News in Urdu Language Using Machine Learning, Deep Learning, and Large Language Model-Based Approaches
by Muhammad Shoaib Farooq, Syed Muhammad Asadullah Gilani, Muhammad Faraz Manzoor and Momina Shaheen
Information 2025, 16(7), 595; https://doi.org/10.3390/info16070595 - 10 Jul 2025
Viewed by 391
Abstract
Fake news is false or misleading information that looks like real news and spreads through traditional and social media. It has a big impact on our social lives, especially in politics. In Pakistan, where Urdu is the main language, finding fake news in [...] Read more.
Fake news is false or misleading information that looks like real news and spreads through traditional and social media. It has a big impact on our social lives, especially in politics. In Pakistan, where Urdu is the main language, finding fake news in Urdu is difficult because there are not many effective systems for this. This study aims to solve this problem by creating a detailed process and training models using machine learning, deep learning, and large language models (LLMs). The research uses methods that look at the features of documents and classes to detect fake news in Urdu. Different models were tested, including machine learning models like Naïve Bayes and Support Vector Machine (SVM), as well as deep learning models like Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), which used embedding techniques. The study also used advanced models like BERT and GPT to improve the detection process. These models were first evaluated on the Bend-the-Truth dataset, where CNN achieved an F1 score of 72%, Naïve Bayes scored 78%, and the BERT Transformer achieved the highest F1 score of 79% on Bend the Truth dataset. To further validate the approach, the models were tested on a more diverse dataset, Ax-to-Grind, where both SVM and LSTM achieved an F1 score of 89%, while BERT outperformed them with an F1 score of 93%. Full article
Show Figures

Figure 1

19 pages, 1039 KiB  
Article
Prediction of Parkinson Disease Using Long-Term, Short-Term Acoustic Features Based on Machine Learning
by Mehdi Rashidi, Serena Arima, Andrea Claudio Stetco, Chiara Coppola, Debora Musarò, Marco Greco, Marina Damato, Filomena My, Angela Lupo, Marta Lorenzo, Antonio Danieli, Giuseppe Maruccio, Alberto Argentiero, Andrea Buccoliero, Marcello Dorian Donzella and Michele Maffia
Brain Sci. 2025, 15(7), 739; https://doi.org/10.3390/brainsci15070739 - 10 Jul 2025
Viewed by 492
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting countless individuals worldwide. PD is characterized by the onset of a marked motor symptomatology in association with several non-motor manifestations. The clinical phase of the disease is usually [...] Read more.
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting countless individuals worldwide. PD is characterized by the onset of a marked motor symptomatology in association with several non-motor manifestations. The clinical phase of the disease is usually preceded by a long prodromal phase, devoid of overt motor symptomatology but often showing some conditions such as sleep disturbance, constipation, anosmia, and phonatory changes. To date, speech analysis appears to be a promising digital biomarker to anticipate even 10 years before the onset of clinical PD, as well serving as a useful prognostic tool for patient follow-up. That is why, the voice can be nominated as the non-invasive method to detect PD from healthy subjects (HS). Methods: Our study was based on cross-sectional study to analysis voice impairment. A dataset comprising 81 voice samples (41 from healthy individuals and 40 from PD patients) was utilized to train and evaluate common machine learning (ML) models using various types of features, including long-term (jitter, shimmer, and cepstral peak prominence (CPP)), short-term features (Mel-frequency cepstral coefficient (MFCC)), and non-standard measurements (pitch period entropy (PPE) and recurrence period density entropy (RPDE)). The study adopted multiple machine learning (ML) algorithms, including random forest (RF), K-nearest neighbors (KNN), decision tree (DT), naïve Bayes (NB), support vector machines (SVM), and logistic regression (LR). Cross-validation technique was applied to ensure the reliability of performance metrics on train and test subsets. These metrics (accuracy, recall, and precision), help determine the most effective models for distinguishing PD from healthy subjects. Result: Among all the algorithms used in this research, random forest (RF) was the best-performing model, achieving an accuracy of 82.72% with a ROC-AUC score of 89.65%. Although other models, such as support vector machine (SVM), could be considered with an accuracy of 75.29% and a ROC-AUC score of 82.63%, RF was by far the best one when evaluated across all metrics. The K-nearest neighbor (KNN) and decision tree (DT) performed the worst. Notably, by combining a comprehensive set of long-term, short-term, and non-standard acoustic features, unlike previous studies that typically focused on only a subset, our study achieved higher predictive performance, offering a more robust model for early PD detection. Conclusions: This study highlights the potential of combining advanced acoustic analysis with ML algorithms to develop non-invasive and reliable tools for early PD detection, offering substantial benefits for the healthcare sector. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 359 KiB  
Article
On the Decision-Theoretic Foundations and the Asymptotic Bayes Risk of the Region of Practical Equivalence for Testing Interval Hypotheses
by Riko Kelter
Stats 2025, 8(3), 56; https://doi.org/10.3390/stats8030056 - 8 Jul 2025
Viewed by 153
Abstract
Testing interval hypotheses is of huge relevance in the biomedical and cognitive sciences; for example, in clinical trials. Frequentist approaches include the proposal of equivalence tests, which have been used to study if there is a predetermined meaningful treatment effect. In the Bayesian [...] Read more.
Testing interval hypotheses is of huge relevance in the biomedical and cognitive sciences; for example, in clinical trials. Frequentist approaches include the proposal of equivalence tests, which have been used to study if there is a predetermined meaningful treatment effect. In the Bayesian paradigm, two popular approaches exist: The first is the region of practical equivalence (ROPE), which has become increasingly popular in the cognitive sciences. The second is the Bayes factor for interval null hypotheses, which was proposed by Morey et al. One advantage of the ROPE procedure is that, in contrast to the Bayes factor, it is quite robust to the prior specification. However, while the ROPE is conceptually appealing, it lacks a clear decision-theoretic foundation like the Bayes factor. In this paper, a decision-theoretic justification for the ROPE procedure is derived for the first time, which shows that the Bayes risk of a decision rule based on the highest-posterior density interval (HPD) and the ROPE is asymptotically minimized for increasing sample size. To show this, a specific loss function is introduced. This result provides an important decision-theoretic justification for testing the interval hypothesis in the Bayesian approach based on the ROPE and HPD, in particular, when sample size is large. Full article
(This article belongs to the Section Bayesian Methods)
Show Figures

Figure 1

26 pages, 707 KiB  
Article
Predicting ICU Delirium in Critically Ill COVID-19 Patients Using Demographic, Clinical, and Laboratory Admission Data: A Machine Learning Approach
by Ana Viegas, Cristiana P. Von Rekowski, Rúben Araújo, Miguel Viana-Baptista, Maria Paula Macedo and Luís Bento
Life 2025, 15(7), 1045; https://doi.org/10.3390/life15071045 - 30 Jun 2025
Viewed by 561
Abstract
Delirium is a common and underrecognized complication among critically ill patients, associated with prolonged ICU stays, cognitive dysfunction, and increased mortality. Its multifactorial causes and fluctuating course hinder early prediction, limiting timely management. Predictive models based on data available at ICU admission may [...] Read more.
Delirium is a common and underrecognized complication among critically ill patients, associated with prolonged ICU stays, cognitive dysfunction, and increased mortality. Its multifactorial causes and fluctuating course hinder early prediction, limiting timely management. Predictive models based on data available at ICU admission may help to identify high-risk patients and guide early interventions. This study evaluated machine learning models used to predict delirium in critically ill patients with SARS-CoV-2 infections using a prospective cohort of 426 patients. The dataset included demographic characteristics, clinical data (e.g., comorbidities, medication, reason for ICU admission, interventions), and routine lab test results. Five models—Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, and Naïve Bayes—were developed using 112 features. Feature selection relied on Information Gain, and model performance was assessed via 10-fold cross-validation. The Naïve Bayes model showed moderate predictive performance and high interpretability, achieving an AUC of 0.717, accuracy of 65.3%, sensitivity of 62.4%, specificity of 68.1%, and precision of 66.2%. Key predictors included invasive mechanical ventilation, deep sedation with benzodiazepines, SARS-CoV-2 as the reason for ICU admission, ECMO use, constipation, and male sex. These findings support the use of interpretable models for early delirium risk stratification using routinely available ICU data. Full article
(This article belongs to the Special Issue Advances in Anesthesia and Critical Care)
Show Figures

Figure 1

18 pages, 5564 KiB  
Article
Flood Exposure Patterns Induced by Sea Level Rise in Coastal Urban Areas of Europe and North Africa
by Wiktor Halecki and Dawid Bedla
Water 2025, 17(13), 1889; https://doi.org/10.3390/w17131889 - 25 Jun 2025
Viewed by 492
Abstract
Coastal cities and low-lying areas are increasingly vulnerable, and accurate data is needed to identify where interventions are most required. We compared 53 cities affected by a 1 m increase in land levels and a 2 m rise in sea levels. The geographical [...] Read more.
Coastal cities and low-lying areas are increasingly vulnerable, and accurate data is needed to identify where interventions are most required. We compared 53 cities affected by a 1 m increase in land levels and a 2 m rise in sea levels. The geographical scope of this study covered selected coastal cities in Europe and northern Africa. Data were sourced from the European Environment Agency (EEA) in the form of prepared datasets, which were further processed for analysis. Statistical methods were applied to compare the extent of urban flooding under two sea level rise scenarios—1 m and 2 m—by calculating the percentage of affected urban areas. To assess social vulnerability, the analysis included several variables: MAPF65 (Mean Area Potentially Flooded for people aged 65 and older, indicating elderly exposure), Age (the percentage of the population aged 65+ in each city), MAPF (Mean Area Potentially Flooded, representing the average share of urban area at risk of flooding), and Unemployment Ratio (the percentage of unemployed individuals living in the areas potentially affected by sea level rise). We utilized t-tests to analyze the means of two datasets, yielding a mean difference of 2.9536. Both parametric and bootstrap confidence intervals included zero, and the p-values from the t-tests (0.289 and 0.289) indicated no statistically significant difference between the means. The Bayes factor (0.178) provided substantial evidence supporting equal means, while Cohen’s D (0.099) indicated a very small effect size. Ceuta’s flooding value (502.8) was identified as a significant outlier (p < 0.05), indicating high flood risk. A Grubbs’ test confirmed Ceuta as a significant outlier. A Wilcoxon test highlighted significant deviations between the medians, with a p << 0.001, demonstrating systematic discrepancies tied to flood frequency and sea level anomalies. These findings illuminated critical disparities in flooding trends across specific locations, offering essential insights for urban planning and mitigation strategies in cities vulnerable to rising sea levels and extreme weather patterns. Information on coastal flooding provides awareness of how rising sea levels affect at-risk areas. Examining factors such as MAPF and population data enables the detection of the most threatened zones and supports targeted action. These perceptions are essential for strengthening climate resilience, improving emergency planning, and directing resources where they are needed most. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Graphical abstract

21 pages, 1764 KiB  
Article
Machine Learning-Based Predictive Maintenance at Smart Ports Using IoT Sensor Data
by Sheraz Aslam, Alejandro Navarro, Andreas Aristotelous, Eduardo Garro Crevillen, Alvaro Martınez-Romero, Álvaro Martínez-Ceballos, Alessandro Cassera, Kyriacos Orphanides, Herodotos Herodotou and Michalis P. Michaelides
Sensors 2025, 25(13), 3923; https://doi.org/10.3390/s25133923 - 24 Jun 2025
Viewed by 1665
Abstract
Maritime transportation plays a critical role in global containerized cargo logistics, with seaports serving as key nodes in this system. Ports are responsible for container loading and unloading, along with inspection, storage, and timely delivery to the destination, all of which heavily depend [...] Read more.
Maritime transportation plays a critical role in global containerized cargo logistics, with seaports serving as key nodes in this system. Ports are responsible for container loading and unloading, along with inspection, storage, and timely delivery to the destination, all of which heavily depend on the performance of the container handling equipment (CHE). Inefficient maintenance strategies and unplanned maintenance of the port equipment can lead to operational disruptions, including unexpected delays and long waiting times in the supply chain. Therefore, the maritime industry must adopt intelligent maintenance strategies at the port to optimize operational efficiency and resource utilization. Towards this end, this study presents a machine learning (ML)-based approach for predicting faults in CHE to improve equipment reliability and overall port performance. Firstly, a statistical model was developed to check the status and health of the hydraulic system, as it is crucial for the operation of the machines. Then, several ML models were developed, including artificial neural networks (ANNs), decision trees (DTs), random forest (RF), Extreme Gradient Boosting (XGBoost), and Gaussian Naive Bayes (GNB) to predict inverter over-temperature faults due to fan failures, clogged filters, and other related issues. From the tested models, the ANNs achieved the highest performance in predicting the specific faults with a 98.7% accuracy and 98.0% F1-score. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

21 pages, 5516 KiB  
Article
Hyperspectral Imaging for Non-Destructive Moisture Prediction in Oat Seeds
by Peng Zhang and Jiangping Liu
Agriculture 2025, 15(13), 1341; https://doi.org/10.3390/agriculture15131341 - 22 Jun 2025
Viewed by 497
Abstract
Oat is a highly nutritious cereal crop, and the moisture content of its seeds plays a vital role in cultivation management, storage preservation, and quality control. To enable efficient and non-destructive prediction of this key quality parameter, this study presents a modeling framework [...] Read more.
Oat is a highly nutritious cereal crop, and the moisture content of its seeds plays a vital role in cultivation management, storage preservation, and quality control. To enable efficient and non-destructive prediction of this key quality parameter, this study presents a modeling framework integrating hyperspectral imaging (HSI) technology with a dual-optimization machine learning strategy. Seven spectral preprocessing techniques—standard normal variate (SNV), multiplicative scatter correction (MSC), first derivative (FD), second derivative (SD), and combinations such as SNV + FD, SNV + SD, and SNV + MSC—were systematically evaluated. Among them, SNV combined with FD was identified as the optimal preprocessing scheme, effectively enhancing spectral feature expression. To further refine the predictive model, three feature selection methods—successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and principal component analysis (PCA)—were assessed. PCA exhibited superior performance in information compression and modeling stability. Subsequently, a dual-optimized neural network model, termed Bayes-ASFSSA-BP, was developed by incorporating Bayesian optimization and the Adaptive Spiral Flight Sparrow Search Algorithm (ASFSSA). Bayesian optimization was used for global tuning of network structural parameters, while ASFSSA was applied to fine-tune the initial weights and thresholds, improving convergence efficiency and predictive accuracy. The proposed Bayes-ASFSSA-BP model achieved determination coefficients (R2) of 0.982 and 0.963, and root mean square errors (RMSEs) of 0.173 and 0.188 on the training and test sets, respectively. The corresponding mean absolute error (MAE) on the test set was 0.170, indicating excellent average prediction accuracy. These results significantly outperformed benchmark models such as SSA-BP, ASFSSA-BP, and Bayes-BP. Compared to the conventional BP model, the proposed approach increased the test R2 by 0.046 and reduced the RMSE by 0.157. Moreover, the model produced the narrowest 95% confidence intervals for test set performance (Rp2: [0.961, 0.971]; RMSE: [0.185, 0.193]), demonstrating outstanding robustness and generalization capability. Although the model incurred a slightly higher computational cost (480.9 s), the accuracy gain was deemed worthwhile. In conclusion, the proposed Bayes-ASFSSA-BP framework shows strong potential for accurate and stable non-destructive prediction of oat seed moisture content. This work provides a practical and efficient solution for quality assessment in agricultural products and highlights the promise of integrating Bayesian optimization with ASFSSA in modeling high-dimensional spectral data. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 839 KiB  
Article
From Narratives to Diagnosis: A Machine Learning Framework for Classifying Sleep Disorders in Aging Populations: The sleepCare Platform
by Christos A. Frantzidis
Brain Sci. 2025, 15(7), 667; https://doi.org/10.3390/brainsci15070667 - 20 Jun 2025
Viewed by 980
Abstract
Background/Objectives: Sleep disorders are prevalent among aging populations and are often linked to cognitive decline, chronic conditions, and reduced quality of life. Traditional diagnostic methods, such as polysomnography, are resource-intensive and limited in accessibility. Meanwhile, individuals frequently describe their sleep experiences through [...] Read more.
Background/Objectives: Sleep disorders are prevalent among aging populations and are often linked to cognitive decline, chronic conditions, and reduced quality of life. Traditional diagnostic methods, such as polysomnography, are resource-intensive and limited in accessibility. Meanwhile, individuals frequently describe their sleep experiences through unstructured narratives in clinical notes, online forums, and telehealth platforms. This study proposes a machine learning pipeline (sleepCare) that classifies sleep-related narratives into clinically meaningful categories, including stress-related, neurodegenerative, and breathing-related disorders. The proposed framework employs natural language processing (NLP) and machine learning techniques to support remote applications and real-time patient monitoring, offering a scalable solution for the early identification of sleep disturbances. Methods: The sleepCare consists of a three-tiered classification pipeline to analyze narrative sleep reports. First, a baseline model used a Multinomial Naïve Bayes classifier with n-gram features from a Bag-of-Words representation. Next, a Support Vector Machine (SVM) was trained on GloVe-based word embeddings to capture semantic context. Finally, a transformer-based model (BERT) was fine-tuned to extract contextual embeddings, using the [CLS] token as input for SVM classification. Each model was evaluated using stratified train-test splits and 10-fold cross-validation. Hyperparameter tuning via GridSearchCV optimized performance. The dataset contained 475 labeled sleep narratives, classified into five etiological categories relevant for clinical interpretation. Results: The transformer-based model utilizing BERT embeddings and an optimized Support Vector Machine classifier achieved an overall accuracy of 81% on the test set. Class-wise F1-scores ranged from 0.72 to 0.91, with the highest performance observed in classifying normal or improved sleep (F1 = 0.91). The macro average F1-score was 0.78, indicating balanced performance across all categories. GridSearchCV identified the optimal SVM parameters (C = 4, kernel = ‘rbf’, gamma = 0.01, degree = 2, class_weight = ‘balanced’). The confusion matrix revealed robust classification with limited misclassifications, particularly between overlapping symptom categories such as stress-related and neurodegenerative sleep disturbances. Conclusions: Unlike generic large language model applications, our approach emphasizes the personalized identification of sleep symptomatology through targeted classification of the narrative input. By integrating structured learning with contextual embeddings, the framework offers a clinically meaningful, scalable solution for early detection and differentiation of sleep disorders in diverse, real-world, and remote settings. Full article
(This article belongs to the Special Issue Perspectives of Artificial Intelligence (AI) in Aging Neuroscience)
Show Figures

Graphical abstract

19 pages, 299 KiB  
Article
A Bayesian Approach to Step-Stress Partially Accelerated Life Testing for a Novel Lifetime Distribution
by Mervat K. Abd Elaal, Hebatalla H. Mohammad, Zakiah I. Kalantan, Abeer A. EL-Helbawy, Gannat R. AL-Dayian, Sara M. Behairy and Reda M. Refaey
Axioms 2025, 14(6), 476; https://doi.org/10.3390/axioms14060476 - 19 Jun 2025
Viewed by 248
Abstract
In lifetime testing, the failure times of highly reliable products under normal usage conditions are often impractically long, making direct reliability assessment impractical. To overcome this, step-stress partially accelerated life testing is employed to reduce testing time while preserving data quality. This paper [...] Read more.
In lifetime testing, the failure times of highly reliable products under normal usage conditions are often impractically long, making direct reliability assessment impractical. To overcome this, step-stress partially accelerated life testing is employed to reduce testing time while preserving data quality. This paper develops a Bayesian model based on Type II censored data, assuming that item lifetimes follow the Topp–Leone inverted Kumaraswamy distribution, a flexible alternative to classical lifetime models due to its ability to capture various hazard rate shapes and to model bounded and skewed lifetime data more effectively than traditional models observed in real-world reliability data. Bayes estimators of the model parameters and acceleration factor are derived under both symmetric (balanced squared error) and asymmetric (balanced linear exponential) loss functions using informative priors. The novelty of this work lies in the integration of the Topp–Leone inverted Kumaraswamy distribution within the Bayesian step-stress partially accelerated life testing framework, which has not been explored previously, offering improved modeling capability for complex lifetime data. The proposed method is validated through comprehensive simulation studies under various censoring schemes, demonstrating robustness and superior estimation performance compared to traditional models. A real-data application involving COVID-19 mortality data further illustrates the practical relevance and improved fit of the model. Overall, the results highlight the flexibility, efficiency, and applicability of the proposed Bayesian approach in reliability analysis. Full article
Back to TopTop