Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (771)

Search Parameters:
Keywords = Bacillus sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1134 KiB  
Article
Biological and Physico-Chemical Properties of Lobosphaera sp. Packed in Metallized Polyethylene Terephthalate/Polyethylene (PETmet/PE)
by Valter F. R. Martins, Ana J. Alves, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Phycology 2025, 5(3), 35; https://doi.org/10.3390/phycology5030035 - 6 Aug 2025
Abstract
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, [...] Read more.
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, the biomass absorbed moisture over time, reaching 0.779 ± 0.003 g/g dry weight (DW) after three months. This was accompanied by a decline in luminosity, chroma, and hue values. In contrast, samples stored under other conditions showed minimal changes, indicating that high humidity, combined with light exposure, compromises biomass stability. Packaging in metalized polyethylene terephthalate (PETmet/PE) effectively preserved the water content, color, and carotenoid levels during a two-month storage period. Bioactive compounds extracted via hydroethanolic ultrasound-assisted extraction yielded 15.48 ± 1.35% DW. Total phenolic content (TPC) of the extracts declined over time in both PETmet/PE and low-density polyethylene (LDPE) packaging, though the decrease was less pronounced in PETmet/PE. Antioxidant activity, assessed via the ABTS assay, remained stable, regardless of storage duration or packaging. Antimicrobial activity of the extract decreased over time but remained more effective against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes), with PETmet/PE packaging better preserving antimicrobial efficacy than LDPE. These findings underscore the importance of optimized storage conditions and packaging for maintaining the quality and bioactivity of Lobosphaera sp. biomass and its extracts. Full article
Show Figures

Figure 1

19 pages, 5733 KiB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 228
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

18 pages, 4994 KiB  
Article
Plant Growth-Promoting Serratia and Erwinia Strains Enhance Tea Plant Tolerance and Rhizosphere Microbial Diversity Under Heavy Metal Stress
by Mengjiao Wang and Zhimin Xu
Agronomy 2025, 15(8), 1876; https://doi.org/10.3390/agronomy15081876 - 2 Aug 2025
Viewed by 255
Abstract
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates [...] Read more.
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates (over 60%) and chlorophyll content of tea plants, and by reducing the accumulation of these metals in tea plants’ tissues (by 19–37%). The PGPRs elevated key soil nutrients organic carbon (OC), total nitrogen (TH), hydrolysable nitrogen (HN), and available potassium (APO) and phosphorus (APH) contents. Compared to non-PGPR controls, both strains consistently increased microbial α-diversity (Chao1 index: +28–42% in Zn/Pb soils; Shannon index: +19–33%) across all contamination regimes. PCoA/UniFrac analyses confirmed distinct clustering of PGPR-treated communities, with strain-specific enrichment of metal-adapted taxa, including Pseudomonas (LDA = 6) and Bacillus (LDA = 4) under Zn stress; Rhodanobacter (LDA = 4) under Pb stress; and Lysobacter (LDA = 5) in Zn + Pb co-contamination. Fungal restructuring featured elevated Mortierella (LDA = 6) in Zn soils and stress-tolerant Ascomycota dominance in co-contaminated soils. Multivariate correlations revealed that the PGPR-produced auxin was positively correlated with soil carbon dynamics and Mortierellomycota abundance (r = 0.729), while the chlorophyll content in leaves was closely associated with Cyanobacteria and reduced by Pb accumulation. These findings highlighted that PGPR could mediate and improve in tea plant physiology, soil fertility, and stress-adapted microbiome recruitment under heavy metal contaminated soil and stress. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 186
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

16 pages, 3171 KiB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 284
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

17 pages, 2022 KiB  
Article
Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements
by Huihong Huang, Kang Pan, Wenchao Jian, Yuwen She, Comfort O. Esumeh and Wei Dong
Microorganisms 2025, 13(8), 1753; https://doi.org/10.3390/microorganisms13081753 - 27 Jul 2025
Viewed by 303
Abstract
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine [...] Read more.
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine and were identified based on 16S rRNA gene sequencing. Adsorption experiments showed that Bacillus sp. DW011 exhibited exceptional Tb(III) adsorption efficiency, with an adsorption rate of 90.45% and adsorption selectivity for heavy rare earth elements. Notably, strain DW011 was also found to be tolerant against Tb(III) with the 24 h 50% lethal concentration (LC50) of 2.62 mM. The biosorption mechanisms of DW011 were investigated using adsorption kinetics, SEM-EDS, and FTIR. The results indicated that the adsorption of strain DW011 conforms to the second-order kinetic model, and the teichoic acid–peptidoglycan network (phosphate-dominated) serves as the primary site for heavy REE adsorption, while carboxyl/amino groups in the biomembrane matrix provide secondary sites for LREEs. This study provides new information that Bacillus strains isolated from ionic rare earth mine deposits have potential as green adsorbents and have high selectivity for the adsorption of heavy REEs, providing a sustainable strategy for REE recovery from wastewaters. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

23 pages, 3343 KiB  
Article
Dietary Fermentation with Lactobacillus sp. and Bacillus sp. Modulates Rumen Transcriptomic and Microbiota Profiles in Bos taurus
by Jeong Sung Jung, Dahye Kim, Anand Singaravelu, Ilavenil Soundharrajan and Ki Choon Choi
Int. J. Mol. Sci. 2025, 26(14), 6816; https://doi.org/10.3390/ijms26146816 - 16 Jul 2025
Viewed by 202
Abstract
Animal feed made from fermented agricultural residues using Lactobacillus sp. and Bacillus sp. has received significant attention. However, interactions between differentially expressed genes (DEGs) in adipose, liver, and muscle tissues and bacteria or fungi in the rumen remain largely unknown. This study determined [...] Read more.
Animal feed made from fermented agricultural residues using Lactobacillus sp. and Bacillus sp. has received significant attention. However, interactions between differentially expressed genes (DEGs) in adipose, liver, and muscle tissues and bacteria or fungi in the rumen remain largely unknown. This study determined effects of normal diet feed (NF) and alternative diet feed made by Lactobacillus sp. and Bacillus sp. (AF) on gene expression in major metabolic organs and on microbial populations in the rumen of Bos-Taurus using high-throughput sequencing methods. Rumen bacteria/fungi interaction with DEGs in key metabolic organs was also investigated. According to our findings, 34, 36, and 28 genes were differentially expressed in adipose, liver, and muscle tissues, respectively. Most DEGs were associated with osteoclast differentiation and immune functions. Microbial dynamics analysis showed that the AF diet significantly (p < 0.05) increased Firmicutes but reduced Bacterioidetes abundances. At the genus level, Faecalicatena, Intestinimonas, Lachnoclostridium, Faecalicatena, and Intestinimonas were significantly higher (p < 0.05) in animals fed with the AF diet. Regarding fungal populations, Neocallimastigomycota accounted for 98.2% in the NF diet and 86.88% in the AF diet. AF feeding increased Orpinomyces and Piromyces but decreased Neocallimastix abundances. These findings highlight the potential of fermented feeds to improve metabolic responses and rumen microbial balance, contributing to enhanced animal performance. Full article
Show Figures

Graphical abstract

30 pages, 4680 KiB  
Article
Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain
by Vasilica Barbu, Chimène Agrippine Rodogune Yelouassi, Mihaela Cotârleț, Leontina Grigore-Gurgu, Comlan Kintomagnimessè Célestin Tchekessi and Pierre Dossou-Yovo
Sustainability 2025, 17(14), 6387; https://doi.org/10.3390/su17146387 - 11 Jul 2025
Viewed by 585
Abstract
Lactic acid bacteria (LAB) preserve many foods and play a vital role in fermented food products. This study designed a controlled biotechnological process of catfish (Clarias gariepinus) fermentation with a LAB starter culture isolated from corn hydrolysate. The BY (Barbu-Yelouassi) LAB [...] Read more.
Lactic acid bacteria (LAB) preserve many foods and play a vital role in fermented food products. This study designed a controlled biotechnological process of catfish (Clarias gariepinus) fermentation with a LAB starter culture isolated from corn hydrolysate. The BY (Barbu-Yelouassi) LAB strain was characterized regarding fermentative and antimicrobial potential, and its adaptability in the simulated gastrointestinal system (SGIS). After 10–12 h of cultivation on MRS broth (De Man Rogosa and Sharpe), the strain achieved the maximum exponential growth, produced maximum lactic acid (33.04%), and decreased the acidity up to pH 4. Also, the isolated strain showed increased tolerance to an acidic pH (3.5–2.0), high concentrations of salt (2–10%), and high concentrations of bile salts (≤2%). The behavior in SGIS demonstrated good viability after 2 h in artificial gastric juice (AGJ) (1 × 107 CFU/mL) and up to 2 × 103 CFU/mL after another 6 h in artificial intestinal juice (AIJ). The characterized BY strain was identified with the API 50CHL microtest (BioMerieux) as Lactiplantibacillus pentosus (Lbp. pentosus) (90.9% probability), taxon confirmed by genomic DNA sequencing. It was also demonstrated that Lbp. pentosus BY inhibited the growth of pathogenic bacteria, including Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and sporulated bacteria, such as Bacillus cereus. Additionally, it suppressed the sporulation of fungi like Aspergillus niger, Fusarium sp., and Penicillium sp. Furthermore, the Lbp. pentosus BY strain was used to ferment catfish, resulting in three variants of lanhouin (unsalted, with 10% salt, and with 15% salt), which exhibited good microbiological safety. Full article
(This article belongs to the Special Issue Sustainable Food Preservation)
Show Figures

Figure 1

21 pages, 3149 KiB  
Article
Carrier-Based Application of Phyto-Benefic and Salt-Tolerant Bacillus wiedmannii and Bacillus paramobilis for Sustainable Wheat Production Under Salinity Stress
by Raina Rashid, Atia Iqbal, Muhammad Shahzad, Sidra Noureen and Hafiz Abdul Muqeet
Plants 2025, 14(14), 2096; https://doi.org/10.3390/plants14142096 - 8 Jul 2025
Viewed by 394
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. Despite extensive research on PGPR isolation, their practical application in agricultural fields has faced challenges due to environmental stresses and limited survival during storage. To address these limitations, the present study aimed to isolate salt-tolerant bacterial strains and formulate them with organic carriers to enhance their stability and effectiveness under saline conditions. The isolated bacterial strains exhibited high salt tolerance, surviving NaCl concentrations of up to 850 millimolar. These strains demonstrated basic key plant growth-promoting traits, including phosphate solubilization, auxin production, and nitrogen fixation. The application of carrier-based formulations with both strains, Bacillus wiedmannii (RR2) and Bacillus paramobilis (RR3), improved physiological and biochemical parameters in wheat plants subjected to salinity stress. The treated plants, when subjected to salinity stress, showed notable increases in chlorophyll a (73.3% by Peat + RR3), chlorophyll b (41.1% by Compost + RR3), carotenoids (51.1% by Peat + RR3), relative water content (77.7% by Compost + RR2), proline (75.8% by compost + RR3), and total sugar content (12.4% by peat + RR2), as compared to the stressed control. Plant yield parameters such as stem length (35.1% by Peat + RR3), spike length (22.5% by Peat + RR2), number of spikes (67.6% by Peat + RR3), and grain weight (39.8% by Peat + RR3) were also enhanced and compared to the stressed control. These results demonstrate the potential of the selected salt-tolerant PGPR strains (ST-strains) to mitigate salinity stress and improve wheat yield under natural field conditions. The study highlights the significance of carrier-based PGPR applications as an effective and sustainable approach for enhancing crop productivity in saline-affected soils. Full article
Show Figures

Figure 1

21 pages, 3177 KiB  
Article
The Physiological and Biochemical Mechanisms Bioprimed by Spermosphere Microorganisms on Ormosia henryi Seeds
by Meng Ge, Xiaoli Wei, Yongming Fan, Yan Wu, Mei Fan and Xueqing Tian
Microorganisms 2025, 13(7), 1598; https://doi.org/10.3390/microorganisms13071598 - 7 Jul 2025
Viewed by 341
Abstract
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto [...] Read more.
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto seed surfaces or into germination substrates, enhances germination kinetics and emergence uniformity through microbial metabolic functions and synergistic interactions with seed exudates. Notably, spermosphere-derived functional bacteria isolated from native spermosphere soil demonstrate superior colonization capacity and sustained bioactivity. This investigation employed selective inoculation of these indigenous functional strains to systematically analyze dynamic changes in endogenous phytohormones, enzymatic activities, and storage substances during critical germination phases, thereby elucidating the physiological mechanisms underlying biopriming-enhanced germination. The experimental results demonstrated significant improvements in germination parameters through biopriming. Inoculation with the Bacillus sp. strain achieved a peak germination rate (76.19%), representing a 16.19% increase over the control (p < 0.05). The biopriming treatment effectively improved the seed vigor, broke the impermeability of the seed coat, accelerated the germination speed, and positively regulated physiological indicators, especially amylase activity and the ratio of gibberellic acid to abscisic acid. This study establishes a theoretical framework for microbial chemotaxis and rhizocompetence in seed priming applications while providing an eco-technological solution for overcoming germination constraints in O. henryi cultivation. The optimized biopriming protocol addresses both low germination rates and post-germination growth limitations, providing technical support for the seedling cultivation of O. henryi. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 1370 KiB  
Article
Harnessing Waste Bread: From Potential Use in Microbial Growth and Enzyme Production to Techno-Economic Assessment
by Sameh Ben Mabrouk, Bouthaina Ben Hadj Hmida, Wejdene Sallami, Salma Dhaouadi, Theodoros Varzakas and Slim Smaoui
Microorganisms 2025, 13(7), 1571; https://doi.org/10.3390/microorganisms13071571 - 3 Jul 2025
Viewed by 459
Abstract
This study highlights waste bread (WB) as a novel, cost-effective, and nutrient-rich substrate for microbial growth, offering a sustainable alternative to conventional media. As a renewable resource, WB promotes the circular economy by reducing food waste and encouraging biotechnological innovation. The incorporation of [...] Read more.
This study highlights waste bread (WB) as a novel, cost-effective, and nutrient-rich substrate for microbial growth, offering a sustainable alternative to conventional media. As a renewable resource, WB promotes the circular economy by reducing food waste and encouraging biotechnological innovation. The incorporation of WB into microbial culture media enhanced the growth of various reference strains (E. coli, E. faecalis, P. aeruginosa, and S. aureus), with at least a two-fold increase compared to conventional Luria-Bertani (LB) medium. Moreover, combining 2% WB with diluted LB (1/10) reduced medium costs by up to 90%. Furthermore, it was confirmed that 1% WB can effectively replace starch during the screening of amylolytic strains. Applying a fractional factorial design, the production of amylase by Bacillus sp. BSS (Amy-BSS) was enhanced 15-fold. An analysis of the Pareto diagram revealed that WB was the most significant factor. Additionally, Amy-BSS was applied to hydrolyze polysaccharides in WB, enabling the generation of high-value-added products in food processing. This hydrolysis process yielded 4.6 g/L of fermentable sugars from 1% WB. Evaluating the economic feasibility of WB valorization into value-added products elucidates potential pathways for cost reduction and enhanced environmental sustainability, thereby positioning WB as a viable tool for sustainable development. Full article
(This article belongs to the Special Issue Microbial Safety and Beneficial Microorganisms in Foods)
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
Evaluation of Environmentally Important Elements from Glacial Ice-Water and Associated Glacial Sediments
by Kashmala Jadoon, Syeda Fazoon Kazmi, Sidra Arshad, Noor ul Huda Sajid, Adnan Ahmad Tahir, Özgür Doğan, Alidehou Jerrold Agbankpe and Rashid Nazir
Earth 2025, 6(3), 71; https://doi.org/10.3390/earth6030071 - 2 Jul 2025
Viewed by 837
Abstract
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of [...] Read more.
Glaciers are significant sources of fresh water on planet Earth. The Hindukush–Karakoram–Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of glacial ice has been forecasted to cause problems such as sea level rise, changes in water availability, and release of contaminants that reside in the surfaces of glaciers or within them. In this regard, mineralogical sediments play a significant role in the geochemistry of glaciers and element cycling. This study analyzed elemental pollutants found in the glaciers of Pakistan and investigated the diverse bacterial communities residing therein. Samples of ice and sediments were collected from the Gilgit, Hunza, and Swat glaciers in northern Pakistan. Nine elements, including co-factors, heavy metals, and nutrients, were assessed using atomic absorption spectrophotometry. The research findings indicate higher concentrations of the elements K, Fe, Cu, and Cr in Hunza glacier ice (Hgi) and Ni, Zn, As, and Cd in Gilgit glacier ice (Ggi). In terms of glacier sediments, Swat (Sgs), Gilgit (Ggs), and Hunza (Hgs) samples showed the highest concentrations of K, Cu, Ni, Zn, As, Pb, Cd, and, respectively, of Fe, and Cr. The amount of Cu and Cr is the same in Swat glacier ice and Swat glacier foot. However, the concentration of some elements (As, K, Pb, Zn) is higher in Swat glacier ice, while the amount of some elements (Cd, Ni) is greater in Swat glacier foot. Furthermore, microbial cultivation techniques revealed diverse bacterial communities inhabiting the sampled glaciers. Phylogenetic analysis of the bacterial isolates, based on 16S rRNA gene sequences, showed high homology (99–100%) with previously reported species. The resultant phylogenetic tree grouped the bacterial isolates, such as Serratia marcescens, Cupriavidus sp., and Bacillus cereus, with closely related species known for their roles in nutrient cycling, environmental resilience, and metal tolerance. These findings highlight the ecological significance and adaptive potential of microbial communities in glacier environments, emphasizing their role in elemental cycling and environmental resilience. Full article
Show Figures

Figure 1

13 pages, 3181 KiB  
Article
Mitigating Microbial Artifacts in Laboratory Research on Underground Hydrogen Storage
by Adnan Aftab, Silvia J. Salgar-Chaparro, Quan Xie, Ali Saeedi and Mohammad Sarmadivaleh
Fuels 2025, 6(3), 52; https://doi.org/10.3390/fuels6030052 - 1 Jul 2025
Viewed by 371
Abstract
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged [...] Read more.
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged as promising options for mitigating anthropogenic emissions. These approaches require rigorous research and development (R&D), often involving laboratory-scale experiments to establish their feasibility before being scaled up to pilot plant operations. Microorganisms, which are ubiquitous in laboratory environments, can significantly influence geochemical reactions under variable experimental conditions of porous media and a salt cavern. We have selected a consortium composed of Bacillus sp., Enterobacter sp., and Cronobacter sp. bacteria, which are typically present in the laboratory environment. These microorganisms can contaminate the rock sample and develop experimental artifacts in UHS experiments. Hence, it is pivotal to sterilize the rock prior to conduct experimental research related to effects of microorganisms in the porous media and the salt cavern for the investigation of UHS. This study investigated the efficacy of various disinfection and sterilization methods, including ultraviolet irradiation, autoclaving, oven heating, ethanol treatments, and gamma irradiation, in removing the microorganisms from silica sand. Additionally, the consideration of their effects on mineral properties are reviewed. A total of 567 vials, each filled with 9 mL of acid-producing bacteria (APB) media were used to test killing efficacy of the cleaning methods. We conducted serial dilutions up to 10−8 and repeated them three times to determine whether any deviation occurred. Our findings revealed that gamma irradiation and autoclaving were the most effective techniques for eradicating microbial contaminants, achieving sterilization without significantly altering the mineral characteristics. These findings underscore the necessity of robust cleaning protocols in hydrogeochemical research to ensure reliable, reproducible data, particularly in future studies where microbial contamination could induce artifacts in laboratory research. Full article
Show Figures

Figure 1

15 pages, 2178 KiB  
Article
New Species, New Record, and Antagonistic Potential of Torula (Torulaceae, Pleosporales) from Jilin Province, China
by Rong Xu, Yue Zhang, Wenxin Su and Yu Li
Microorganisms 2025, 13(7), 1459; https://doi.org/10.3390/microorganisms13071459 - 23 Jun 2025
Viewed by 356
Abstract
During a survey of ascomycetous fungi associated with plant litter and submerged wood in Jilin Province, China, two hyphomycetous fungi were discovered. Morphological examination and molecular phylogenetic analyses revealed that these isolates represent two species within the genus Torula, which are herein [...] Read more.
During a survey of ascomycetous fungi associated with plant litter and submerged wood in Jilin Province, China, two hyphomycetous fungi were discovered. Morphological examination and molecular phylogenetic analyses revealed that these isolates represent two species within the genus Torula, which are herein described as Torula changchunensis sp. nov. and a new host record of T. mackenziei. Detailed morphological characteristics are provided, and the phylogenetic relationships of the new species are also discussed. The new species differs from T. chinensis and T. phytolaccae by having smaller conidiogenous cells, smaller conidia, and fewer septa. Preliminary assessments were conducted on T. changchunensis and T. mackenziei to evaluate their antagonistic activity against two pathogenic fungi (Cladobotryum mycophilum and Botrytis cinerea) and two pathogenic bacteria (Staphylococcus aureus and Bacillus subtilis). Torula changchunensis sp. nov. exhibited 67.18% inhibition against C. mycophilum and moderate inhibition against the pathogenic bacteria, whereas Torula mackenziei showed moderate-to-weak inhibitory activity against both pathogenic fungi and bacteria. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

14 pages, 6105 KiB  
Article
Identification of a Novel Pathogen of Peanut Root Rot, Ceratobasidium sp. AG-A, and the Potential of Selected Bacterial Biocontrol Agents
by Ying Li, Xia Zhang, Xinying Song, Manlin Xu, Kang He, Yucheng Chi and Zhiqing Guo
J. Fungi 2025, 11(7), 472; https://doi.org/10.3390/jof11070472 - 21 Jun 2025
Viewed by 447
Abstract
Peanut root rot poses a significant threat to global peanut production. In order to identify the new pathogen of peanut root rot in Shandong province, China, and to screen the effective antagonistic biocontrol strains against the identified pathogen, ten symptomatic plants from a [...] Read more.
Peanut root rot poses a significant threat to global peanut production. In order to identify the new pathogen of peanut root rot in Shandong province, China, and to screen the effective antagonistic biocontrol strains against the identified pathogen, ten symptomatic plants from a peanut field (10% disease incidence) of Rongcheng were sampled for pathogen isolation. The predominant isolate RC-103 was identified as Ceratobasidium sp. AG-A through morphological characterization and phylogenetic analysis of ITS and RPB2 sequences. Pathogenicity was confirmed via Koch’s postulates. Three potent biocontrol strains, namely Bacillus subtilis LY-1, Bacillus velezensis ZHX-7, and Burkholderia cepacia Bc-HN1, were screened for effective antagonism against isolate RC-103 by dual-culture analysis. Their cell suspensions could significantly inhibit the hyphal growth of isolate RC-103, with the percentage inhibition of 54.70%, 45.86%, and 48.62%, respectively. Notably, the percentage inhibition of 10% concentration of the cell-free culture filtrate of B. subtilis LY-1 was as high as 59.01%, and the inhibition rate of volatile organic compounds of B. cepacia Bc-HN1 was 48.62%. Antagonistic mechanisms primarily involved the induction of hyphal abnormalities. In addition, the culture filtrate of these biocontrol bacteria significantly promoted the growth of peanut and increased the resistance of peanut plants to isolate RC-103, with the biocontrol efficiency reaching 41.86%. In summary, this study identified a novel pathogen of peanut root rot, Ceratobasidium sp. AG-A, which was reported for the first time in China, and screened three highly effective antagonistic biocontrol strains against Ceratobasidium sp. AG-A isolate RC-103, providing the scientific basis to study the epidemiology and management of this disease. Full article
(This article belongs to the Special Issue Biological Control of Fungal Diseases, 2nd Edition)
Show Figures

Figure 1

Back to TopTop