Impacts of PACAP 1-38 and BGP-15 on the Healing of Fasciocutaneous Groin Flaps Affected by Ischemia–Reperfusion in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Operative Techniques and Experimental Groups
2.3. Sampling Protocol
2.4. Laboratory Analysis
2.5. Tensile Strength Measurement
2.6. Histological Analyses
2.7. Statistical Methods
3. Results
3.1. Macroscopic Evaluation
3.2. Skin Temperature
3.3. Hematological Parameters
3.4. Micro-Rheological Parameters
3.5. Tensile Strength
3.6. Histological Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thorwarth, M.; Eulzer, C.; Bader, R.; Wolf, C.; Schmidt, M.; Schultze-Mosgau, S. Free flap transfer in cranio-maxillofacial surgery: A review of the current data. Oral. Maxillofac. Surg. 2008, 12, 113–124. [Google Scholar] [CrossRef]
- Tschoi, M.; Hoy, E.A.; Granick, M.S. Skin flaps. Surg. Clin. N. Am. 2009, 89, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.R. Reconstruction of facial defects. In Cummings Otolaryngology—Head & Neck Surgery, 5th ed.; Flint, P.W., Haughey, B.H., Lund, V.J., Niparko, J.K., Robbins, K.T., Thomas, J.R., Lesperance, M.M., Eds.; Elsevier: Philadelphia, PA, USA, 2010; pp. 342–363. [Google Scholar]
- Dow, T.; ElAbd, R.; McGuire, C.; Corkum, J.; Youha, S.A.; Samargandi, O.; Williams, J. Outcomes of free muscle flaps versus free fasciocutaneous flaps for lower limb reconstruction following trauma: A systematic review and meta-analysis. J. Reconstr. Microsurg. 2023, 39, 526–539. [Google Scholar] [CrossRef]
- Raja, B.S.; Vathulya, M.; Maheshwari, V.; Gowda, A.K.S.; Jain, A.; Kandwal, P. No added benefits of adipofascial flaps over fasciocutaneous flaps except for footwear ease and bulkiness: A systematic review and meta-analysis. J. Clin. Orthop. Trauma. 2022, 33, 101999. [Google Scholar] [CrossRef]
- Mégevand, V.; Suva, D.; Mohamad, M.; Hannouche, D.; Kalbermatten, D.F.; Oranges, C.M. Muscle vs. fasciocutaneous microvascular free flaps for lower limb reconstruction: A meta-analysis of comparative studies. J. Clin. Med. 2022, 11, 1557. [Google Scholar] [CrossRef]
- Yang, L.; Bai, X.; Liu, Y.; Zhu, S.; Li, S.; Chen, Z.; Han, T.; Jin, S.; Zang, M. Angiosome-guided perfusion decellularization of fasciocutaneous flaps. J. Reconstr. Microsurg. 2024, 41, 405–414. [Google Scholar] [CrossRef]
- Lamberty, B.G.; Cormack, G.C. Fasciocutaneous flaps. Clin. Plast. Surg. 1990, 17, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Boretto, J.G.; Hohman, M.H.; De Cicco, F.L. Fasciocutaneous Flaps. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562280/ (accessed on 7 June 2025). [PubMed]
- Zhang, F.; Pang, Y.; Buntic, R.; Jones, M.; Cai, Z.; Buncke, H.J.; Lineaweaver, W.C. Effect of sequence, timing of vascular anastomosis, and clamp removal on survival of microsurgical flaps. J. Reconstr. Microsurg. 2002, 18, 697–702. [Google Scholar] [CrossRef]
- Mücke, T.; Hapfelmeier, A.; Schmidt, L.H.; Fichter, A.M.; Kanatas, A.; Wolff, K.D.; Ritschl, L.M. A comparative analysis using flowmeter, laser-Doppler spectrophotometry, and indocyanine green-videoangiography for detection of vascular stenosis in free flaps. Sci. Rep. 2020, 10, 939. [Google Scholar] [CrossRef]
- Zhang, F.; Sones, W.D.; Lineaweaver, W.C. Microsurgical flap models in the rat. J. Reconstr. Microsurg. 2001, 17, 211–221. [Google Scholar] [CrossRef]
- Ballestín, A.; Casado, J.G.; Abellán, E.; Vela, F.J.; Álvarez, V.; Usón, A.; López, E.; Marinaro, F.; Blázquez, R.; Sánchez-Margallo, F.M. Ischemia-reperfusion injury in a rat microvascular skin free flap model: A histological, genetic, and blood flow study. PLoS ONE 2018, 13, e0209624. [Google Scholar] [CrossRef]
- Aksamitiene, E.; Heffelfinger, R.N.; Hoek, J.B.; Pribitkin, E.D. Standardized pre-clinical surgical animal model protocol to investigate the cellular and molecular mechanisms of ischemic flap healing. Biol. Proced. Online 2024, 26, 2. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.Z.; Liu, Y.F.; Dong, X.H.; Hao, Y.; Wang, Y.B. Necroptosis was found in a rat ischemia/reperfusion injury flap model. Chin. Med. J. 2019, 132, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.E.; Shyu, V.B.; Wen, C.J.; Wei, F.C.; Huang, X.T.; Cheng, H.Y. The rat groin flap model redesigned for evaluating treatment effects on ischemia-reperfusion injury. J. Surg. Res. 2018, 222, 160–166. [Google Scholar] [CrossRef]
- Magyar, Z.; Molnar, A.; Nachmias, D.B.; Mann, D.; Sogor, V.; Mester, A.; Peto, K.; Nemeth, N. Impact of groin flap ischemia-reperfusion on red blood cell micro-rheological parameters in a follow-up study on rats. Clin. Hemorheol. Microcirc. 2021, 79, 245–255. [Google Scholar] [CrossRef]
- Heuvel, M.G.v.D.; Buurman, W.A.; Bast, A.; van der Hulst, R.R. Review: Ischaemia-reperfusion injury in flap surgery. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 721–726. [Google Scholar] [CrossRef]
- Yin, X.; Feng, L.; Hua, Q.; Ye, J.; Cai, L. Progress in the study of mechanisms and pathways related to the survival of random skin flaps. Updates Surg. 2024, 76, 1195–1202. [Google Scholar] [CrossRef]
- Baskurt, O.K. Mechanisms of blood rheology alterations. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman, H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 2007; pp. 170–190. [Google Scholar]
- Nemeth, N.; Deak, A.; Szentkereszty, Z.; Peto, K. Effects and influencing factors on hemorheological variables taken into consideration in surgical pathophysiology research. Clin. Hemorheol. Microcirc. 2018, 69, 133–140. [Google Scholar] [CrossRef]
- Miyata, A.; Arimura, A.; Dahl, R.R.; Minamino, N.; Uehara, A.; Jiang, L.; Culler, M.D.; Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 1989, 164, 567–574. [Google Scholar] [CrossRef]
- Denes, V.; Geck, P.; Mester, A.; Gabriel, R. Pituitary adenylate cyclase-activating polypeptide: 30 years in research spotlight and 600 million years in service. J. Clin. Med. 2019, 8, 1488. [Google Scholar] [CrossRef]
- Sadanandan, N.; Cozene, B.; Park, Y.J.; Farooq, J.; Kingsbury, C.; Wang, Z.J.; Moscatello, A.; Saft, M.; Cho, J.; Gonzales-Portillo, B.; et al. Pituitary adenylate cyclase-activating polypeptide: A potent therapeutic agent in oxidative stress. Antioxidants 2021, 10, 354. [Google Scholar] [CrossRef]
- Toth, D.; Szabo, E.; Tamas, A.; Juhasz, T.; Horvath, G.; Fabian, E.; Opper, B.; Szabo, D.; Maugeri, G.; D’Amico, A.G.; et al. Protective Effects of PACAP in peripheral organs. Front. Endocrinol. 2020, 11, 377. [Google Scholar] [CrossRef]
- Fazekas, L.A.; Szabo, B.; Szegeczki, V.; Filler, C.; Varga, A.; Godo, Z.A.; Toth, G.; Reglodi, D.; Juhasz, T.; Nemeth, N. Impact assessment of pituitary adenylate cyclase activating polypeptide (PACAP) and hemostatic sponge on vascular anastomosis regeneration in rats. Int. J. Mol. Sci. 2023, 24, 16695. [Google Scholar] [CrossRef]
- Szabados, E.; Literati-Nagy, P.; Farkas, B.; Sumegi, B. BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly(ADP-ribose) polymerase. Biochem. Pharmacol. 2000, 59, 937–945. [Google Scholar] [CrossRef]
- Peto, A.; Kosa, D.; Feher, P.; Ujhelyi, Z.; Sinka, D.; Vecsernyes, M.; Szilvassy, Z.; Juhasz, B.; Csanadi, Z.; Vigh, L.; et al. Pharmacological Overview of the BGP-15 chemical agent as a new drug candidate for the treatment of symptoms of metabolic syndrome. Molecules 2020, 25, 429. [Google Scholar] [CrossRef] [PubMed]
- Green, C.J.; Knight, J.; Precious, S.; Simpkin, S. Ketamine alone and combined with diazepam or xylazine in laboratory animals: A 10-year experience. Lab. Anim. 1981, 15, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Flecknell, P. Laboratory Animal Anaesthesia, 4th ed.; Academic Press, Elsevier: Amsterdam, The Netherlands, 2015; pp. 163–165. [Google Scholar]
- Cannon, C.Z.; Kissling, G.E.; Hoenerhoff, M.J.; King-Herbert, A.P.; Blankenship-Paris, T. Evaluation of dosages and routes of administration of tramadol analgesia in rats using hot-plate and tail-flick tests. Lab. Anim. 2010, 39, 342–351. [Google Scholar] [CrossRef]
- Hardeman, M.; Goedhart, P.; Shin, S. Methods in hemorheology. In Handbook of Hemorheology and Hemodynamics; Baskurt, O.K., Hardeman, M.R., Rampling, M.W., Meiselman, H.J., Eds.; IOS Press: Amsterdam, The Netherlands, 2007; pp. 242–266. [Google Scholar]
- Baskurt, O.K.; Boynard, M.; Cokelet, G.C.; Connes, P.; Cooke, B.M.; Forconi, S.; Liao, F.; Hardeman, M.R.; Jung, F.; Meiselman, H.J.; et al. New guidelines for hemorheological laboratory techniques. Clin. Hemorheol. Microcirc. 2009, 42, 75–97. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Meiselman, H.J. Data reduction methods for ektacytometry in clinical hemorheology. Clin. Hemorheol. Microcirc. 2013, 54, 99–107. [Google Scholar] [CrossRef]
- Godo, Z.A.; Fazekas, L.A.; Fritsch, G.; Szabo, B.; Nemeth, N. A custom-developed device for testing tensile strength and elasticity of vascular and intestinal tissue samples for anastomosis regeneration research. Sensors 2024, 24, 5984. [Google Scholar] [CrossRef]
- Mead, R. The Design of Experiments: Statistical Principles for Practical Applications; Cambridge University Press: New York, NY, USA, 1988. [Google Scholar]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Komi, D.E.A.; Khomtchouk, K.; Santa Maria, P.L. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin. Rev. Allergy Immunol. 2020, 58, 298–312. [Google Scholar] [CrossRef]
- Guth, C.; Limjunyawong, N.; Pundir, P. The evolving role of mast cells in wound healing: Insights from recent research and diverse models. Immunol. Cell. Biol. 2024, 102, 878–890. [Google Scholar] [CrossRef]
- Fernández-Guarino, M.; Bacci, S. Mast cells and wound healing: Still an open question. Histol. Histopathol. 2025, 40, 21–30. [Google Scholar] [CrossRef]
- Jurisic, V.; Terzic, T.; Colic, S.; Jurisic, M. The concentration of TNF-alpha correlate with number of inflammatory cells and degree of vascularization in radicular cysts. Oral. Dis. 2008, 14, 600–605. [Google Scholar] [CrossRef]
- Jurisic, V.; Srdic-Rajic, T.; Konjevic, G.; Bogdanovic, G.; Colic, M. TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J. Membr. Biol. 2011, 239, 115–122. [Google Scholar] [CrossRef]
- Lohman, R.; Yowell, R.; Barton, S.; Araneo, B.; Siemionow, M. Dehydroepiandrosterone protects muscle flap microcirculatory hemodynamics from ischemia/reperfusion injury: An experimental in vivo study. J. Trauma. 1997, 42, 74–80. [Google Scholar] [CrossRef]
- Jurisic, V.; Bumbasirevic, V.; Konjevic, G.; Djuricic, B.; Spuzic, I. TNF-alpha induces changes in LDH isotype profile following triggering of apoptosis in PBL of non-Hodgkin’s lymphomas. Ann. Hematol. 2004, 83, 84–91. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Kang, S.S.; Zhang, Z.W.; Wu, R. Edaravone enhances the viability of ischemia/reperfusion flaps. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2017, 37, 51–56. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Dong, X.; Liu, Y.; Hao, Y.; Wang, Y. Necrostatin-1 protects against ischemia/reperfusion injury by inhibiting receptor-interacting protein 1 in a rat flap model. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 194–202. [Google Scholar] [CrossRef]
- Gordts, S.C.; Muthuramu, I.; Amin, R.; Jacobs, F.; De Geest, B. The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals 2014, 7, 419–432. [Google Scholar] [CrossRef]
- Paragh, G.; Németh, Á.; Harangi, M.; Banach, M.; Fülöp, P. Causes, clinical findings and therapeutic options in chylomicronemia syndrome, a special form of hypertriglyceridemia. Lipids Health Dis. 2022, 21, 21. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Xu, C.; Zhang, Q.; Ren, H.; Huang, X.; He, C.; Ma, J.; Wang, Z. Metabolic reprogramming in skin wound healing. Burns Trauma. 2024, 12, tkad047. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chen, X.; Bao, L.; Ren, L.; Dou, G.; Lian, J.; Xing, S.; Li, Z.; Ding, F.; Qin, W.; et al. Lipid metabolism of apoptotic vesicles accelerates cutaneous wound healing by modulating macrophage function. J. Nanobiotechnol. 2025, 23, 106. [Google Scholar] [CrossRef]
- Nemeth, N.; Szabo, A. Microcirculation. In Advances in Experimental Surgery; Huifang, C., Martins, P., Eds.; Nova SciencePublishers: Hauppauge, NY, USA, 2018; Volume 2, pp. 317–357. [Google Scholar]
- Gierek, M.; Bergler-Czop, B.; Słaboń, A.; Łabuś, W.; Ochała-Gierek, G. Laser speckle contrast analysis (LASCA): A new device in the diagnosis and monitoring of surgical treatment of hidradenitis suppurativa. Postepy. Dermatol. Allergol. 2023, 40, 253–258. [Google Scholar] [CrossRef]
- Gierek, M.; Klama-Baryła, A.; Łabuś, W.; Bergler-Czop, B.; Pietrauszka, K.; Niemiec, P. Platelet-Rich Plasma and Acellular Dermal Matrix in the Surgical Treatment of Hidradenitis Suppurativa: A Comparative Retrospective Study. J. Clin. Med. 2023, 12, 2112. [Google Scholar] [CrossRef]
Variable | Group | 1st p.o. Day | 3rd p.o. Day | 7th p.o. Day |
---|---|---|---|---|
Flap surface area [cm2] on control side | Control | 3.89 ± 0.17 * | 3.30 ± 0.21 * | 2.91 ± 0.31 * |
PACAP | 4.00 ± 0.10 * | 3.22 ± 0.50 * | 3.40 ± 0.44 * | |
BGP-15 | 3.72 ± 0.32 * | 3.29 ± 0.20 * | 3.22 ± 0.12 * | |
Flap surface area [cm2] on ischemic side | Control | 3.75 ± 0.30 *# | 3.18 ± 0.07 *# | 2.84 ± 0.31 * |
PACAP | 3.90 ± 0.11 *# | 3.15 ± 0.14 *# | 2.63 ± 0.36 * | |
BGP-15 | 3.69 ± 0.18 * | 3.26 ± 0.13 * | 2.56 ± 0.47 * |
Region | Group | Before Operation | During Ischemia | After Operation | 1st p.o. Day | 3rd p.o. Day | 7th p.o. Day |
---|---|---|---|---|---|---|---|
Intact skin | Control | 32.61 ± 3.03 | 31.70 ± 2.18 | 32.49 ± 2.09 | 29.58 ± 1.63 | 32.41 ± 3.05 | 32.70 ± 1.13 |
PACAP | 32.44 ± 1.68 | 32.43 ± 1.79 | 32.81 ± 1.88 | 31.64 ± 0.95 | 31.67 ± 0.58 | 31.38 ± 1.44 | |
BGP-15 | 31.36 ± 1.05 | 32.00 ± 0.63 | 31.03 ± 1.28 | 33.74 ± 3.39 | 33.49 ± 2.90 | 33.62 ± 2.43 | |
Control-side flap | Control | 32.34 ± 2.89 | 30.14 ± 3.06 * | 31.84 ± 2.57 | 29.25 ± 1.98 | 32.13 ± 3.36 | 32.30 ± 1.05 |
PACAP | 31.51 ± 1.22 | 29.26 ± 0.69 * | 30.87 ± 1.54 | 30.14 ± 1.33 | 30.87 ± 1.13 | 32.22 ± 2.76 | |
BGP-15 | 31.43 ± 0.56 | 29.81 ± 1.27 * | 30.41 ± 1.34 | 33.29 ± 3.47 | 32.31 ± 3.47 | 32.06 ± 1.67 | |
Ischemic-side flap | Control | 32.35 ± 2.81 | 30.16 ± 3.28 * | 31.78 ± 2.57 | 29.38 ± 1.92 | 32.31 ± 3.20 | 31.71 ± 0.59 |
PACAP | 31.39 ± 1.05 | 28.96 ± 0.84 * | 30.30 ± 1.30 | 30.07 ± 1.28 | 30.43 ± 1.39 | 31.23 ± 1.46 | |
BGP-15 | 31.23 ± 0.58 | 29.71 ± 1.73 * | 30.16 ± 1.40 | 33.06 ± 3.67 | 32.25 ± 3.43 | 31.99 ± 1.56 |
Variable | Group | Base | 1st p.o. day | 3rd p.o. day | 7th p.o. day |
---|---|---|---|---|---|
White blood cell count [109/L] | Control | 8.59 ± 1.94 | 5.62 ± 3.11 | 8.01 ± 1.21 | 8.98 ± 3.71 |
PACAP | 9.84 ± 2.54 | 8.65 ± 3.13 | 8.51 ± 1.79 | 9.26 ± 1.74 | |
BGP-15 | 8.00 ± 1.91 | 7.9 ± 2.47 | 6.56 ± 0.97 | 8.96 ± 1.63 | |
Red blood cell count [1012/L] | Control | 7.23 ± 0.62 | 7.28 ± 0.58 | 7.15 ± 0.24 | 6.68 ± 0.71 |
PACAP | 7.36 ± 0.39 | 7.44 ± 0.94 | 7 ± 0.47 | 7.16 ± 0.39 | |
BGP-15 | 7.11 ± 10.68 | 7.41 ± 0.27 | 7.07 ± 0.31 | 7.08 ± 0.66 | |
Hematocrit [%] | Control | 41.71 ± 3.51 | 41.41 ± 3.13 | 40.44 ± 1.65 | 37.05 ± 3.83 |
PACAP | 42.36 ± 2.02 | 42.49 ± 1.25 | 39.99 ± 2.65 | 40.74 ± 2.11 | |
BGP-15 | 40.75 ± 3.84 | 41.63 ± 1.83 | 39.75 ± 2.24 | 39.73 ± 3.23 | |
Platelet count [109/L] | Control | 689.93 ± 83.54 | 654.56 ± 65.52 | 730.43 ± 83.61 | 735.6 ± 107.25 |
PACAP | 780.22 ± 57.17 | 728.67 ± 112.33 | 640.75 ± 91.77 | 816.07 ± 99.17 | |
BGP-15 | 757.5 ± 94.59 | 672.2 ± 48.11 | 660.1 ± 105.81 | 922.3 ± 80.25 * |
Variable | Flap | Flap Region | Group | ||
---|---|---|---|---|---|
Control | PACAP | BGP-15 | |||
Tensile strength [N] | Control-side flap | Cranial | 2.51 ± 0.82 | 2.09 ± 0.53 | 2.72 ± 1.09 |
Lateral | 1.98 ± 0.73 | 2.06 ± 0.47 | 2.14 ± 0.62 | ||
Caudal | 3.14 ± 1.09 | 2.00 ± 0.34 | 2.41 ± 0.82 | ||
Ischemic-side flap | Cranial | 3.19 ± 0.88 | 2.72 ± 1.28 | 3.02 ± 0.83 | |
Lateral | 1.98 ± 0.34 | 1.04 ± 0.17 * | 1.95 ± 0.69 | ||
Caudal | 2.39 ± 0.72 | 2.61 ± 0.75 | 2.83 ± 1.04 | ||
Slope of curve | Control-side flap | Cranial | 0.018 ± 0.009 | 0.016 ± 0.003 | 0.013 ± 0.003 |
Lateral | 0.015 ± 0.008 | 0.023 ± 0.002 # | 0.015 ± 0.004 | ||
Caudal | 0.021 ± 0.007 | 0.015 ± 0.002 | 0.009 ± 0.003 * | ||
Ischemic-side flap | Cranial | 0.024 ± 0.004 | 0.0153 ± 0.004 * | 0.014 ± 0.008 | |
Lateral | 0.03 ± 0.004 | 0.016 ± 0.005 *# | 0.043 ± 0.008 | ||
Caudal | 0.014 ± 0.005 | 0.02 ± 0.005 | 0.02 ± 0.011 |
Region/Flap | Group | Epidermis Thickness [μm] | Number of Mastocytes per 0.5 mm2 |
---|---|---|---|
Intact skin | Control | 182.00 ± 79.57 | 12.4 ± 4.9 |
PACAP | 157.86 ± 59.38 | 11.0 ± 4.6 | |
BGP-15 | 155.81 ± 60.65 | 9.6 ± 6.5 | |
Control-side flap | Control | 397.04 ± 225.41 | 9.8 ± 5.1 |
PACAP | 166.36 ± 57.74 | 7.75 ± 3.2 * | |
BGP-15 | 285.21 ± 132.63 | 13.6 ± 1.2 * | |
Ischemic-side flap | Control | 352.39 ± 232.32 | 2.2 ± 1.3 * |
PACAP | 271.73 ± 121.03 | 1.75 ± 0.9 *# | |
BGP-15 | 418.48 ± 228.58 | 1.6 ± 1.26 *# |
Sample | Red Light Intensity [PN] | Green Light Intensity [PN] |
---|---|---|
Intact skin | 15,830.95 ± 5516.57 | 1542.27 ± 581.07 |
Control group, ischemic flaps | 8979.15 ± 2468.27 * | 4058.43 ± 1166.42 * |
PACAP group, ischemic flaps | 15,946.46 ± 2195.89 | 2735.57 ± 1492.07 |
BGP-15 group, ischemic flaps | 12,867.00 ± 7271.77 | 3222.67 ± 1494.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flasko, A.O.; Fazekas, L.A.; Kincses, G.; Varga, A.; Matrai, A.A.; Czirjak, I.; Dodity, N.; Bacskay, I.K.; Peto, A.; Reglodi, D.; et al. Impacts of PACAP 1-38 and BGP-15 on the Healing of Fasciocutaneous Groin Flaps Affected by Ischemia–Reperfusion in Rats. Biomedicines 2025, 13, 2129. https://doi.org/10.3390/biomedicines13092129
Flasko AO, Fazekas LA, Kincses G, Varga A, Matrai AA, Czirjak I, Dodity N, Bacskay IK, Peto A, Reglodi D, et al. Impacts of PACAP 1-38 and BGP-15 on the Healing of Fasciocutaneous Groin Flaps Affected by Ischemia–Reperfusion in Rats. Biomedicines. 2025; 13(9):2129. https://doi.org/10.3390/biomedicines13092129
Chicago/Turabian StyleFlasko, Anna Orsolya, Laszlo Adam Fazekas, Gergo Kincses, Adam Varga, Adam Attila Matrai, Ildiko Czirjak, Noemi Dodity, Ildiko Katalin Bacskay, Agota Peto, Dora Reglodi, and et al. 2025. "Impacts of PACAP 1-38 and BGP-15 on the Healing of Fasciocutaneous Groin Flaps Affected by Ischemia–Reperfusion in Rats" Biomedicines 13, no. 9: 2129. https://doi.org/10.3390/biomedicines13092129
APA StyleFlasko, A. O., Fazekas, L. A., Kincses, G., Varga, A., Matrai, A. A., Czirjak, I., Dodity, N., Bacskay, I. K., Peto, A., Reglodi, D., Filler, C., Juhasz, T., & Nemeth, N. (2025). Impacts of PACAP 1-38 and BGP-15 on the Healing of Fasciocutaneous Groin Flaps Affected by Ischemia–Reperfusion in Rats. Biomedicines, 13(9), 2129. https://doi.org/10.3390/biomedicines13092129