Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Azoarcus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2462 KB  
Article
Mechanistic Insights into the Differential Effects of Biochar and Organic Fertilizer on Nitrogen Loss Pathways in Vegetable Soils: Linking Soil Carbon, Aggregate Stability, and Denitrifying Microbes
by Shixiong Li, Linsong Hu, Chun Ma, Manying Li, Yuanyang Peng, Yin Peng, Xilatu Dabu and Jiangling Huang
Agriculture 2025, 15(22), 2326; https://doi.org/10.3390/agriculture15222326 - 8 Nov 2025
Viewed by 703
Abstract
Biochar and organic fertilizer applications are widely recognized as effective strategies for mitigating greenhouse gas emissions and controlling agricultural non-point source pollution in agroecosystems. However, the combined effects of these two approaches on greenhouse gas emissions and agricultural non-point source pollution remain insufficiently [...] Read more.
Biochar and organic fertilizer applications are widely recognized as effective strategies for mitigating greenhouse gas emissions and controlling agricultural non-point source pollution in agroecosystems. However, the combined effects of these two approaches on greenhouse gas emissions and agricultural non-point source pollution remain insufficiently understood. Through consecutive field-based positioning plot trials, this study systematically examined the individual and combined effects of biochar and organic fertilizer amendments on N runoff loss (WTN) and gaseous emissions (N2O and NH3), N-cycling functional microbial communities, and soil physicochemical properties. Results demonstrated that conventional chemical fertilization resulted in 20.70% total N loss (4.48% gaseous emissions, 15.22% runoff losses). Biochar and organic fertilizer applications significantly reduced WTN losses by 8.06% and 7.43%, respectively, and decreased gaseous losses by 2.01% and 1.88%, while concurrently enhancing plant N uptake and soil residual N. Random forest analysis combined with partial least squares structural equation modeling revealed that soil organic carbon directly modulated nitrogen runoff losses and indirectly influenced aggregate stability and macroaggregate formation. Dissolved organic carbon (DOC) and recalcitrant organic carbon (ROC) exhibited dual regulatory effects on NH3 volatilization through both direct pathways and indirect mediation via aggregate stability. Notably, biochar and organic fertilizer amendments induced significant compositional shifts in nirS- and nirK-type denitrifying microbial communities. pH, cation exchange capacity (CEC), and iron oxide–carbon complexes (IOCS) were identified as key factors suppressing N2O emissions through inhibitory effects on Azoarcus and Bosea genera. Our findings demonstrate that biochar and organic fertilizers differentially modulate soil physicochemical properties and denitrifier community structure, with emission reduction disparities attributable to distinct mechanisms’ enhanced aggregate stability and modified denitrification potential through genus-level microbial community restructuring, particularly affecting Azoarcus and Bosea populations. This study offers valuable insights into the regulation of carbon sources for nitrogen management strategies within sustainable acidic soil vegetable production systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 2107 KB  
Article
The Different Spatial Distribution Patterns of Nitrifying and Denitrifying Microbiome in the Biofilters of the Recirculating Aquaculture System
by Wenwen Jiang, Tingting Liu, Shuting Li, Li Li, Kefeng Xu, Guodong Wang and Enmian Guo
Microorganisms 2025, 13(8), 1833; https://doi.org/10.3390/microorganisms13081833 - 6 Aug 2025
Viewed by 987
Abstract
In this study, the distribution patterns of the nitrifying and denitrifying microbiome in a large-scale biofilter (587.24 m3) in a cold freshwater recirculating aquaculture system (RAS) was investigated. Previous studies have revealed that the water quality, nitrification, and denitrification rates in [...] Read more.
In this study, the distribution patterns of the nitrifying and denitrifying microbiome in a large-scale biofilter (587.24 m3) in a cold freshwater recirculating aquaculture system (RAS) was investigated. Previous studies have revealed that the water quality, nitrification, and denitrification rates in the front (BFF), middle (BFM), and back (BFB) of this biofilter are different. The results showed the highest diversity of the denitrifying microbiome in the BFB, followed by BFF and BFM, whereas nitrifying microbiome diversity remained consistent across different positions. Two genera, Nitrosomonas and Nitrosospira, dominated the nitrifying microbiome, while Pseudomonas, Thauera, Cupriavidus, Dechloromonas, Azoarcus, and Paracoccus comprised the top six denitrifying genera. Principal coordinate analysis indicated a distinct spatial distribution pattern of the denitrifying microbiome but not the nitrifying microbiome. The genera Pseudomonas and Dechloromonas were the biomarkers of the BFF and BFB, respectively. Redundancy analysis showed that nitrite, nitrate, dissolved oxygen, and soluble reactive phosphorus influenced the functional microbiome distribution pattern. Network correlation analysis identified one nitrifying hub (Nitrosospira) in the BFF, five denitrifying hubs (Aromatoleum, Dechloromonas, Paracoccus, Ruegeria, and Thauera) in the BFM, and three denitrifying hubs (Azoarcus, Magnetospirillum, and Thauera) in the BFB. Exclusively negative correlations were found between hubs and its adjacent nodes in the BFF and BFB. This study demonstrates that habitat can shape the distribution patterns of the nitrifying and denitrifying microbiome in the biofilter of the RAS, with the BFF exhibiting greater benefits for the nitrification process. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

23 pages, 5051 KB  
Article
Delayed Sowing Reduced Verticillium Wilt by Altering Soil Temperature and Humidity to Enhance Beneficial Rhizosphere Bacteria of Sunflower
by Jianfeng Yang, Shuo Jia, Tie Li, Jian Zhang, Yuanyuan Zhang, Jianjun Hao and Jun Zhao
Microorganisms 2024, 12(12), 2416; https://doi.org/10.3390/microorganisms12122416 - 25 Nov 2024
Viewed by 1340
Abstract
Sunflower Verticillium Wilt (SVW) caused by Verticillium dahliae is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations. [...] Read more.
Sunflower Verticillium Wilt (SVW) caused by Verticillium dahliae is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations. Soil was collected from multiple locations with different sowing dates to understand the underlying biological mechanisms driving this phenomenon. The soil bacterial community was characterized through 16S rRNA gene amplicon sequencing performed on the Illumina MiSeq platform, followed by comprehensive bioinformatics analysis. Microsclerotia numbers in soil were detected using both NP-10 selective medium and quantitative polymerase chain reaction (qPCR). By delaying the sowing date, the number of microsclerotia in soil and the biomass of V. dahliae colonized inside sunflower roots were reduced during the early developmental stages (V2–V6) of sunflowers. Amplicon sequencing revealed an increased abundance of bacterial genera, such as Pseudomonas, Azoarcus, and Bacillus in soil samples collected from delayed sowing plots. Five bacterial strains isolated from the delayed sowing plot exhibited strong antagonistic effects against V. dahliae. The result of the pot experiments indicated that supplying two different synthetic communities (SynComs) in the pot did increase the control efficiencies on SVW by 19.08% and 37.82% separately. Additionally, soil temperature and humidity across different sowing dates were also monitored, and a significant correlation between disease severity and environmental factors was observed. In conclusion, delayed sowing appears to decrease microsclerotia levels by recruiting beneficial rhizosphere bacteria, thereby reducing the severity of SVW. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

10 pages, 1100 KB  
Article
Investigation of Nitrogen Removal in Flue Gas Desulfurization and Denitrification Wastewater Utilizing Halophilic Activated Sludge
by Min Ren, Yuqi Wang, Huining Zhang, Yan Li and Keying Sun
Toxics 2024, 12(10), 742; https://doi.org/10.3390/toxics12100742 - 13 Oct 2024
Cited by 3 | Viewed by 1970
Abstract
In the process of flue gas desulfurization and denitrification, the generation of high-sulfate wastewater containing nitrogen is a significant challenge for biological wastewater treatment. In this study, halophilic activated sludge was inoculated in a Sequencing Batch Reactor to remove nitrogen from wastewater with [...] Read more.
In the process of flue gas desulfurization and denitrification, the generation of high-sulfate wastewater containing nitrogen is a significant challenge for biological wastewater treatment. In this study, halophilic activated sludge was inoculated in a Sequencing Batch Reactor to remove nitrogen from wastewater with a high sulfate concentration (60 g/L). With the influent concentration of 180 mg/L, the removal rate of total nitrogen was more than 96.7%. The effluent ammonium nitrogen concentration was lower than 1.94 mg/L, and the effluent nitrate nitrogen and nitrite nitrogen concentrations were even lower than 0.77 mg/L. The salt tolerance of activated sludge is mainly related to the increase in the content of ectoine in microbial cells. The Specific Nitrite Oxidation Rate is quite low, while the Specific Nitrite Reduction Rate and Specific Nitrate Reduction Rate are relatively strong. In the system, there are various nitrogen metabolic processes, including aerobic nitrification, anaerobic denitrification, and simultaneous nitrification–denitrification processes. By analyzing the nitrogen metabolic mechanisms and microbial community structure of the reaction system, dominate bacteria can be identified, such as Azoarcus, Thauera, and Halomonas, which have significant nitrogen removal capabilities. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

17 pages, 2306 KB  
Article
Catalytic Stability of S-1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase from Aromatoleum aromaticum
by Mateusz Tataruch, Viera Illeová, Anna Kluza, Patrik Cabadaj and Milan Polakovič
Int. J. Mol. Sci. 2024, 25(13), 7385; https://doi.org/10.3390/ijms25137385 - 5 Jul 2024
Viewed by 1774
Abstract
Derived from the denitrifying bacterium Aromatoleum aromaticum EbN1 (Azoarcus sp.), the enzyme S-1-(4-hydroxyphenyl)-ethanol dehydrogenase (S-HPED) belongs to the short-chain dehydrogenase/reductase family. Using research techniques like UV-Vis spectroscopy, dynamic light scattering, thermal-shift assay and HPLC, we investigated the catalytic and structural stability [...] Read more.
Derived from the denitrifying bacterium Aromatoleum aromaticum EbN1 (Azoarcus sp.), the enzyme S-1-(4-hydroxyphenyl)-ethanol dehydrogenase (S-HPED) belongs to the short-chain dehydrogenase/reductase family. Using research techniques like UV-Vis spectroscopy, dynamic light scattering, thermal-shift assay and HPLC, we investigated the catalytic and structural stability of S-HPED over a wide temperature range and within the pH range of 5.5 to 9.0 under storage and reaction conditions. The relationship between aggregation and inactivation of the enzyme in various pH environments was also examined and interpreted. At pH 9.0, where the enzyme exhibited no aggregation, we characterized thermally induced enzyme inactivation. Through isothermal and multitemperature analysis of inactivation data, we identified and confirmed the first-order inactivation mechanism under these pH conditions and determined the kinetic parameters of the inactivation process. Additionally, we report the positive impact of glucose as an enzyme stabilizer, which slows down the dynamics of S-HPED inactivation over a wide range of pH and temperature and limits enzyme aggregation. Besides characterizing the stability of S-HPED, the enzyme’s catalytic activity and high stereospecificity for 10 prochiral carbonyl compounds were positively verified, thus expanding the spectrum of substrates reduced by S-HPED. Our research contributes to advancing knowledge about the biocatalytic potential of this catalyst. Full article
Show Figures

Figure 1

15 pages, 2261 KB  
Article
Microbiome Structure of Activated Sludge after Adaptation to Landfill Leachate Treatment in a Lab-Scale Sequencing Batch Reactor
by Mihaela Kirilova, Ivaylo Yotinov, Yovana Todorova, Nora Dinova, Stilyana Lincheva, Irina Schneider and Yana Topalova
Processes 2024, 12(1), 159; https://doi.org/10.3390/pr12010159 - 9 Jan 2024
Cited by 2 | Viewed by 2988
Abstract
During adaptation to waters that are rich in xenobiotics, biological systems pass through multiple stages. The first one is related to the restructuring of communities, pronounced destruction of the structure, and multiplication of active biodegradants. The purpose of the present research was to [...] Read more.
During adaptation to waters that are rich in xenobiotics, biological systems pass through multiple stages. The first one is related to the restructuring of communities, pronounced destruction of the structure, and multiplication of active biodegradants. The purpose of the present research was to describe the microbiome restructuring that occurs during the adaptation stage in landfill leachate treatment. In a model SBR (sequencing batch reactor), a 21-day purification process of landfill leachate was simulated. Wastewater was fed in increasing concentrations. When undiluted leachate entered, the activated sludge structure disintegrated (Sludge Volume Index—4.6 mL/g). The Chemical Oxygen Demand and ammonium nitrogen concentration remained at high values in the influent (2321.11 mgO2/L and 573.20 mg/L, respectively). A significant amount of free-swimming cells was found, and the number of aerobic heterotrophs and bacteria of the genera Pseudomonas and Acinetobacter increased by up to 125 times. The Azoarcus-Thauera cluster (27%) and Pseudomonas spp. (16%) were registered as the main bacterial groups in the activated sludge. In the changed structure of the microbial community, Gammaproteobacteria, family Rhizobiaceae, class Saccharimonadia were predominantly represented. Among the suspended bacteria, Microbactericeae and Burkholderiaceae, which are known for their ability to degrade xenobiotics, were present in larger quantities. The enzymological analysis demonstrated that the ortho-pathway of cleavage of aromatic structures was active in the community. The described changes in the leachate-purifying microbial community appear to be destructive at the technological level. At the microbiological level, however, trends of initial adaptation were clearly outlined, which, if continued, could provide a highly efficient biodegradation community. Full article
Show Figures

Figure 1

13 pages, 2624 KB  
Article
Effect of Salinity on Performance and Microbial Community during Granulation Process in a Sequencing Batch Reactor
by Mengfei Wang, Junguo He, Xiangke Dong and Jie Zhang
Water 2023, 15(22), 3961; https://doi.org/10.3390/w15223961 - 14 Nov 2023
Cited by 10 | Viewed by 3643
Abstract
This study focused on the secretion of extracellular polymeric substances (EPSs), reactor nutrient removal performance and the microbial community under varying concentrations of NaCl (0, 10, 20, 30 and 40 g/L) during a granulation process in a sequencing batch reactor (SBR). The microorganisms [...] Read more.
This study focused on the secretion of extracellular polymeric substances (EPSs), reactor nutrient removal performance and the microbial community under varying concentrations of NaCl (0, 10, 20, 30 and 40 g/L) during a granulation process in a sequencing batch reactor (SBR). The microorganisms tended to secrete higher levels of protein (PN) and polysaccharide (PS) as a protective mechanism under saline conditions, with tightly bound EPS (TB-EPS) playing a crucial role in stabilizing granules. An overall high removal rate of chemical oxygen demand (COD) throughout operation was observed. However, the removal rate of total nitrogen (TN) progressively decreased with the stepwise increase in salinity from 85.59% at 10 g/L to 64.18% at 40 g/L. The low total phosphorus (TP) removal efficiency during the operation process is due to the loss of sludge biomass and inhibition of phosphorus-accumulating bacteria activity. Moreover, salinity caused the changes in microbial community structure. Paracoccus, Thauera and unclassified_f_Rhodobacteraceae were dominant genera at 10 g, 20 g/L and 30 g/L salinity, respectively, while Azoarcus, Halomonas, unclassified_f_Flavobacteriaceaeand Vibrio replaced them at 40 g/L salinity. Full article
Show Figures

Figure 1

14 pages, 1369 KB  
Article
Exploiting Cheese Whey for Efficient Selection of Polyhydroxyalkanoates-Storing Bacteria
by Borja Lagoa-Costa, Christian Kennes and María C. Veiga
Fermentation 2023, 9(6), 574; https://doi.org/10.3390/fermentation9060574 - 17 Jun 2023
Cited by 6 | Viewed by 2132
Abstract
Agroindustrial by-products hold an enormous potential to be bioconverted into high-value-added products such as polyhydroxyalkanoates (PHA), a cost-effective alternative to conventional plastics. In this study, cheese whey, a highly abundant side stream of the cheese making process, was explored as a feasible substrate [...] Read more.
Agroindustrial by-products hold an enormous potential to be bioconverted into high-value-added products such as polyhydroxyalkanoates (PHA), a cost-effective alternative to conventional plastics. In this study, cheese whey, a highly abundant side stream of the cheese making process, was explored as a feasible substrate for the selection of a mixed culture highly enriched in PHA-storing bacteria using a sequencing batch reactor under an aerobic dynamic feeding regime. For that, the absence/presence of thiourea, magnesium and iron, as well as the application of two different organic loading rates (OLR), i.e., 60 and 80 CmM d−1, were tested. The results showed an improved culture selection when thiourea, magnesium and iron were added to the culture medium as well as when the highest OLR was applied. Under these conditions, the biomass achieved a maximum PHA storage of 54% and a PHA production rate of 4.81 Cmmol-PHA L−1 h−1. Additionally, the study of the microbial community showed that during this period of maximum productivity, the biomass was enriched in Azoarcus and Amaricoccus bacterial species. Conclusively, cheese whey can be considered a good feedstock to efficiently select a mixed culture with high potential to accumulate PHA and a good way to give this by-product added value. Full article
(This article belongs to the Special Issue Microbial Production of Polyhydroxyalkanoates (PHAs))
Show Figures

Figure 1

15 pages, 2687 KB  
Article
Mapping Genetic Variation in Arabidopsis in Response to Plant Growth-Promoting Bacterium Azoarcus olearius DQS-4T
by Fernanda Plucani do Amaral, Juexin Wang, Jacob Williams, Thalita R. Tuleski, Trupti Joshi, Marco A. R. Ferreira and Gary Stacey
Microorganisms 2023, 11(2), 331; https://doi.org/10.3390/microorganisms11020331 - 28 Jan 2023
Cited by 7 | Viewed by 2887
Abstract
Plant growth-promoting bacteria (PGPB) can enhance plant health by facilitating nutrient uptake, nitrogen fixation, protection from pathogens, stress tolerance and/or boosting plant productivity. The genetic determinants that drive the plant–bacteria association remain understudied. To identify genetic loci highly correlated with traits responsive to [...] Read more.
Plant growth-promoting bacteria (PGPB) can enhance plant health by facilitating nutrient uptake, nitrogen fixation, protection from pathogens, stress tolerance and/or boosting plant productivity. The genetic determinants that drive the plant–bacteria association remain understudied. To identify genetic loci highly correlated with traits responsive to PGPB, we performed a genome-wide association study (GWAS) using an Arabidopsis thaliana population treated with Azoarcus olearius DQS-4T. Phenotypically, the 305 Arabidopsis accessions tested responded differently to bacterial treatment by improving, inhibiting, or not affecting root system or shoot traits. GWA mapping analysis identified several predicted loci associated with primary root length or root fresh weight. Two statistical analyses were performed to narrow down potential gene candidates followed by haplotype block analysis, resulting in the identification of 11 loci associated with the responsiveness of Arabidopsis root fresh weight to bacterial inoculation. Our results showed considerable variation in the ability of plants to respond to inoculation by A. olearius DQS-4T while revealing considerable complexity regarding statistically associated loci with the growth traits measured. This investigation is a promising starting point for sustainable breeding strategies for future cropping practices that may employ beneficial microbes and/or modifications of the root microbiome. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

17 pages, 5541 KB  
Article
Diversity and Metabolic Potential of a PAH-Degrading Bacterial Consortium in Technogenically Contaminated Haplic Chernozem, Southern Russia
by Yanina Delegan, Svetlana Sushkova, Tatiana Minkina, Andrey Filonov, Yulia Kocharovskaya, Konstantin Demin, Andrey Gorovtsov, Vishnu D. Rajput, Inna Zamulina, Tatiana Grigoryeva, Tamara Dudnikova, Andrey Barbashev and Aleksey Maksimov
Processes 2022, 10(12), 2555; https://doi.org/10.3390/pr10122555 - 1 Dec 2022
Cited by 11 | Viewed by 3228
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemically recalcitrant carcinogenic and mutagenic compounds with primarily anthropogenic origin. The investigation of the effects of emissions from energy enterprises on soil microbiomes is of a high priority for modern soil science. In this study, metagenomic profiling of [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are chemically recalcitrant carcinogenic and mutagenic compounds with primarily anthropogenic origin. The investigation of the effects of emissions from energy enterprises on soil microbiomes is of a high priority for modern soil science. In this study, metagenomic profiling of technogenic contaminated soils was carried out based on bioinformatic analysis of shotgun metagenome data with PAH-degrading genes identification. The use of prokaryotic consortia has been often used as one of the bio-remediation approaches to degrade PAHs with different molecular weight. Since the process of PAH degradation predominantly includes non-culturable or yet-to-be cultured species, metagenomic approaches are highly recommended for studying the composition and metabolic abilities of microbial communities. In this study, whole metagenome shotgun sequencing of DNA from two soils with varying PAH levels was performed. In the control site, the total content of 12 priority PAHs was 262 µg kg−1. The background soil levels in the polluted site for PAHs with 3 or more rings exceeded this, at 800 µg kg−1. The abundance of genes and taxa associated with PAH degradation in these two sites were estimated. Despite differences in PAH concentrations up to 1200 µg kg−1, individual and operon-organized PAH degradation genes were almost equally abundant and diverse in pristine and highly contaminated areas. The most numerous taxa in both spots were actinobacteria from Terrabacteria group. In addition to well-known PAH degraders such as Gordonia and Rhodococcus, genes corresponding to the PAH degradation were found in Azoarcus, Burkholderia and Variovorax. The data shows non-specificity and multifunctionality of metabolic pathways encoded in the genes of PAH-degrading microorganisms. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

17 pages, 4120 KB  
Article
Nitrogen Removal of Water and Sediment in Grass Carp Aquaculture Ponds by Mixed Nitrifying and Denitrifying Bacteria and Its Effects on Bacterial Community
by Dengfeng Han, Zhenyi Hu, Dapeng Li and Rong Tang
Water 2022, 14(12), 1855; https://doi.org/10.3390/w14121855 - 9 Jun 2022
Cited by 12 | Viewed by 4733
Abstract
Nitrification and denitrification are important for nitrogen (N) cycling in fish ponds culture, but the effects of nitrifying and denitrifying bacteria concentrations on pond water and sediments remain largely unknown. Here, we used 0, 0.15, 0.30, 0.60 mg/L different concentrations of mixed nitrifying [...] Read more.
Nitrification and denitrification are important for nitrogen (N) cycling in fish ponds culture, but the effects of nitrifying and denitrifying bacteria concentrations on pond water and sediments remain largely unknown. Here, we used 0, 0.15, 0.30, 0.60 mg/L different concentrations of mixed nitrifying and denitrifying bacteria to repair the pond substrate through an enclosure experiment lasting 15 days. The results showed that the purification effect of nitrifying and denitrifying bacteria was most obvious on pond nitrogen from day 4 to day 7. The optimal relative concentration was 0.60 mg/L for nitrifying and denitrifying bacteria; NH4+-N (ammonia nitrogen) decreased by 75.83%, NO2-N (nitrite) by 93.09%, NO3-N (nitrate) by 38.02%, and TN (total nitrogen) by 45.16% in this concentration group on pond water. In one cycle, C/N (carbon/nitrogen) ratio of both water body and bottom sediment significantly increased, but C/N ratio of water body increased more significantly than that of sediment. Water C/N ratio increased by 76.00%, and sediment C/N ratio increased by 51.96% in the 0.60 mg/L concentration group. Amplicon sequencing of pond sediment showed that the change in nitrifying and denitrifying bacterium diversity was consistent with that in water quality index. Dominant nitrifying bacteria had a relatively high percentage, with significant differences in dominant bacterium percentage across different bacterial addition groups, while dominant denitrifying bacterium percentage was not high without significant differences among different groups. The dominant species of nitrifying bacteria were, respectively, Nitrosomonas, Nitrosovibrio, Nitrosospira, and Aeromonas, and the dominant species of denitrifying bacteria were Thauera, Azoarcus, Magnetospirillum, Azospira, and Idiomarina. The correlation analyses showed an aerobic nitrification and facultative anaerobic denitrification in pond sediments. Research shows that the addition of exogenous nitrifying and denitrifying bacteria can effectively reduce the nitrogen load of pond water and sediment. At the concentration of 0.6 mg/L, the nitrogen load of pond water and sediment decreased most obviously, which had the best effect on pond purification. Full article
(This article belongs to the Special Issue Effect of Aquatic Environment on Fish Ecology)
Show Figures

Figure 1

15 pages, 3036 KB  
Article
Synergistic Inorganic Carbon and Denitrification Genes Contributed to Nitrite Accumulation in a Hydrogen-Based Membrane Biofilm Reactor
by Si Pang, Bruce E. Rittmann, Chengyang Wu, Lin Yang, Jingzhou Zhou and Siqing Xia
Bioengineering 2022, 9(5), 222; https://doi.org/10.3390/bioengineering9050222 - 20 May 2022
Cited by 20 | Viewed by 3922
Abstract
Partial denitrification, the termination of NO3-N reduction at nitrite (NO2-N), has received growing interest for treating wastewaters with high ammonium concentrations, because it can be coupled to anammox for total-nitrogen removal. NO2 accumulation in the [...] Read more.
Partial denitrification, the termination of NO3-N reduction at nitrite (NO2-N), has received growing interest for treating wastewaters with high ammonium concentrations, because it can be coupled to anammox for total-nitrogen removal. NO2 accumulation in the hydrogen (H2)-based membrane biofilm reactor (MBfR) has rarely been studied, and the mechanisms behind its accumulation have not been defined. This study aimed at achieving the partial denitrification with H2-based autotrophic reducing bacteria in a MBfR. Results showed that by increasing the NO3 loading, increasing the pH, and decreasing the inorganic-carbon concentration, a nitrite transformation rate higher than 68% was achieved. Community analysis indicated that Thauera and Azoarcus became the dominant genera when partial denitrification was occurring. Functional genes abundances proved that partial denitrification to accumulate NO2 was correlated to increases of gene for the form I RuBisCo enzyme (cbbL). This study confirmed the feasibility of autotrophic partial denitrification formed in the MBfR, and revealed the inorganic carbon mechanism in MBfR denitrification. Full article
(This article belongs to the Topic Bioreactors: Control, Optimization and Applications)
Show Figures

Figure 1

13 pages, 1583 KB  
Article
Enhancement of PHA Production by a Mixed Microbial Culture Using VFA Obtained from the Fermentation of Wastewater from Yeast Industry
by Carolina Ospina-Betancourth, Sergio Echeverri, Claudia Rodriguez-Gonzalez, Julien Wist, Marianny Y. Combariza and Janeth Sanabria
Fermentation 2022, 8(4), 180; https://doi.org/10.3390/fermentation8040180 - 11 Apr 2022
Cited by 24 | Viewed by 8128
Abstract
Wastewater from the yeast production industry (WWY) is potentially harmful to surface water due to its high nitrogen and organic matter content; it can be used to produce compounds of higher commercial value, such as polyhydroxyalkanoates (PHA). PHA are polyester-type biopolymers synthesized by [...] Read more.
Wastewater from the yeast production industry (WWY) is potentially harmful to surface water due to its high nitrogen and organic matter content; it can be used to produce compounds of higher commercial value, such as polyhydroxyalkanoates (PHA). PHA are polyester-type biopolymers synthesized by bacteria as energy reservoirs that can potentially substitute petrochemical-derived plastics. In this exploratory work, effluent from WWY was used to produce PHA, using a three-step setup of mixed microbial cultures involving one anaerobic and two aerobic reactors. First, volatile fatty acids (VFA; 2.5 g/L) were produced on an anaerobic batch reactor (reactor A) fed with WWY, using a heat pretreated sludge inoculum to eliminate methanogenic activity. Concurrently, PHA-producing bacteria were enriched using synthetic VFA in a sequencing batch reactor (SBR, reactor C) operated for 78 days. Finally, a polyhydroxybutyrate (PHB)-producing reactor (reactor B) was assembled using the inoculum enriched with PHA-producing bacteria and the raw and distilled effluent from the anaerobic reactor as a substrate. A maximum accumulation of 17% of PHB based on cell dry weight was achieved with a yield of 1.2 g PHB/L when feeding with the distilled effluent. Roche 454 16S rRNA gene amplicon pyrosequencing of the PHA-producing reactor showed that the microbial community was dominated by the PHA-producing bacterial species Paracoccus alcalophilus (32%) and Azoarcus sp. (44%). Our results show promising PHB accumulation rates that outperform previously reported results obtained with real substrates and mixed cultures, demonstrating a sustainable approach for the production of PHA less prone to contamination than a pure culture. Full article
(This article belongs to the Topic Bioreactors: Control, Optimization and Applications)
Show Figures

Figure 1

21 pages, 4261 KB  
Article
Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate
by Mihaela Belouhova, Ivaylo Yotinov, Irina Schneider, Nora Dinova, Yovana Todorova, Valentina Lyubomirova, Veronika Mihaylova, Elmira Daskalova, Stilyana Lincheva and Yana Topalova
Processes 2022, 10(3), 460; https://doi.org/10.3390/pr10030460 - 24 Feb 2022
Cited by 8 | Viewed by 3674
Abstract
Biological treatment is a key technology in landfill leachate treatment However, often its efficiency is not high enough due to the pollutants in concentrations above the critical ones. The present study aimed to investigate the adaptive responses that occur in activated sludge (AS) [...] Read more.
Biological treatment is a key technology in landfill leachate treatment However, often its efficiency is not high enough due to the pollutants in concentrations above the critical ones. The present study aimed to investigate the adaptive responses that occur in activated sludge (AS) during landfill leachate purification. A model process with AS from a municipal wastewater treatment plant and landfill leachate in increasing concentrations was constructed. The data showed that when dilutions 25 and 50 times had been applied the structure of the AS was preserved, but the COD cannot be reduced below 209 mg O2/L. The feed of undiluted leachate destroyed the AS structure as SVI was reduced to 1 mL/g, biotic index to 1, floc size was greatly reduced and COD remained high (2526 mg O2/L). The dominant group of protozoa was changed from attached to free-swimming ciliates. An increase of the bacterial groups responsible for the xenobiotics elimination (aerobic heterotrophs, genera Pseudomonas, Acinetobacter, Azoarcus, Thauera, Alcaligenes) was registered. This was accompanied by a significant increase in free bacteria. The obtained data showed that for optimal treatment of this type of water it is necessary to include a combination of biological treatment with another non-biological method (membrane filtration, reverse osmosis, etc.). Full article
Show Figures

Figure 1

14 pages, 4706 KB  
Article
Rumen Inoculum Enhances Cathode Performance in Single-Chamber Air-Cathode Microbial Fuel Cells
by Ignacio T. Vargas, Natalia Tapia and John M. Regan
Materials 2022, 15(1), 379; https://doi.org/10.3390/ma15010379 - 5 Jan 2022
Cited by 11 | Viewed by 3385
Abstract
During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a Geobacter-dominated mixed microbial community derived from a wastewater inoculum remains the standard. [...] Read more.
During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a Geobacter-dominated mixed microbial community derived from a wastewater inoculum remains the standard. On the other hand, cathode performance is still one of the main limitations for MFCs, and the enrichment of a beneficial cathodic biofilm emerges as an alternative to increase its performance. Glucose-fed air-cathode reactors inoculated with a rumen-fluid enrichment and wastewater showed higher power densities and soluble chemical oxygen demand (sCOD) removal (Pmax = 824.5 mWm−2; ΔsCOD = 96.1%) than reactors inoculated only with wastewater (Pmax = 634.1 mWm−2; ΔsCOD = 91.7%). Identical anode but different cathode potentials suggest that differences in performance were due to the cathode. Pyrosequencing analysis showed no significant differences between the anodic community structures derived from both inocula but increased relative abundances of Azoarcus and Victivallis species in the cathodic rumen enrichment. Results suggest that this rarely used inoculum for single-chamber MFCs contributed to cathodic biofilm improvements with no anodic biofilm effects. Full article
(This article belongs to the Special Issue Advances in the Use of Green Technologies in Various Areas)
Show Figures

Graphical abstract

Back to TopTop