Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = BGP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2287 KB  
Article
Processing High-Solid Sludge Through Hydrothermal Liquefaction to Boost Anaerobic Fermentation and Bioresource Yield
by Chun-Ming Yen, Chang-Lung Han and Jiunn-Jyi Lay
Processes 2025, 13(9), 2891; https://doi.org/10.3390/pr13092891 - 10 Sep 2025
Viewed by 459
Abstract
The increasing need for effective sludge management has positioned hydrothermal liquefaction (HTL) as a viable solution, harnessing its capability to transform organic materials into renewable resources under elevated temperature and pressure conditions. This research seeks to assess the performance of HTL in processing [...] Read more.
The increasing need for effective sludge management has positioned hydrothermal liquefaction (HTL) as a viable solution, harnessing its capability to transform organic materials into renewable resources under elevated temperature and pressure conditions. This research seeks to assess the performance of HTL in processing high-solid organic sludge by examining the removal efficiencies of chemical oxygen demand (COD), total solids (TS), and suspended solids (SS), together with improvements in biogas potential (BGP) and hydrogen yield. Experimental procedures were carried out within a temperature range of 100–210 °C and pressure levels of 20–80 kg/cm2, using a hydrogen-producing microbiome (HMb) and anaerobically digested sludge as inoculants for anaerobic fermentation. Multivariate analysis was applied to investigate the influence of temperature and pressure on COD, TS, and SS removal rates as well as BGP, while a series of batch tests further confirmed the effects of these parameters on fermentation outcomes. Findings revealed that COD, SS, and TS removal efficiencies reached 90.6%, 91.5%, and 87.4%, respectively, under conditions of 100 °C and 60 kg/cm2. The maximum biogas potential (BGP) of approximately 500 mL was attained at 180 °C, whereas hydrogen production demonstrated substantial enhancement within the HTL pressure range of 40–60 kg/cm2, decreasing beyond this range. Additionally, total dissolved solids (TDS) reached a peak concentration of 389 g/L under conditions of 180 °C and 40 kg/cm2, emphasizing HTL’s positive impact on enhancing methane fermentation efficiency. These findings demonstrate that HTL pretreatment, when operated under optimized temperature and pressure conditions, offers a promising approach for enhancing both waste reduction and bioenergy recovery from high-solid organic sludge. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

22 pages, 4270 KB  
Article
Numerical Simulation of CO2 Injection and Production in Shale Oil Reservoirs with Radial Borehole Fracturing
by Dongyan Zhou, Haihai Dong, Xiaohui Wang, Wen Zhang, Xiaotian Li, Yang Cao, Qun Wang and Jiacheng Dai
Processes 2025, 13(9), 2873; https://doi.org/10.3390/pr13092873 - 8 Sep 2025
Viewed by 1279
Abstract
Shale oil is a vital strategic resource in China. Developing shale oil using CO2 not only enhances oil recovery but also contributes to achieving Chinese “dual carbon” goals. Given the challenges of insufficient number of fractures, inadequate vertical stimulation volume, and poor [...] Read more.
Shale oil is a vital strategic resource in China. Developing shale oil using CO2 not only enhances oil recovery but also contributes to achieving Chinese “dual carbon” goals. Given the challenges of insufficient number of fractures, inadequate vertical stimulation volume, and poor reservoir mobility associated with horizontal well fracturing, this study proposes a method for CO2 flooding based on radial borehole fracturing in a single well to achieve long-term carbon sequestration. To this end, a multi-component numerical model is built to analyze the production capacity of radial borehole fracturing. This study analyzed the impacts of non-Darcy flow, diffusion, and adsorption mechanisms on CO2 migration and sequestration. It also compared the applicability of continuous CO2 flooding and CO2 huff-and-puff under different matrix permeabilities. The results indicate that (1) CO2 flooding using radial borehole fracturing can achieve long-term oil production and carbon sequestration. (2) Under low permeability conditions, the liquid non-Darcy effect retards the flow of oil and CO2, while diffusion and adsorption facilitate CO2 sequestration in the reservoir. The impact on carbon sequestration is ranked as follows: non-Darcy effect > adsorption > diffusion. (3) High-permeability reservoirs are more suitable for carbon sequestration and should utilize continuous CO2 flooding. For low-permeability reservoirs (<0.001 mD), huff-and-puff should be employed to mobilize the reservoir around fractures and achieve carbon sequestration. The findings of this study are expected to provide new methods and a theoretical basis for efficient and economical carbon sequestration in shale oil reservoirs. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

18 pages, 2660 KB  
Article
Impacts of PACAP 1-38 and BGP-15 on the Healing of Fasciocutaneous Groin Flaps Affected by Ischemia–Reperfusion in Rats
by Anna Orsolya Flasko, Laszlo Adam Fazekas, Gergo Kincses, Adam Varga, Adam Attila Matrai, Ildiko Czirjak, Noemi Dodity, Ildiko Katalin Bacskay, Agota Peto, Dora Reglodi, Csaba Filler, Tamas Juhasz and Norbert Nemeth
Biomedicines 2025, 13(9), 2129; https://doi.org/10.3390/biomedicines13092129 - 31 Aug 2025
Viewed by 626
Abstract
Background/Objectives: To prevent flap failure, adequate tissue perfusion and effective regenerative processes, undisturbed wound healing are essential, among others. To improve wound healing, various locally and systematically administered pharmacons can be used. This study investigated the effect of PACAP 1-38 (pituitary adenylate [...] Read more.
Background/Objectives: To prevent flap failure, adequate tissue perfusion and effective regenerative processes, undisturbed wound healing are essential, among others. To improve wound healing, various locally and systematically administered pharmacons can be used. This study investigated the effect of PACAP 1-38 (pituitary adenylate cyclase activating polypeptide) and BGP-15 (a nicotinic amidoxime derivative) on the healing of epigastric fasciocutaneous flaps exposed to ischemia–reperfusion (I/R). Methods: Wistar rats were randomly divided into control (no substance), PACAP 1-38, and BGP-15 groups. Groin flaps were prepared bilaterally. The left flap was exposed to 120 min of ischemia prior to suturing it back. We applied wound gels containing substances. Laboratory tests (hematology, erythrocyte deformability, and aggregation) were performed before surgery on the 1st, 3rd, and 7th postoperative days. Lastly, flap skin samples were taken for histological and tensile strength measurements. Results: Impaired erythrocyte deformability and enhanced aggregation were found because of flap I/R. The pharmacons were able to reduce the systemic micro-rheological impairment to varying degrees. The tensile strength increased in the areas of better perfusion. Conclusions: The anti-inflammatory effects of PACAP 1-38 and BPG-15, as well as the impact of PACAP 1-38 on collagen and elastic fiber composition, have been demonstrated. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

22 pages, 9292 KB  
Article
Mechanisms and Potential Assessment of CO2 Sequestration in the Baijiahai Uplift, Junggar Basin
by Xiaohui Wang, Wen Zhang, Qun Wang, Kepeng Wang, Saisai Qin and Tianyu Wang
Processes 2025, 13(8), 2648; https://doi.org/10.3390/pr13082648 - 21 Aug 2025
Viewed by 362
Abstract
To reduce CO2 emissions, CO2 geological storage is recognized as an effective approach to decrease atmospheric carbon concentration. Sequestration in deep saline aquifers has become a research focus. However, the physicochemical property changes in saline formations induced by CO2 injection [...] Read more.
To reduce CO2 emissions, CO2 geological storage is recognized as an effective approach to decrease atmospheric carbon concentration. Sequestration in deep saline aquifers has become a research focus. However, the physicochemical property changes in saline formations induced by CO2 injection remain unclear, making it difficult to assess their CO2 storage potential. This study focuses on saline aquifers within the Jurassic Badaowan formation (J1b), Sangonghe formation (J1s), and Cretaceous Tugulu Group (K1tg) of the Baijiahai Uplift in the Junggar Basin. An integrated methodology combining laboratory experiments—including CO2 static immersion tests, dynamic displacement tests, X-ray diffraction (XRD), mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR) measurements, and mechanical testing—with CMG-based numerical modeling was employed to analyze CO2 storage mechanisms and evaluate storage potential. The results show that after CO2 immersion, extensive dissolution of calcite in J1s, clay swelling/cementation in J1b, and extensive dissolution of calcite in K1tg all lead to increased porosity and permeability, with the J1b formation exhibiting superior CO2 storage capacity, the highest MICP-derived porosity, and the greatest NMR-measured porosity among the three formations. Numerical simulations further confirmed J1b’s leading sequestration volume. Based on integrated experimental and simulation results, the J1b formation is identified as the optimal reservoir for CO2 storage. However, to manage potential mechanical instability during real-world injection scenarios, injection pressures and rates should be carefully controlled and continuously monitored to avoid formation fracturing and ensure long-term storage security. This study provides a reference for implementing saline aquifer CCUS projects. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 2349 KB  
Article
Effects of Black Garlic Polyphenols on the Physicochemical Characteristics, Antioxidant Activity, and Sensory Evaluation of Yogurt
by Weiwei Cao, Linlin Li, Jiancheng Wang, Weihua Guo, Wei Chen, Lifeng Pan and Duo Li
Gels 2025, 11(7), 561; https://doi.org/10.3390/gels11070561 - 21 Jul 2025
Viewed by 526
Abstract
Yogurt fortified with polyphenols, as a new type of functional yogurt, exhibits high quality and good antioxidant activity. However, the effects of black garlic polyphenols (BGP) on the quality of solidified yogurt have been scarcely reported. Therefore, the effects of different levels (0.1–0.4%) [...] Read more.
Yogurt fortified with polyphenols, as a new type of functional yogurt, exhibits high quality and good antioxidant activity. However, the effects of black garlic polyphenols (BGP) on the quality of solidified yogurt have been scarcely reported. Therefore, the effects of different levels (0.1–0.4%) of BGP on the sensory scores, physicochemical properties, rheological properties, texture properties, antioxidant activity and polyphenol content of solidified yogurt were studied. The results showed that the total sensory scores of yogurt with 0.2% and 0.4% levels of BGP addition were both above 80. BGP addition significantly decreased the water-holding capacity and pH values of yogurt, compared with the yogurt without BGP addition. The yogurt with a 0.4% level of BGP had the highest titratable acidity of 89.84° T. In addition, the storage modulus (G’) and loss modulus (G”) of yogurt increased with the addition of BGP. The gel strength, chewiness and hardness of yogurt significantly decreased with an increase in BGP addition. The content of quercetin and caffeic acid in the yogurt with the addition of 0.1–0.4% BGP was 0.53–1.79 mg/g and 2.13–4.98 mg/g, respectively. The antioxidant activity and total phenolic acid content of yogurt significantly increased with an increment in BGP addition. The 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging activity, ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of yogurt with a 0.4% level of BGP increased by 52.79%, 57.31% and 42.51%, respectively, compared to the yogurt without BGP addition. This study provides a theoretical basis for the development of novel yogurt with high antioxidant activity. Full article
(This article belongs to the Special Issue Functional Gels Loaded with Natural Products)
Show Figures

Figure 1

18 pages, 3608 KB  
Article
Biochemical Insights into the Effects of a Small Molecule Drug Candidate on Imatinib-Induced Cardiac Inflammation
by Renáta Szabó, Denise Börzsei, András Nagy, Viktória Kiss, Zoltán Virág, Gyöngyi Kis, Nikoletta Almási, Szilvia Török, Médea Veszelka, Mária Bagyánszki, Nikolett Bódi, Bence Pál Barta, Patrícia Neuperger, Gabor J. Szebeni and Csaba Varga
Int. J. Mol. Sci. 2025, 26(14), 6661; https://doi.org/10.3390/ijms26146661 - 11 Jul 2025
Viewed by 790
Abstract
BGP-15, a poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor exerts cardioprotective effects; however, the underlying mechanisms remain unclear. Therefore, our study aimed to investigate the effects of BGP-15 on the imatinib (Imtb)-induced cardiac inflammation at the biochemical level. Male rats were divided to control, Imtb-treated (60 [...] Read more.
BGP-15, a poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor exerts cardioprotective effects; however, the underlying mechanisms remain unclear. Therefore, our study aimed to investigate the effects of BGP-15 on the imatinib (Imtb)-induced cardiac inflammation at the biochemical level. Male rats were divided to control, Imtb-treated (60 mg/kg/day for 14 days), and Imtb + BGP-15-treated animals. In this group Imtb was co-administered with BGP-15 at the dose of 10 mg/kg/day. At the end of the experiment, nuclear factor-kappa B/p65 (NF-κB/p65), nuclear transcription factor erythroid-2 related factor (Nrf2), heme oxygenase-1 (HO-1), high mobility group box 1 (HMGB1), and myeloperoxidase (MPO) were measured by Western blot. Chemokine and interleukins (ILs) were determined by Legendplex. Additionally, cardiac specific changes were visualized by immunohistochemistry. We demonstrated that Imtb increased NF-κB/p65, IL-6, IL-1β, IL-18, MCP-1, HMGB1, as well as the expression and activity of MPO. Conversely, the expressions of antioxidant Nrf2 and HO-1 were decreased. Administration of BGP-15 effectively mitigated these inflammatory alterations by significantly reducing pro-inflammatory cytokines and MPO activity, while simultaneously restoring and enhancing the levels of Nrf2 and HO-1, thereby promoting antioxidant defenses. The immunohistochemical staining further supported these biochemical changes. Our study provides new and comprehensive biochemical insight for managing Imtb-induced inflammatory responses via BGP-15-induced PARP1 inhibition. Full article
Show Figures

Figure 1

24 pages, 12214 KB  
Article
Brazilian Green Propolis Carried in Lipid-Based Nanostructures: A Potent Adjuvant Therapy to Non-Surgical Periodontal Treatment in the Management of Experimental Periodontitis
by Glauco Rodrigues Carmo Silveira, Vinícius Franzão Ganzaroli, Luan Felipe Toro, Leandro Lemes da Costa, Rodrigo Isaias Lopes Pereira, André Bueno da Silva, Iasmin Rosane Silva Ferreira, João Martins de Mello-Neto, Valdir Gouveia Garcia, Letícia Helena Theodoro, Priscyla Daniely Marcato and Edilson Ervolino
Biomedicines 2025, 13(7), 1643; https://doi.org/10.3390/biomedicines13071643 - 4 Jul 2025
Viewed by 1032
Abstract
Objective: This study aimed to evaluate the effects of local use of Brazilian Green Propolis (BGP), either as an ethanolic extract (the most common formulation) or incorporated into lipid-based nanostructures, as an adjuvant therapy for non-surgical periodontal treatment in managing experimental periodontitis [...] Read more.
Objective: This study aimed to evaluate the effects of local use of Brazilian Green Propolis (BGP), either as an ethanolic extract (the most common formulation) or incorporated into lipid-based nanostructures, as an adjuvant therapy for non-surgical periodontal treatment in managing experimental periodontitis (EP) in ovariectomized rats. Methods: Fifty-six female Wistar rats underwent bilateral ovariectomies. After 10 weeks, a cotton ligature was placed around the lower first molar and remained in place for two weeks to induce EP. The ligature was removed, and the rats were randomly assigned in the groups NLT (n = 14), SRP (n = 14), SRP-BGPee (n = 14), and SRP-BGPlns (n = 14). In the NLT group, no local treatment was performed. The SRP group received scaling and root planing (SRP), along with irrigation using a physiological saline solution. The SRP-BGPee group underwent SRP and irrigation with ethanolic extract of BGP. The SRP-BGPlns group underwent SRP and irrigation with BGP-loaded lipid nanostructure (BGPlns). Each group received one SRP session followed by four irrigation sessions with the specified solutions, which were conducted immediately after SRP and subsequently after 2, 4, and 6 days. Euthanasia was performed at 7 and 28 days following the removal of the ligatures. The hemimandibles were processed for the following analyses: microtomographic analysis; histological analysis; histometric analysis of the percentage of bone tissue in the furcation region (PBT); and immunohistochemical analysis for tartrate-resistant acid phosphatase activity (TRAP), transforming growth factor beta 1 (TGFβ1), and osteocalcin (OCN). Results: The SRP-BGPlns group demonstrated superior periodontal tissue repair, reduced alveolar bone loss, fewer TRAP-positive cells (at 7 days), and higher levels of immunolabeling for TGFβ1 (at both 7 and 28 days) and OCN (at 28 days) compared to the other experimental groups. Conclusions: The irrigation with BGP is an effective adjuvant therapy for non-surgical periodontal treatment in managing EP in ovariectomized rats. Its application in lipid-based nanostructures proved to be more effective than the ethanolic extract form. Full article
(This article belongs to the Special Issue Periodontal Disease and Periodontal Tissue Regeneration)
Show Figures

Figure 1

12 pages, 1978 KB  
Article
The Investigation of the Adsorption of Methylene Blue from Water by Torrefied Biomass
by Mariana Consiglio Kasemodel, Leandro Gonçalves de Aguiar, Valéria Guimarães Silvestre Rodrigues and Érica Leonor Romão
Colorants 2025, 4(2), 21; https://doi.org/10.3390/colorants4020021 - 7 Jun 2025
Cited by 2 | Viewed by 1182
Abstract
This research investigates the adsorption potential of four types of adsorbents produced from agro-industrial waste (grape pomace—GP, tree pruning—TP, sugarcane bagasse—SB, and eucalyptus sawdust—ES) for the uptake of thiazine dye methylene blue (MB) from aqueous solution. A kinetic model based on a hybrid-order [...] Read more.
This research investigates the adsorption potential of four types of adsorbents produced from agro-industrial waste (grape pomace—GP, tree pruning—TP, sugarcane bagasse—SB, and eucalyptus sawdust—ES) for the uptake of thiazine dye methylene blue (MB) from aqueous solution. A kinetic model based on a hybrid-order rate equation was fitted to experimental data. The result showed that BGP-300 presented the highest mass yield (58.84%) and energy yield (69.56%), followed by BTP-300 > BES-300 > BSB-300. Adsorption studies showed that BGP-300 had a better performance in the uptake of MB, with a removal efficiency (Re) of 96.5% and adsorption capacity at equilibrium (qe) of 9.3 mg g−1, followed by tree pruning biochar (BTP-300), with an Re of 65.0% and qe of 5.3 mg g−1. Meanwhile, eucalyptus sawdust (BES-300) and sugarcane bagasse (BSB-300) biochar did not facilitate any significant removal of MB. Adsorption kinetics is best described by a second-order rate with R2 varying from 0.75 to 0.96. Desorption studies show a low concentration released to the solution, indicating that adsorption may occur physically and chemically. Therefore, this research provides comprehensive insights into the adsorption characteristics of different biochars, emphasizing the potential of torrefied materials BGP-300 and BTP-300 as effective for MB uptake from aqueous solution. Full article
Show Figures

Figure 1

23 pages, 3431 KB  
Article
Integrated Production and Multi-Market Optimization of Biomethane in Germany: A Two-Step Linear Programming Approach
by Milad Rousta, Joshua Güsewell and Ludger Eltrop
Energies 2025, 18(11), 2991; https://doi.org/10.3390/en18112991 - 5 Jun 2025
Cited by 1 | Viewed by 826
Abstract
From the perspective of biogas plant (BGP) operators, it is highly challenging to make a profitable decision on optimal biomethane production and allocation across interconnected markets. The aim of this study is to analyze the dynamics of biomethane markets, develop the gas allocation [...] Read more.
From the perspective of biogas plant (BGP) operators, it is highly challenging to make a profitable decision on optimal biomethane production and allocation across interconnected markets. The aim of this study is to analyze the dynamics of biomethane markets, develop the gas allocation portfolio (GAP) for BGPs, investigate the impact of GHG quota price on the market dynamics and substrate mix consumption, and evaluate the profitability of the biomethane market system under various demand-based scenarios. A two-step optimization approach based on linear programming is adopted. Firstly, the optimized substrate mix and corresponding GAP are determined for all BGPs. Secondly, by leveraging the options flexibility created by the interconnected nature of biomethane markets, the BGPs’ GAP is further developed. Through an in-depth sensitivity analysis, the effects of GHG quota price variations on the market dynamics are assessed. The results indicate that integrated production, obtained by implementing the improved GAP across all BGPs, maximizes the profitability of the system. At higher quota prices, the consumption of manure, residuals, and grass is encouraged, while the use of energy crops declines. Furthermore, higher quota prices lead to a substantial increase in biomethane price in the EEG market, highlighting the need for further governmental support for biomethane CHP units. The anticipated competition between hydrogen and biomethane to achieve a greater share in the heating sector could pose risks to long-term investments in biomethane. The system achieves its highest profitability, a total contribution margin of EUR 2254.8 million, under the Transport Biofuels Expansion scenario. Generally, policies and regulations that raise the quota price (e.g., the 36. BImSchV) or promote biomethane demand in the heating sector (e.g., the GEG) can provide both economic and ecological benefits to the system. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

17 pages, 4068 KB  
Review
Functional Approaches to Discover New Compounds via Enzymatic Modification: Predicted Data Mining Approach and Biotransformation-Guided Purification
by Te-Sheng Chang
Molecules 2025, 30(10), 2228; https://doi.org/10.3390/molecules30102228 - 20 May 2025
Viewed by 826
Abstract
In the field of biotechnology, natural compounds isolated from medicinal plants are highly valued; however, their discovery, purification, biofunctional characterization, and biochemical validation have historically involved time-consuming and laborious processes. Two innovative approaches have emerged to more efficiently discover new bioactive substances: the [...] Read more.
In the field of biotechnology, natural compounds isolated from medicinal plants are highly valued; however, their discovery, purification, biofunctional characterization, and biochemical validation have historically involved time-consuming and laborious processes. Two innovative approaches have emerged to more efficiently discover new bioactive substances: the predicted data mining approach (PDMA) and biotransformation-guided purification (BGP). The PDMA is a computational method that predicts biotransformation potential, identifying potential substrates for specific enzymes from numerous candidate compounds to generate new compounds. BGP combines enzymatic biotransformation with traditional purification techniques to directly identify and isolate biotransformed products from crude extract fractions. This review examines recent research employing BGP or the PDMA for novel compound discovery. This research demonstrates that both approaches effectively allow for the discovery of novel bioactive molecules from natural sources, the enhancement of the bioactivity and solubility of existing compounds, and the development of alternatives to traditional methods. These findings highlight the potential of integrating traditional medicinal knowledge with modern enzymatic and computational tools to advance drug discovery and development. Full article
Show Figures

Figure 1

15 pages, 1697 KB  
Article
Black Garlic Powder as an Ingredient to Enhance the Functional and Sensorial Properties of Bread and Its Shelf Life
by Annalisa Maietti, Nicola Marchetti, Nada Baraldo, Riccardo Fontana and Paola Tedeschi
Appl. Sci. 2025, 15(9), 5174; https://doi.org/10.3390/app15095174 - 6 May 2025
Cited by 1 | Viewed by 1433
Abstract
Black garlic is a processed product prepared via the heat treatment of whole garlic bulbs (Allium sativum L.) at high temperatures and humidity levels for several days, resulting in black cloves with a sweet taste and increased bioactive substances. The purpose of [...] Read more.
Black garlic is a processed product prepared via the heat treatment of whole garlic bulbs (Allium sativum L.) at high temperatures and humidity levels for several days, resulting in black cloves with a sweet taste and increased bioactive substances. The purpose of this study was to evaluate the quality, chemical and functional characteristics, and shelf life of bread with different percentages (0.5%, 1%, 2%, and 3%) of Voghiera black garlic powder (BGP). The analysis conducted on the powder showed important changes in composition, and the polyphenol content and antioxidant activity increased when the garlic was processed. The data obtained demonstrated that BGP did not modify the nutritional composition of the bread, while the total polyphenol and total flavonoid content and antioxidant activity progressively increased from 1.40 mg GAE/g, 0.28 mg CE/g, and 0.15 mg TE/g to 1.75 mg GAE/g, 0.56 mg CE/g, and 0.47 mg TE/g, respectively, as the amount of BGP increased from 1 to 3% in comparison with wheat bread. Moreover, BGP improved the shelf life of breads enhanced with 2 and 3% of powder, reducing microorganism growth and water loss; however, on the other hand, the added powder caused an increase in acidity and color intensity. At higher powder percentages, the acceptability and palatability of the bread to the consumers were reduced. Full article
Show Figures

Figure 1

23 pages, 3317 KB  
Article
Optimal Partitioning of Unbalanced Datasets for BGP Anomaly Detection
by Rahul Deo Verma, Pankaj Kumar Keserwani, Vinesh Kumar Jain, Mahesh Chandra Govil, M. W. P. Maduranga and Valmik Tilwari
Telecom 2025, 6(2), 25; https://doi.org/10.3390/telecom6020025 - 9 Apr 2025
Viewed by 966
Abstract
The Internet plays a vital role in the exchange of information in society. Maintaining the security and robustness of the Internet anomaly detection in Border Gateway Protocol (BGP) traffic is very important so that stable routing services can be ensured. The existing solutions [...] Read more.
The Internet plays a vital role in the exchange of information in society. Maintaining the security and robustness of the Internet anomaly detection in Border Gateway Protocol (BGP) traffic is very important so that stable routing services can be ensured. The existing solutions are based on the classical machine learning (ML) models, which need to be advanced. In this study, a revolutionary technique that utilizes the Extreme Learning Machine (ELM) to enhance the detection of anomalies in the dynamic environment of the Border Gateway Protocol (BGP), particularly when faced with highly imbalanced class distributions, was used. The combination of imbalanced class distribution and BGP’s dynamic nature often leads to the suboptimal performance of classifiers. Our proposed solution aims to address this imbalance issue by dividing the dominant classes into multiple sub-classes. This division is achieved through optimal partitioning (OP), which involves segmenting the samples from the majority class into different segments to approximate the size of the minority class. As a result, diversified classes are created to train the ELM classifier. In order to assess the effectiveness of the proposed (OP-ELM) model, the RIPE and BCNET datasets were utilized. These trace files were processed using MATLAB to extract and organize the necessary features, thereby generating suitable datasets for analysis, which are referred to as Dataset-1 and Dataset-2. The experimental findings exhibit noteworthy improvements in performance when contrasted with prior methodologies, thereby highlighting the efficacy of our innovative approach in tackling the obstacles associated with anomaly detection in BGP networks. Full article
Show Figures

Figure 1

15 pages, 6588 KB  
Article
Gas–Water Distribution and Controlling Factors in a Tight Sandstone Gas Reservoir: A Case Study of Southern Yulin, Ordos Basin, China
by Tiezhu Tang, Hongyan Li, Ling Fu, Sisi Chen and Jiahao Wang
Processes 2025, 13(3), 812; https://doi.org/10.3390/pr13030812 - 10 Mar 2025
Cited by 1 | Viewed by 1004
Abstract
The intricate gas–water distribution patterns in tight sandstone gas reservoirs significantly impede effective exploration and development, particularly challenging sweet spot prediction. In the Upper Paleozoic Shanxi Formation of the Ordos Basin, the complex and variable gas–water distribution characteristics remain poorly understood regarding their [...] Read more.
The intricate gas–water distribution patterns in tight sandstone gas reservoirs significantly impede effective exploration and development, particularly challenging sweet spot prediction. In the Upper Paleozoic Shanxi Formation of the Ordos Basin, the complex and variable gas–water distribution characteristics remain poorly understood regarding their spatial patterns and controlling mechanisms. This study employs an integrated analytical approach combining casting thin sections, conventional porosity–permeability measurements, and mercury intrusion porosimetry to systematically investigate the petrological characteristics, pore structure, and physical properties of the Shan 2 member reservoirs in southern Yulin. Through the comprehensive analysis of production data coupled with structural and sand body distribution patterns, we identify three predominant formation water types: edge/bottom water, isolated lens-shaped water bodies, and residual water in tight sandstone gas layers. Our findings reveal that three primary factors govern water distribution in the Shan 2 member reservoirs: sand body architecture controlling fluid migration pathways; reservoir quality determining fluid storage capacity; and structural configuration influencing fluid accumulation patterns. This multi-scale characterization provides critical insights for optimizing development strategies in similar tight sandstone reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 33924 KB  
Article
Multiparameter Inversion of Seismic Pre-Stack Amplitude Variation with Angle Based on a New Propagation Matrix Method
by Qianlong Ding, Shuangquan Chen, Jinsong Shen, Zuzhi Hu and Guoquan Wang
Appl. Sci. 2025, 15(5), 2636; https://doi.org/10.3390/app15052636 - 28 Feb 2025
Cited by 2 | Viewed by 1010
Abstract
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with [...] Read more.
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with angle (AVA) inversion based on the Zoeppritz equation has limitations regarding the accuracy. The AVA neglects transmission losses and the effects of multiple reflections during seismic wave propagation, resulting in reduced resolution. In contrast, the propagation matrix theory offers a comprehensive range of reflection coefficients for P- and S-waves in multilayered media at arbitrary incidence angles, thereby theoretically enhancing the inversion accuracy. However, the seismic responses obtained using this method exist in the slowness–frequency domain and require constant slowness for consistency along a profile. This assumption is violated when variations in the P-wave velocity occur within the subsurface, affecting the incidence angle of propagating seismic waves. This study modifies the propagation matrix theory to compute AVA seismic responses and applies it to pre-stack multiparameter inversion. The effectiveness of the modified method was validated by deriving theoretical AVA seismic responses and comparing them to solutions from a typical layered media model. The modified theory was also employed for seismic pre-stack inversion. Numerical simulations and field data tests demonstrated that the new propagation matrix method offers a high accuracy and stability. Full article
Show Figures

Figure 1

28 pages, 5527 KB  
Article
Utilizing Duplicate Announcements for BGP Anomaly Detection
by Rahul Deo Verma, Pankaj Kumar Keserwani, Vinesh Kumar Jain, Mahesh Chandra Govil and Valmik Tilwari
Telecom 2025, 6(1), 11; https://doi.org/10.3390/telecom6010011 - 11 Feb 2025
Cited by 1 | Viewed by 1561
Abstract
The Border Gateway Protocol (BGP) is the backbone of inter-domain routing on the internet, but its susceptibility to both benign and malicious anomalies creates substantial risks to both network reliability and security. In this study, we present a new approach for deep learning-based [...] Read more.
The Border Gateway Protocol (BGP) is the backbone of inter-domain routing on the internet, but its susceptibility to both benign and malicious anomalies creates substantial risks to both network reliability and security. In this study, we present a new approach for deep learning-based BGP anomaly detection utilizing duplicate announcements, which are known to be a symptom of routing disruptions. We developed our methodology based on public BGP data from RIPE and Route Views. We used the number of duplicate announcements as a baseline against which we checked for sporadic and time-based anomalies. Here, we propose a deep learning framework based on the Exponential Moving Average (EMA) model in combination with Autoencoder for anomaly identification. We also apply the Temporal-oriented Synthetic Minority Over-Sampling Technique (T-SMOTE) to overcome data imbalance. Comparative evaluations show that the Autoencoder model is significantly better than LSTM and that existing state-of-the-art methods have higher accuracy, precision, recall, and F1 scores. This study proposes a reliable, scalable, and rapid framework for real-time BGP adversary detection, which improves network security and resilience. Full article
Show Figures

Figure 1

Back to TopTop