Hyperspectral Imaging for Non-Destructive Moisture Prediction in Oat Seeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Sample Preparation
2.2. Moisture Determination by Gravimetric Method
2.3. Hyperspectral Image Acquisition and Data Processing
2.4. Data Preprocessing
2.5. Feature Selection Method
2.6. Modeling Method
2.6.1. BP Neural Network Model
2.6.2. SSA-BP Model
2.6.3. ASFSSA-BP Model
2.6.4. Bayes-BP Model
2.6.5. Bayes-ASFSSA-BP Model
2.7. Performance Metrics
3. Results and Discussion
3.1. Preprocessing Results and Discussion
3.2. Feature Selection Results
3.3. Comparison Results of BP-Based Prediction Models
3.4. Detailed Analysis of the Bayes-ASFSSA-BP Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Zhang, Y.; Zhang, F.; Tian, L.; Ma, Z.; Wu, X.; Zhou, Q.; Zhang, Q.; Mu, X.; Fan, Y.; et al. Genetic Dissection of Maize Grain Moisture Content and Dehydration Rate Using High-Density Bin Mapping in a Recombinant Inbred Line Population. BMC Plant Biol. 2025, 25, 369. [Google Scholar] [CrossRef] [PubMed]
- Decker, B.L.A.; Filho, E.D.G.A.; E Silva, L.M.A.; Riceli Vasconcelos Ribeiro, P.; Sousa De Brito, E.; Narciso Fernandes, F.A.; Vidal Fonteles, T.; Rodrigues, S. Ultrasound-Assisted Extraction of Anthocyanins from Grape Pomace Using Acidified Water: Assessing Total Monomeric Anthocyanin and Specific Anthocyanin Contents. Food Res. Int. 2024, 194, 114910. [Google Scholar] [CrossRef]
- Ricchiuti, G.; Dabrowska, A.; Pinto, D.; Ramer, G.; Lendl, B. Dual-Beam Photothermal Spectroscopy Employing a Mach–Zehnder Interferometer and an External Cavity Quantum Cascade Laser for Detection of Water Traces in Organic Solvents. Anal. Chem. 2022, 94, 16353–16360. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Tehseen, Z.; Kumar, L. Highly Sensitive Thin-film Capacitive Sensor for Online Moisture Measurement in Transformer Oil. IET Sci. Meas. Amp Tech. 2020, 14, 416–422. [Google Scholar] [CrossRef]
- Alimam, H.; Mazzuto, G.; Tozzi, N.; Emanuele Ciarapica, F.; Bevilacqua, M. The Resurrection of Digital Triplet: A Cognitive Pillar of Human-Machine Integration at the Dawn of Industry 5.0. J. King Saud. Univ. -Comput. Inf. Sci. 2023, 35, 101846. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Chen, L.; Wang, Y.; Zhao, Q. Three-Dimensional Imaging of Dual-Frequency Lidar Based on Full-Phase Fast Fourier Transform and Compressive Sensing. J. Opt. Photonics Res. 2023, 1, 70–82. [Google Scholar] [CrossRef]
- Kartakoullis, A.; Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Gaussian Mixture Model Clustering Allows Accurate Semantic Image Segmentation of Wheat Kernels from Near-Infrared Hyperspectral Images. Chemom. Intell. Lab. Syst. 2025, 259, 105341. [Google Scholar] [CrossRef]
- Dallahi, Y.; Malaainine, M.E.I.; Dansou, C.; Hbiak, I.; Boujraf, A.; Orlando, C.A. Prediction of Current and Future Gully Erosion Susceptibility in the Oued Zat Watershed in the High Atlas Region of Morocco Using an SVM-Based Machine Learning Approach. Arid. Land. Res. Manag. 2025, 39, 151–179. [Google Scholar] [CrossRef]
- Wan, S.; Li, S.; Chen, Z.; Tang, Y.; Li, J. A Hybrid Ultrasound-AI Method for Predicting Voiding Defects in Concrete-Filled Steel Tubes Based on Bayesian Optimization-Enhanced XGBoost. Case Stud. Constr. Mater. 2025, 23, e04359. [Google Scholar] [CrossRef]
- Ouyang, C.; Qiu, Y.; Zhu, D. Adaptive Spiral Flying Sparrow Search Algorithm. Sci. Program. 2021, 2021, 6505253. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Y.; Yin, C.; Shi, Y. AdaNet: A Competitive Adaptive Convolutional Neural Network for Spectral Information Identification. Pattern Recognit. 2025, 163, 111472. [Google Scholar] [CrossRef]
- Mannarsamy, V.; Mahalingam, P.; Kalivarathan, T.; Amutha, K.; Paulraj, R.K.; Ramasamy, S. Sift-BCD: SIFT-CNN Integrated Machine Learning-Based Breast Cancer Detection. Biomed. Signal Process. Control. 2025, 106, 107686. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wu, W.; Zhu, Y.; Gao, L.; Jiang, X.; Meng, Y.; Yang, G.; Xue, H. Hyperspectral Estimation of Chlorophyll Content in Grapevine Based on Feature Selection and GA-BP. Sci. Rep. 2025, 15, 8029. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.; Dong, X.; Wang, T.; Wang, J.; Ma, X.; Wang, H. Opportunities and Challenges of Noise Interference Suppression Algorithms for Dynamic ECG Signals in Wearable Devices: A Review. Measurement 2025, 250, 117067. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Sprigler, A.; Emmert, J.L.; Kamruzzaman, M. Non-Destructive Pre-Incubation Sex Determination in Chicken Eggs Using Hyperspectral Imaging and Machine Learning. Food Control. 2025, 173, 111233. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Cai, L.; Yu, C.; Sun, T. Rapid and Nondestructive Detection of Hollow Defects in Pecan Nuts Based on Near-Infrared Spectroscopy and Voting Method. J. Food Compos. Anal. 2025, 141, 107381. [Google Scholar] [CrossRef]
- Zhong, L.; Fan, Y.; Wu, Y.; Gao, Y.; Gao, Z.; Zhou, A.; Shao, Q.; Zhang, A. Data Fusion Strategy for Rapid Prediction of Glyceryl Trioleate and Polysaccharide Content in Ganoderma Lucidum Spore Powder Based on Near-Infrared Spectroscopy and Hyperspectral Imaging. J. Food Compos. Anal. 2025, 141, 107403. [Google Scholar] [CrossRef]
- Gao, P.; Yan, Q.; Liu, H.; Xiang, C.; Chen, K. Research on Fault Characteristics and Signal Transfer Path Mechanism of the Gear Transmission System. Mech. Syst. Signal Process. 2025, 228, 112471. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Jiao, F.; Cao, Y. Parameters Optimization for 2.5D Needled Cf/SiC in Longitudinal Torsional Ultrasonic-Assisted Laser Milling on PSO-BP-PSO. CIRP J. Manuf. Sci. Technol. 2025, 58, 87–106. [Google Scholar] [CrossRef]
- Burukanli, M.; Yumuşak, N. StackGridCov: A Robust Stacking Ensemble Learning-Based Model Integrated with GridSearchCV Hyperparameter Tuning Technique for Mutation Prediction of COVID-19 Virus. Neural Comput. Applic 2024, 36, 22379–22401. [Google Scholar] [CrossRef]
- Shao, T.; Xu, X.; Su, Y. Evaluation and Prediction of Agricultural Water Use Efficiency in the Jianghan Plain Based on the Tent-SSA-BPNN Model. Agriculture 2025, 15, 140. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y. Load Frequency Active Disturbance Rejection Control Based on Improved Particle Swarm Optimization. Electronics 2024, 13, 1268. [Google Scholar] [CrossRef]
- Shafieenejad, I. Maximizing the Velocity Deflection of Asteroid Didymos Using the Whale Optimization Algorithm. Planet. Space Sci. 2025, 258, 106075. [Google Scholar] [CrossRef]
- Xie, X.; Lin, Z.; Toh, K.-C.; Zhou, P. LoCo: Low-Bit Communication Adaptor for Large-Scale Model Training. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 4285–4298. [Google Scholar] [CrossRef]
- Bao, X.; Huang, D.; Yang, B.; Li, J.; Opeyemi, A.T.; Wu, R.; Weng, H.; Cheng, Z. Combining Deep Convolutional Generative Adversarial Networks with Visible-near Infrared Hyperspectral Reflectance to Improve Prediction Accuracy of Anthocyanin Content in Rice Seeds. Food Control. 2025, 174, 111218. [Google Scholar] [CrossRef]
- Yang, Q.-T.; Xu, X.-X.; Zhan, Z.-H.; Zhong, J.; Kwong, S.; Zhang, J. Evolutionary Multitask Optimization for Multiform Feature Selection in Classification. IEEE Trans. Cybern. 2025, 55, 1673–1686. [Google Scholar] [CrossRef]
- Shaikh, A.; Rahman, W.; Roksana, K.; Islam, T.; Rahman, M.M.; Alshahrani, H.; Sulaiman, A.; Reshan, M.S.A. An Improved Deep CNN-Based Freshwater Fish Classification with Cascaded Bio-Inspired Networks. Automatika 2025, 66, 249–280. [Google Scholar] [CrossRef]
- Schillemans, D.; Tauler, R.; Haverkorn, M.; Tinnevelt, G.H.; Jansen, J.J.; Ghaffari, M. Enhancing Chemical Image Analysis: Utilizing the Successive Projection Algorithm for Unmixing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 338, 126201. [Google Scholar] [CrossRef]
- Lamb, G.W.; Taylor, R.S. Spectral Variance in a Stochastic Gravitational-Wave Background from a Binary Population. Astrophys. J. Lett. 2024, 971, L10. [Google Scholar] [CrossRef]
- Golovko, V.V. Improving Confidence Intervals and Central Value Estimation in Small Datasets through Hybrid Parametric Bootstrapping. Inf. Sci. 2025, 716, 122254. [Google Scholar] [CrossRef]
- Yan, J.; Fang, Y.; Liu, X.; Jiang, W.; Liu, Y. Opinion-Unaware Blind Stereoscopic Image Quality Assessment: A Comprehensive Study. Pattern Recognit. 2025, 167, 111749. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Huang, X.; Zhang, Z.; Cai, B.; Lv, X.; Shao, Z.; Li, D. Joint Content-Aware and Difference-Transform Lightweight Network for Remote Sensing Images Semantic Change Detection. Inf. Fusion. 2025, 123, 103276. [Google Scholar] [CrossRef]
- Lorenzi, D.A.; Gambarotta, A.; Morini, M.; Rossi, M.; Saletti, C. Corrigendum to ‘Setup and Testing of Smart Controllers for Small-Scale District Heating Networks: An Integrated Framework’ [Energy Volume 205 (2020) 118054]. Energy 2025, 326, 136145. [Google Scholar] [CrossRef]
- Hong, J.; Kang, M.; Choi, H.; Min, J.; Ju, M.; Park, K. Non-Destructive Evaluation of Micro-Damage near Concrete Anchors under Dynamic Loading. Constr. Build. Mater. 2025, 469, 140466. [Google Scholar] [CrossRef]
- Kamoun, A.; Boujelbane, R.; Boujelben, S. A Prediction Model to Detect Non-Compliant Taxpayers Using a Supervised Machine Learning Approach: Evidence from Tunisia. J. Bus. Anal. 2025, 8, 116–133. [Google Scholar] [CrossRef]
- Nassabeh, M.; You, Z.; Keshavarz, A.; Iglauer, S. Data-Driven Strategy for Contact Angle Prediction in Underground Hydrogen Storage Using Machine Learning. J. Energy Storage 2025, 114, 115908. [Google Scholar] [CrossRef]
- Zeddies, H.H.; Parlasca, M.; Qaim, M. Agrivoltaics Increases Public Acceptance of Solar Energy Production on Agricultural Land. Land Use Policy 2025, 156, 107604. [Google Scholar] [CrossRef]
No. | Sample Name | Weight Before Drying (g) | Dry Weight (g) | Moisture Content (g) |
---|---|---|---|---|
1 | Bayou No. 6 | 220.93 | 194.13 | 12.13 |
2 | Pinyan No. 7 | 244.51 | 206.66 | 15.48 |
3 | Bayou No. 17 | 254.83 | 215.01 | 15.63 |
4 | Bayou No. 3 | 245.27 | 214.04 | 12.73 |
5 | Baiyan No. 23 | 196.86 | 172.53 | 12.36 |
6 | Baiyan No. 6 | 200.72 | 168.56 | 16.02 |
7 | Dingyan No. 2 | 200.48 | 169.48 | 15.46 |
8 | Baiyan No. 12 | 203.54 | 176.88 | 13.1 |
Preprocessing Methods | MSE | R2 Score |
---|---|---|
SNV | 0.28 | 0.86 |
MSC | 0.56 | 0.82 |
FD | 0.23 | 0.87 |
SD | 0.37 | 0.87 |
SNV + MSC | 0.53 | 0.83 |
SNV + FD | 0.19 | 0.88 |
SNV + SD | 0.42 | 0.87 |
Variable Filtering Method | R2 | RMSE | R2 95% CL | RMSE 95% CL | TTR |
---|---|---|---|---|---|
SNV + FD-SPA-BP | 0.882 | 0.497 | [0.876, 0.888] | [0.473, 0.574] | 20.2 s |
SNV + FD-CARS-BP | 0.894 | 0.232 | [0.888, 0.899] | [0.221, 0.273] | 18.6 s |
SNV + FD-PCA-BP | 0.908 | 0.163 | [0.903, 0.913] | [0.150, 0.197] | 19.2 s |
Variable Filtering Method | R2 | RMSE | R2 95% CL | RMSE 95% CL | TTR |
---|---|---|---|---|---|
SNV + FD-SPA-BP | 0.782 | 0.345 | [0.779, 0.791] | [0.328, 0.392] | 18.2 s |
SNV + FD-CARS-BP | 0.893 | 0.232 | [0.888, 0.898] | [0.221, 0.273] | 24.6 s |
SNV + FD-PCA-BP | 0.918 | 0.262 | [0.914, 0.923] | [0.249, 0.295] | 17.2 s |
Prediction Model | Training Set | Test Set | Run Time | MAEp | Rp2 95% CL | RMSEp 95% CL | Hardware and Running Platform | ||
---|---|---|---|---|---|---|---|---|---|
Rc2 | RMSEc | Rp2 | RMSEp | ||||||
SNV + FD-PCA-BP | 0.922 | 0.257 | 0.917 | 0.345 | 95.1 s | 0.276 | [0.912, 0.928] | [0.339, 0.351] | VSCode1.92.2, Inteli7-11800H@2.30 GHz, 16 GBRAM, Windows 10 |
SNV + FD-PCA-SSA-BP | 0.919 | 0.234 | 0.902 | 0.216 | 130.2 s | 0.208 | [0.901, 0.915] | [0.210, 0.222] | |
SNV + FD-PCA-ASFSSA-BP | 0.973 | 0.197 | 0.954 | 0.478 | 203.3 s | 0.382 | [0.953, 0.964] | [0.472, 0.482] | |
SNV + FD-PCA-Bayes-BP | 0.939 | 0.554 | 0.924 | 0.395 | 315.7 s | 0.326 | [0.911, 0.927] | [0.386, 0.395] | |
SNV + FD-PCA-Bayes-ASFSSA-BP | 0.982 | 0.173 | 0.963 | 0.188 | 480.9 s | 0.17 | [0.961, 0.971] | [0.185, 0.193] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Liu, J. Hyperspectral Imaging for Non-Destructive Moisture Prediction in Oat Seeds. Agriculture 2025, 15, 1341. https://doi.org/10.3390/agriculture15131341
Zhang P, Liu J. Hyperspectral Imaging for Non-Destructive Moisture Prediction in Oat Seeds. Agriculture. 2025; 15(13):1341. https://doi.org/10.3390/agriculture15131341
Chicago/Turabian StyleZhang, Peng, and Jiangping Liu. 2025. "Hyperspectral Imaging for Non-Destructive Moisture Prediction in Oat Seeds" Agriculture 15, no. 13: 1341. https://doi.org/10.3390/agriculture15131341
APA StyleZhang, P., & Liu, J. (2025). Hyperspectral Imaging for Non-Destructive Moisture Prediction in Oat Seeds. Agriculture, 15(13), 1341. https://doi.org/10.3390/agriculture15131341