Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring
Abstract
1. Introduction
2. Mathematical Model
3. Maximum Likelihood Estimation
3.1. Point Estimation
3.2. Fisher’s Information Matrix
3.3. Asymptotic Confidence Intervals
4. Bayesian Estimation
4.1. MCMC Sample Generation
- Initialize the parameters as .
- At iteration k,
- −
- Generate and compute . If , reflect it to ensure positivity.
- −
- Compute acceptance ratio:
- −
- Accept or reject based on .
- −
- Repeat similarly for using standard normal proposal and shift.
- Repeat step 2 for K iterations, discarding the first as burn-in.
4.2. HPD Credible Intervals
5. Simulation Study
- Bayesian estimation generally shows lower average bias (AB) compared to MLE for both parameters and , especially as the sample size increases.
- MLE tends to have higher bias, particularly for smaller sample sizes, and the bias decreases more slowly compared to Bayesian estimation.
- Bayesian estimation also tends to outperform MLE in terms of mean squared error (MSE), indicating more precise and less variable estimates.
- Bayesian estimation consistently shows narrower credible intervals for both and compared to MLE, suggesting that Bayesian intervals tend to be more precise.
- Bayesian estimation produces more reliable credible intervals, as evidenced by higher coverage probabilities (CP) for both and . scenarios.
6. Real Data Analysis
- ,
- MLE Results: with 95% CI , with 95% CI . Figure 4 shows the log-likelihood surface, which exhibits a clear peak, confirming the existence and uniqueness of the MLEs for and .
- Bayesian Estimates: with a 95% credible interval , and with a 95% credible interval .
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herd, G.R. Estimation of the Parameters of a Population from a Multi-Censored Sample; Iowa State University: Ames, IA, USA, 1956. [Google Scholar]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring, Volume 138; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kuş, C.; Kaya, M.F. Estimation for the parameters of the pareto distribution under progressive censoring. Commun. Stat.-Theory Methods 2007, 36, 1359–1365. [Google Scholar] [CrossRef]
- Almetwaly, E.M.; Almongy, H.M. Estimation of the generalized power weibull distribution parameters using progressive censoring schemes. Int. J. Prob. Stat. 2018, 7, 51–61. [Google Scholar]
- Kumar, I.; Kumar, K.; Ghosh, I. Reliability estimation in inverse pareto distribution using progressively first failure censored data. Am. J. Math. Manag. Sci. 2023, 42, 126–147. [Google Scholar] [CrossRef]
- Dey, S.; Elshahhat, A.; Nassar, M. Analysis of progressive type-ii censored gamma distribution. Comput. Stat. 2023, 38, 481–508. [Google Scholar] [CrossRef]
- Tian, Y.; Liang, Y.; Gui, W. Inference and optimal censoring scheme for a competing-risks model with type-ii progressive censoring. Math. Popul. Stud. 2024, 31, 1–39. [Google Scholar] [CrossRef]
- Goel, R.; Krishna, H. A study of accidental breakages in progressively type-ii censored lifetime experiments. Int. J. Syst. Assur. Eng. Manag. 2024, 15, 2105–2119. [Google Scholar] [CrossRef]
- Şirvanci, M. Comparison of two weibull distributions under random censoring. Commun. Stat.-Theory Methods 1986, 15, 1819–1836. [Google Scholar] [CrossRef]
- Danish, M.Y.; Aslam, M. Bayesian inference for the randomly censored weibull distribution. J. Stat. Comput. Simul. 2014, 84, 215–230. [Google Scholar] [CrossRef]
- Atem, F.D.; Matsouaka, R.A.; Zimmern, V.E. Cox regression model with randomly censored covariates. Biom. J. 2019, 61, 1020–1032. [Google Scholar] [CrossRef]
- Feng, H.; Luo, Q. A weighted quantile regression for nonlinear models with randomly censored data. Commun. Stat.-Theory Methods 2021, 50, 4167–4179. [Google Scholar] [CrossRef]
- Krishna, H.; Goel, R. Inferences based on correlated randomly censored gumbel’s type-i bivariate exponential distribution. Ann. Data Sci. 2024, 11, 1185–1207. [Google Scholar] [CrossRef]
- Ayushee; Kumar, N.; Goyal, M. A nonparametric test for randomly censored data. Ann. Data Sci. 2024, 11, 2059–2075. [Google Scholar] [CrossRef]
- Hasaballah, M.M.; Balogun, O.S.; Bakr, M.E. On a randomly censoring scheme for generalized logistic distribution with applications. Symmetry 2024, 16, 1240. [Google Scholar] [CrossRef]
- Hasaballah, M.M.; Abdelwahab, M.M. Statistical analysis under a random censoring scheme with applications. Symmetry 2025, 17, 1048. [Google Scholar] [CrossRef]
- Goel, R.; Krishna, H. Progressive type-II random censoring scheme with Lindley failure and censoring time distributions. Int. J. Agric. Stat. Sci. 2020, 16, 23–34. [Google Scholar]
- Goel, R.; Kumar, K.; Ng, H.K.T.; Kumar, I. Statistical inference in burr type xii lifetime model based on progressive randomly censored data. Qual. Eng. 2024, 36, 150–165. [Google Scholar] [CrossRef]
- Bekker, A.; Roux, J. Reliability characteristics of the maxwell distribution: A bayes estimation study. Commun. Stat. Theory Methods 2005, 34, 2169–2178. [Google Scholar] [CrossRef]
- Krishna, H.; Vivekan; Kumar, K. Estimation in maxwell distribution with randomly censored data. J. Stat. Comput. Simul. 2015, 85, 3560–3578. [Google Scholar] [CrossRef]
- Tomer, S.K.; Panwar, M. Estimation procedures for maxwell distribution under type-i progressive hybrid censoring scheme. J. Stat. Comput. Simul. 2015, 85, 339–356. [Google Scholar] [CrossRef]
- Al-Omari, A.I.; Alanzi, A.R.A. Inverse length biased maxwell distribution: Statistical inference with an application. Comput. Syst. Sci. Eng. 2021, 39, 147–164. [Google Scholar] [CrossRef]
- Godase, D.G.; Mahadik, S.B.; Rakitzis, A.C. The sprt control charts for the maxwell distribution. Qual. Reliab. Eng. Int. 2022, 38, 1713–1728. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- McIllmurray, M.; Turkie, W. Controlled trial of gamma linolenic acid in duke’s c colorectal cancer. Br. Med. J. (Clin. Res. Ed.) 1987, 294, 1260. [Google Scholar] [CrossRef] [PubMed]
Code | Censoring Scheme (n, m, cs(S)) |
---|---|
C1 | (40,30,) |
C2 | (40,30,) |
C3 | (40,30,) |
C4 | (40,24,2,1,1,0,2,1,0,0,0,2,1,0,2,1,0,0,0,1,2,0,1,0,1,0) |
C5 | (40,16,3,2,2,1,2,2,1,0,2,2,1,1,2,2,1,0) |
C6 | (40,40,) |
C7 | (30,20,) |
C8 | (30,20,) |
C9 | (30,18,2,1,0,1,2,0,1,1,0,2,1,0,1,0,2,1,0,2) |
C10 | (30,12,3,2,2,2,1,2,1,1,1,2,2,1) |
C11 | (30,30,) |
C12 | (30,25,) |
C13 | (30,25,) |
C14 | (30,25,) |
Scheme Code | MLE | MLE | Bayes | Bayes | ||||
---|---|---|---|---|---|---|---|---|
AB | MSE | AB | MSE | AB | MSE | AB | MSE | |
C1 | 0.678 | 0.045 | 0.875 | 0.020 | 0.565 | 0.008 | 0.872 | 0.019 |
C2 | 0.574 | 0.015 | 0.743 | 0.013 | 0.521 | 0.002 | 0.744 | 0.013 |
C3 | 0.489 | 0.014 | 0.674 | 0.059 | 0.500 | 0.000 | 0.777 | 0.058 |
C4 | 0.611 | 0.018 | 0.771 | 0.014 | 0.524 | 0.002 | 0.765 | 0.014 |
C5 | 0.713 | 0.030 | 0.844 | 0.019 | 0.549 | 0.005 | 0.838 | 0.018 |
C6 | 0.559 | 0.012 | 0.753 | 0.011 | 0.518 | 0.001 | 0.756 | 0.011 |
C7 | 0.548 | 0.016 | 0.707 | 0.023 | 0.517 | 0.002 | 0.706 | 0.022 |
C8 | 0.695 | 0.057 | 0.893 | 0.032 | 0.574 | 0.011 | 0.883 | 0.029 |
C9 | 0.582 | 0.020 | 0.778 | 0.015 | 0.511 | 0.002 | 0.770 | 0.014 |
C10 | 0.701 | 0.034 | 0.825 | 0.024 | 0.540 | 0.005 | 0.810 | 0.022 |
C11 | 0.563 | 0.015 | 0.752 | 0.014 | 0.520 | 0.002 | 0.754 | 0.014 |
C12 | 0.469 | 0.012 | 0.735 | 0.037 | 0.498 | 0.001 | 0.638 | 0.036 |
C13 | 0.539 | 0.013 | 0.718 | 0.020 | 0.514 | 0.001 | 0.720 | 0.019 |
C14 | 0.630 | 0.031 | 0.830 | 0.016 | 0.545 | 0.005 | 0.827 | 0.015 |
Scheme Code | MLE | MLE | Bayes | Bayes | ||||
---|---|---|---|---|---|---|---|---|
AL | CP | AL | CP | AL | CP | AL | CP | |
C1 | 0.4237 | 0.9250 | 0.5008 | 0.9610 | 0.4039 | 0.9650 | 0.4656 | 0.9520 |
C2 | 0.3368 | 0.9020 | 0.4033 | 0.9760 | 0.2263 | 0.9550 | 0.3766 | 0.9750 |
C3 | 0.2376 | 0.9190 | 0.3026 | 0.9350 | 0.1732 | 0.9450 | 0.2878 | 0.9700 |
C4 | 0.3578 | 0.9270 | 0.4459 | 0.9540 | 0.2434 | 0.9560 | 0.4211 | 0.9490 |
C5 | 0.4333 | 0.9035 | 0.5107 | 0.9450 | 0.3028 | 0.9440 | 0.4684 | 0.9400 |
C6 | 0.3151 | 0.9390 | 0.3951 | 0.9130 | 0.2025 | 0.9620 | 0.3701 | 0.9410 |
C7 | 0.3767 | 0.9420 | 0.4466 | 0.9140 | 0.2507 | 0.9520 | 0.4163 | 0.9150 |
C8 | 1.3554 | 0.9020 | 0.6018 | 0.9540 | 0.4609 | 0.9365 | 0.5538 | 0.9390 |
C9 | 0.3601 | 0.9180 | 0.4380 | 0.9510 | 0.2412 | 0.9560 | 0.4081 | 0.9485 |
C10 | 0.4740 | 0.9050 | 0.5067 | 0.9410 | 0.3016 | 0.9405 | 0.4553 | 0.9370 |
C11 | 0.3661 | 0.9060 | 0.4562 | 0.9010 | 0.2431 | 0.9465 | 0.4256 | 0.9430 |
C12 | 0.3069 | 0.8920 | 0.3862 | 0.8990 | 0.1972 | 0.9565 | 0.3662 | 0.9230 |
C13 | 0.3590 | 0.9210 | 0.4415 | 0.9310 | 0.2288 | 0.9615 | 0.4129 | 0.9432 |
C14 | 0.4392 | 0.9242 | 0.5318 | 0.9670 | 0.3448 | 0.9465 | 0.4917 | 0.9660 |
Scheme Code | MLE | MLE | Bayes | Bayes | ||||
---|---|---|---|---|---|---|---|---|
AB | MSE | AB | MSE | AB | MSE | AB | MSE | |
C1 | 1.8962 | 0.2392 | 2.2272 | 0.1402 | 1.5391 | 0.0308 | 2.1935 | 0.1063 |
C2 | 1.6264 | 0.0796 | 1.9036 | 0.0717 | 1.5146 | 0.0091 | 1.9057 | 0.0633 |
C3 | 1.3143 | 0.1313 | 1.9572 | 0.3480 | 1.5036 | 0.0077 | 2.0479 | 0.0229 |
C4 | 1.7431 | 0.1651 | 2.1342 | 0.1345 | 1.5187 | 0.0168 | 2.0901 | 0.1015 |
C5 | 1.8116 | 0.1983 | 2.2064 | 0.1580 | 1.5245 | 0.0209 | 2.1402 | 0.1102 |
C6 | 1.5887 | 0.0678 | 1.9152 | 0.0612 | 1.5348 | 0.0073 | 1.9195 | 0.0545 |
C7 | 1.5416 | 0.0822 | 1.9231 | 0.1185 | 1.5202 | 0.0085 | 2.2568 | 0.1042 |
C8 | 1.9462 | 0.3304 | 2.2617 | 0.2074 | 1.5177 | 0.0378 | 2.1987 | 0.0136 |
C9 | 1.6912 | 0.1153 | 2.1146 | 0.1215 | 1.5112 | 0.0148 | 2.0837 | 0.0972 |
C10 | 1.8296 | 0.1752 | 2.2846 | 0.1483 | 1.5256 | 0.0257 | 2.2150 | 0.1170 |
C11 | 1.5951 | 0.0905 | 2.3117 | 0.0934 | 1.5389 | 0.0103 | 2.1123 | 0.0793 |
C12 | 1.3313 | 0.1030 | 1.9878 | 0.2165 | 1.5462 | 0.0074 | 2.1464 | 0.1057 |
C13 | 1.5321 | 0.0834 | 2.2832 | 0.1167 | 1.5183 | 0.0084 | 1.9837 | 0.1025 |
C14 | 1.7883 | 0.1802 | 2.1333 | 0.1231 | 1.5021 | 0.0227 | 2.1027 | 0.0898 |
Scheme Code | MLE | MLE | Bayes | Bayes | ||||
---|---|---|---|---|---|---|---|---|
AL | CP | AL | CP | AL | CP | AL | CP | |
C1 | 1.1562 | 0.9190 | 1.2854 | 0.9600 | 0.9483 | 0.9450 | 1.1387 | 0.9480 |
C2 | 0.9338 | 0.9310 | 1.0429 | 0.9200 | 0.6824 | 0.9650 | 0.9657 | 0.9320 |
C3 | 0.6760 | 0.8949 | 0.7767 | 0.9700 | 0.6327 | 0.9445 | 0.7454 | 0.9342 |
C4 | 0.9627 | 0.9180 | 1.1046 | 0.9480 | 0.7352 | 0.9490 | 1.0067 | 0.9450 |
C5 | 1.0173 | 0.9050 | 1.1761 | 0.9410 | 0.7863 | 0.9380 | 1.0484 | 0.9370 |
C6 | 0.8786 | 0.9370 | 1.0130 | 0.9300 | 0.6353 | 0.9764 | 0.9374 | 0.9490 |
C7 | 1.0383 | 0.9340 | 1.1624 | 0.9854 | 0.7698 | 0.9510 | 1.0669 | 0.9588 |
C8 | 1.4050 | 0.9240 | 1.5376 | 0.9600 | 1.0928 | 0.9437 | 1.3157 | 0.9560 |
C9 | 1.0084 | 0.9260 | 1.1269 | 0.9530 | 0.7294 | 0.9500 | 1.0150 | 0.9480 |
C10 | 1.1759 | 0.9130 | 1.2961 | 0.9450 | 0.8410 | 0.9420 | 1.1393 | 0.9400 |
C11 | 1.0189 | 0.9340 | 1.1688 | 0.9170 | 0.7530 | 0.9550 | 1.0657 | 0.9340 |
C12 | 0.8570 | 0.9050 | 0.9984 | 0.9615 | 0.7034 | 0.9560 | 0.9414 | 0.9667 |
C13 | 0.9982 | 0.9140 | 1.1370 | 0.9040 | 0.7429 | 0.9775 | 1.0463 | 0.9879 |
C14 | 1.2189 | 0.9070 | 1.3781 | 0.9750 | 0.9328 | 0.9534 | 1.2083 | 0.9474 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goel, R.; Abdelwahab, M.M.; Hasaballah, M.M. Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring. Axioms 2025, 14, 573. https://doi.org/10.3390/axioms14080573
Goel R, Abdelwahab MM, Hasaballah MM. Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring. Axioms. 2025; 14(8):573. https://doi.org/10.3390/axioms14080573
Chicago/Turabian StyleGoel, Rajni, Mahmoud M. Abdelwahab, and Mustafa M. Hasaballah. 2025. "Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring" Axioms 14, no. 8: 573. https://doi.org/10.3390/axioms14080573
APA StyleGoel, R., Abdelwahab, M. M., & Hasaballah, M. M. (2025). Bayesian Analysis of the Maxwell Distribution Under Progressively Type-II Random Censoring. Axioms, 14(8), 573. https://doi.org/10.3390/axioms14080573