Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,607)

Search Parameters:
Keywords = Automated Planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3948 KB  
Article
Fully Automated Segmentation of Cervical Spinal Cord in Sagittal MR Images Using Swin-Unet Architectures
by Rukiye Polattimur, Emre Dandıl, Mehmet Süleyman Yıldırım and Utku Şenol
J. Clin. Med. 2025, 14(19), 6994; https://doi.org/10.3390/jcm14196994 - 2 Oct 2025
Abstract
Background/Objectives: The spinal cord is a critical component of the central nervous system that transmits neural signals between the brain and the body’s peripheral regions through its nerve roots. Despite being partially protected by the vertebral column, the spinal cord remains highly [...] Read more.
Background/Objectives: The spinal cord is a critical component of the central nervous system that transmits neural signals between the brain and the body’s peripheral regions through its nerve roots. Despite being partially protected by the vertebral column, the spinal cord remains highly vulnerable to trauma, tumors, infections, and degenerative or inflammatory disorders. These conditions can disrupt neural conduction, resulting in severe functional impairments, such as paralysis, motor deficits, and sensory loss. Therefore, accurate and comprehensive spinal cord segmentation is essential for characterizing its structural features and evaluating neural integrity. Methods: In this study, we propose a fully automated method for segmentation of the cervical spinal cord in sagittal magnetic resonance (MR) images. This method facilitates rapid clinical evaluation and supports early diagnosis. Our approach uses a Swin-Unet architecture, which integrates vision transformer blocks into the U-Net framework. This enables the model to capture both local anatomical details and global contextual information. This design improves the delineation of the thin, curved, low-contrast cervical cord, resulting in more precise and robust segmentation. Results: In experimental studies, the proposed Swin-Unet model (SWU1), which uses transformer blocks in the encoder layer, achieved Dice Similarity Coefficient (DSC) and Hausdorff Distance 95 (HD95) scores of 0.9526 and 1.0707 mm, respectively, for cervical spinal cord segmentation. These results confirm that the model can consistently deliver precise, pixel-level delineations that are structurally accurate, which supports its reliability for clinical assessment. Conclusions: The attention-enhanced Swin-Unet architecture demonstrated high accuracy in segmenting thin and complex anatomical structures, such as the cervical spinal cord. Its ability to generalize with limited data highlights its potential for integration into clinical workflows to support diagnosis, monitoring, and treatment planning. Full article
(This article belongs to the Special Issue Artificial Intelligence and Deep Learning in Medical Imaging)
Show Figures

Figure 1

44 pages, 7867 KB  
Article
Bridging AI and Maintenance: Fault Diagnosis in Industrial Air-Cooling Systems Using Deep Learning and Sensor Data
by Ioannis Polymeropoulos, Stavros Bezyrgiannidis, Eleni Vrochidou and George A. Papakostas
Machines 2025, 13(10), 909; https://doi.org/10.3390/machines13100909 - 2 Oct 2025
Abstract
This work aims towards the automatic detection of faults in industrial air-cooling equipment used in a production line for staple fibers and ultimately provides maintenance scheduling recommendations to ensure seamless operation. In this context, various deep learning models are tested to ultimately define [...] Read more.
This work aims towards the automatic detection of faults in industrial air-cooling equipment used in a production line for staple fibers and ultimately provides maintenance scheduling recommendations to ensure seamless operation. In this context, various deep learning models are tested to ultimately define the most effective one for the intended scope. In the examined system, four vibration and temperature sensors are used, each positioned radially on the motor body near the rolling bearing of the motor shaft—a typical setup in many industrial environments. Thus, by collecting and using data from the latter sources, this work exhaustively investigates the feasibility of accurately diagnosing faults in staple fiber cooling fans. The dataset is acquired and constructed under real production conditions, including variations in rotational speed, motor load, and three fault priorities, depending on the model detection accuracy, product specification, and maintenance requirements. Fault identification for training purposes involves analyzing and evaluating daily maintenance logs for this equipment. Experimental evaluation on real production data demonstrated that the proposed ResNet50-1D model achieved the highest overall classification accuracy of 97.77%, while effectively resolving the persistent misclassification of the faulty impeller observed in all the other models. Complementary evaluation confirmed its robustness, cross-machine generalization, and suitability for practical deployment, while the integration of predictions with maintenance logs enables a severity-based prioritization strategy that supports actionable maintenance planning.deep learning; fault classification; industrial air-cooling; industrial automation; maintenance scheduling; vibration analysis Full article
21 pages, 8233 KB  
Article
Integrated Optimization of Ground Support Systems and UAV Task Planning for Efficient Forest Fire Inspection
by Ze Liu, Zhichao Shi, Wei Liu, Lu Zhang and Rui Wang
Drones 2025, 9(10), 684; https://doi.org/10.3390/drones9100684 - 1 Oct 2025
Abstract
With the increasing frequency and intensity of forest fires driven by climate change and human activities, efficient detection and rapid response have become critical for forest fire prevention. Effective fire detection, swift response, and timely rescue are vital for forest firefighting efforts. This [...] Read more.
With the increasing frequency and intensity of forest fires driven by climate change and human activities, efficient detection and rapid response have become critical for forest fire prevention. Effective fire detection, swift response, and timely rescue are vital for forest firefighting efforts. This paper proposes an unmanned aerial vehicle (UAV)-based forest fire inspection system that integrates a ground support system (GSS), aiming to enhance automation and flexibility in inspection tasks. A three-layer mixed-integer linear programming model is developed: the first layer focuses on the site selection and capacity planning of the GSS; the second layer defines the coverage scope of different GSS units; and the third layer plans the inspection routes of UAVs and coordinates multi-UAV collaborative tasks. For planning UAV patrol routes and collaborative tasks, a goal-driven greedy algorithm (GDGA) based on traditional greedy methods is proposed. Simulation experiments based on a real forest fire case in Turkey demonstrate that the proposed model reduces the total annual costs by 28.1% and 16.1% compared to task-only and renewable-only models, respectively, with a renewable energy penetration rate of 68.71%. The goal-driven greedy algorithm also shortens UAV patrol distances by 7.0% to 12.5% across different rotation angles. These results validate the effectiveness of the integrated model in improving inspection efficiency and economic benefits, thereby providing critical support for forest fire prevention. Full article
Show Figures

Figure 1

46 pages, 6388 KB  
Article
A Multi-Strategy Improved Zebra Optimization Algorithm for AGV Path Planning
by Cunji Zhang, Chuangeng Chen, Jiaqi Lu, Xuan Jing and Wei Liu
Biomimetics 2025, 10(10), 660; https://doi.org/10.3390/biomimetics10100660 - 1 Oct 2025
Abstract
The Zebra Optimization Algorithm (ZOA) is a metaheuristic algorithm inspired by the collective behavior of zebras in the wild. Like many other swarm intelligence algorithms, the ZOA faces several limitations, including slow convergence, susceptibility to local optima, and an imbalance between exploration and [...] Read more.
The Zebra Optimization Algorithm (ZOA) is a metaheuristic algorithm inspired by the collective behavior of zebras in the wild. Like many other swarm intelligence algorithms, the ZOA faces several limitations, including slow convergence, susceptibility to local optima, and an imbalance between exploration and exploitation. To address these challenges, this paper proposes an improved version of the ZOA, termed the Multi-strategy Improved Zebra Optimization Algorithm (MIZOA). First, a multi-population search strategy is introduced to replace the traditional single population structure, dividing the population into multiple subpopulations to enhance diversity and improve global convergence. Second, the mutation operation of genetic algorithm (GA) is integrated with the Metropolis criterion to boost exploration capability in the early stages while maintaining strong exploitation performance in the later stages. Third, a novel selective aggregation strategy is proposed, incorporating the hunting behavior of the Coati Optimization Algorithm (COA) and Lévy flight to further enhance global exploration and convergence accuracy during the defense phase. Experimental evaluations are conducted on 23 benchmark functions, comparing the MIZOA with eight existing swarm intelligence algorithms. The performance is assessed using non-parametric statistical tests, including the Wilcoxon rank-sum test and the Friedman test. The results demonstrate that the MIZOA achieves superior global convergence accuracy and optimization performance, confirming its robustness and effectiveness. The MIZOA was evaluated on real-world engineering problems against seven algorithms to validate its practical performance. Furthermore, when applied to path planning tasks for Automated Guided Vehicles (AGVs), the MIZOA consistently identifies paths closer to the global optimum in both simple and complex environments, thereby further validating the effectiveness of the proposed improvements. Full article
(This article belongs to the Section Biological Optimisation and Management)
15 pages, 2961 KB  
Article
Evaluating GeoAI-Generated Data for Maintaining VGI Maps
by Lasith Niroshan and James D. Carswell
Land 2025, 14(10), 1978; https://doi.org/10.3390/land14101978 - 1 Oct 2025
Abstract
Geospatial Artificial Intelligence (GeoAI) offers a scalable solution for automating the generation and updating of volunteered geographic information (VGI) maps—addressing the limitations of manual contributions to crowd-source mapping platforms such as OpenStreetMap (OSM). This study evaluates the accuracy of GeoAI-generated buildings specifically, using [...] Read more.
Geospatial Artificial Intelligence (GeoAI) offers a scalable solution for automating the generation and updating of volunteered geographic information (VGI) maps—addressing the limitations of manual contributions to crowd-source mapping platforms such as OpenStreetMap (OSM). This study evaluates the accuracy of GeoAI-generated buildings specifically, using two Generative Adversarial Network (GAN) models. These are OSM-GAN—trained on OSM vector data and Google Earth imagery—and OSi-GAN—trained on authoritative “ground truth” Ordnance Survey Ireland (OSi) vector data and aerial orthophotos. Altogether, we assess map feature completeness, shape accuracy, and positional accuracy and conduct qualitative visual evaluations using live OSM database features and OSi map data as a benchmark. The results show that OSi-GAN achieves higher completeness (88.2%), while OSM-GAN provides more consistent shape fidelity (mean HD: 3.29 m; σ = 2.46 m) and positional accuracy (mean centroid distance: 1.02 m) compared to both OSi-GAN and the current OSM map. The OSM dataset exhibits moderate average deviation (mean HD 5.33 m) but high variability, revealing inconsistencies in crowd-source mapping. These empirical results demonstrate the potential of GeoAI to augment manual VGI mapping workflows to support timely downstream applications in urban planning, disaster response, and many other location-based services (LBSs). The findings also emphasize the need for robust Quality Assurance (QA) frameworks to address “AI slop” and ensure the reliability and consistency of GeoAI-generated data. Full article
Show Figures

Figure 1

35 pages, 12616 KB  
Article
Route Planning for Unmanned Maize Detasseling Vehicle Based on a Dual-Route and Dual-Mode Adaptive Ant Colony Optimization
by Yu Wang, Yanhui Yang, Yichen Zhang, Lianqi Guo and Longhai Li
Agriculture 2025, 15(19), 2062; https://doi.org/10.3390/agriculture15192062 - 30 Sep 2025
Abstract
Maize is crucial for food, feed, and industrial materials. The seed purity directly affects yield and quality. Advancements in automation have led to the lightweight unmanned maize detasseling vehicle (UDV). To boost UDV’s efficiency, this paper proposes a dual-route and dual-mode adaptive ant [...] Read more.
Maize is crucial for food, feed, and industrial materials. The seed purity directly affects yield and quality. Advancements in automation have led to the lightweight unmanned maize detasseling vehicle (UDV). To boost UDV’s efficiency, this paper proposes a dual-route and dual-mode adaptive ant colony optimization (DRDM-AACO) for the detasseling route planning in maize seed production fields with hybrid spatial constraints. A mathematical model is established based on a proposed projection method for male flower nodes. To improve the performance of the ACO, four innovative mechanisms are proposed: a dual-route preference based on the dynamic selection strategy to ensure the integrity of the route topology; a dynamic candidate set with the variable neighborhood search strategy to balance exploration and exploitation; a non-uniform initial pheromone allocation based on the principle of intra-row priority and inter-row inhibition, and direction-constrained adaptive dual-mode pheromone regulation through local penalty and global evaporation strategies to reduce intra-row turnback routes. Comparative experiments showed DRDM-AACO reduced the route by 6.2% compared to ACO variants, verifying its effectiveness. Finally, experiments with various sizes and actual farmland compared DRDM-AACO to other various algorithms. The route was shortened by 32%, confirming its practicality and superiority. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

35 pages, 5864 KB  
Article
Risk-Constrained Multi-Objective Deep Reinforcement Learning for AGV Path Planning in Rail Transit
by Zihan Yang and Huiyu Xiang
Appl. Syst. Innov. 2025, 8(5), 145; https://doi.org/10.3390/asi8050145 - 30 Sep 2025
Abstract
Sensor-rich Automated Guided Vehicles (AGVs) are increasingly deployed in logistics, yet large fleets relying on fixed tracks face high maintenance costs and frequent route conflicts. This study targets rail-based material handling and proposes an end-to-end multi-AGV navigation pipeline under realistic operational constraints. A [...] Read more.
Sensor-rich Automated Guided Vehicles (AGVs) are increasingly deployed in logistics, yet large fleets relying on fixed tracks face high maintenance costs and frequent route conflicts. This study targets rail-based material handling and proposes an end-to-end multi-AGV navigation pipeline under realistic operational constraints. A conflict-aware global planner, extended from the A* algorithm, generates feasible routes, while a multi-sensor perception stack integrates LiDAR and camera data to distinguish moving AGVs, static obstacles, and task targets. Based on this perception, a Deep Q-Network (DQN) policy with a tailored reward function enables real-time dynamic obstacle avoidance in complex traffic. Simulation results demonstrate that, compared with the Artificial Potential Field (APF) baseline, the proposed GG-DRL approach reduces collisions by ~70%, lowers planning time by 25–30%, shortens paths by 10–15%, and improves smoothness by 20–25%. On the Maze Benchmark Map, GG-DRL surpasses classical planners (e.g., RRT) and deep RL baselines (e.g., DDPG) in path quality, computation, and avoidance behavior, achieving an average path length of 81.12, computation time of 11.94 s, 5.2 avoidance maneuvers, and smoothness of 0.86. Robustness is maintained as a dynamic obstacles scale up to 30. These findings confirm that combining multi-sensor fusion with deep reinforcement learning enhances AGV safety, efficiency, and reliability, with broad potential for intelligent railway logistics. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
Show Figures

Figure 1

19 pages, 4361 KB  
Article
An Autonomous Mobile Measurement Method for Key Feature Points in Complex Aircraft Assembly Scenes
by Yang Zhang, Changyong Gao, Shouquan Sun, Xiao Guan, Yanjun Shi, Wei Liu and Yongkang Lu
Machines 2025, 13(10), 892; https://doi.org/10.3390/machines13100892 - 30 Sep 2025
Abstract
Large-scale measurement of key feature points (KFPs) on an aircraft is essential for coordinated movement of locators, which is critical to the final assembly accuracy. Due to the large number and wide distribution of KFPs as well as line-of-sight occlusion, network measurement of [...] Read more.
Large-scale measurement of key feature points (KFPs) on an aircraft is essential for coordinated movement of locators, which is critical to the final assembly accuracy. Due to the large number and wide distribution of KFPs as well as line-of-sight occlusion, network measurement of laser trackers (LTs) is required. Existing approaches rely on operational experience for the configuration of stations, sequences and station transitions of LTs, which compromises both efficiency and automation capability. To tackle this challenge, this article presents an autonomous mobile measurement method for KFPs in complex scenes of aircraft assembly, incorporating path self-planning and self-positioning capabilities, thereby substantially diminishing temporal expenditure. Firstly, a simultaneous self-planning method of measurement stations and tasks is proposed to determine the minimum number of stations, optimal locations, and their specific KFPs at each station. Secondly, considering obstacles and turning time, a path planning model of mobile LTs combining coarse and fine localization is established to realize automatic station transitions. Finally, an optimal sequence of series of KFPs with a wide spatial distribution is generated to minimize total distance. Aircraft component assembly experiments validated the method, cutting measurement error by 37% and total measurement time by over 50%. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

35 pages, 17848 KB  
Article
Satellite-Based Multi-Decadal Shoreline Change Detection by Integrating Deep Learning with DSAS: Eastern and Southern Coastal Regions of Peninsular Malaysia
by Saima Khurram, Amin Beiranvand Pour, Milad Bagheri, Effi Helmy Ariffin, Mohd Fadzil Akhir and Saiful Bahri Hamzah
Remote Sens. 2025, 17(19), 3334; https://doi.org/10.3390/rs17193334 - 29 Sep 2025
Abstract
Coasts are critical ecological, economic and social interfaces between terrestrial and marine systems. The current upsurge in the acquisition and availability of remote sensing datasets, such as Landsat remote sensing data series, provides new opportunities for analyzing multi-decadal coastal changes and other components [...] Read more.
Coasts are critical ecological, economic and social interfaces between terrestrial and marine systems. The current upsurge in the acquisition and availability of remote sensing datasets, such as Landsat remote sensing data series, provides new opportunities for analyzing multi-decadal coastal changes and other components of coastal risk. The emergence of machine learning-based techniques represents a new trend that can support large-scale coastal monitoring and modeling using remote sensing big data. This study presents a comprehensive multi-decadal analysis of coastal changes for the period from 1990 to 2024 using Landsat remote sensing data series along the eastern and southern coasts of Peninsular Malaysia. These coastal regions include the states of Kelantan, Terengganu, Pahang, and Johor. An innovative approach combining deep learning-based shoreline extraction with the Digital Shoreline Analysis System (DSAS) was meticulously applied to the Landsat datasets. Two semantic segmentation models, U-Net and DeepLabV3+, were evaluated for automated shoreline delineation from the Landsat imagery, with U-Net demonstrating superior boundary precision and generalizability. The DSAS framework quantified shoreline change metrics—including Net Shoreline Movement (NSM), Shoreline Change Envelope (SCE), and Linear Regression Rate (LRR)—across the states of Kelantan, Terengganu, Pahang, and Johor. The results reveal distinct spatial–temporal patterns: Kelantan exhibited the highest rates of shoreline change with erosion of −64.9 m/year and accretion of up to +47.6 m/year; Terengganu showed a moderated change partly due to recent coastal protection structures; Pahang displayed both significant erosion, particularly south of the Pahang River with rates of over −50 m/year, and accretion near river mouths; Johor’s coastline predominantly exhibited accretion, with NSM values of over +1900 m, linked to extensive land reclamation activities and natural sediment deposition, although local erosion was observed along the west coast. This research highlights emerging erosion hotspots and, in some regions, the impact of engineered coastal interventions, providing critical insights for sustainable coastal zone management in Malaysia’s monsoon-influenced tropical coastal environment. The integrated deep learning and DSAS approach applied to Landsat remote sensing data series provides a scalable and reproducible framework for long-term coastal monitoring and climate adaptation planning around the world. Full article
Show Figures

Figure 1

17 pages, 26449 KB  
Article
Federated Learning for Distributed Multi-Robotic Arm Trajectory Optimization
by Fazal Khan and Zhuo Meng
Robotics 2025, 14(10), 137; https://doi.org/10.3390/robotics14100137 - 29 Sep 2025
Abstract
The optimization of trajectories for multiple robotic arms in a shared workspace is critical for industrial automation but presents significant challenges, including data sharing, communication overhead, and adaptability in dynamic environments. Traditional centralized control methods require sharing raw sensor data, raising concerns and [...] Read more.
The optimization of trajectories for multiple robotic arms in a shared workspace is critical for industrial automation but presents significant challenges, including data sharing, communication overhead, and adaptability in dynamic environments. Traditional centralized control methods require sharing raw sensor data, raising concerns and creating computational bottlenecks. This paper proposes a novel Federated Learning (FL) framework for distributed multi-robotic arm trajectory optimization. Our method enables collaborative learning where robots train a shared model locally and only exchange gradient updates, preserving data privacy. The framework integrates an adaptive Rapidly exploring Random Tree (RRT) algorithm enhanced with a dynamic pruning strategy to reduce computational overhead and ensure collision-free paths. Real-time synchronization is achieved via EtherCAT, ensuring precise coordination. Experimental results demonstrate that our approach achieves a 17% reduction in average path length, a 22% decrease in collision rate, and a 31% improvement in planning speed compared to a centralized RRT baseline, while reducing inter-robot communication overhead by 45%. This work provides a scalable and efficient solution for collaborative manipulation in applications ranging from assembly lines to warehouse automation. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

20 pages, 7202 KB  
Article
A Novel Sorting Route Planning Method for Irregular Sheet Parts in the Shipbuilding Process
by Hongyan Xing, Cheng Luo, Jichao Song and Yansong Zhang
J. Mar. Sci. Eng. 2025, 13(10), 1871; https://doi.org/10.3390/jmse13101871 - 27 Sep 2025
Abstract
Due to the complexity of shipyards’ operating scenes and the inconsistency of ship parts’ type and size, current sorting operations for ship parts mainly rely on laborers, resulting in weak control over the production process and key nodes. With the gradual advancement of [...] Read more.
Due to the complexity of shipyards’ operating scenes and the inconsistency of ship parts’ type and size, current sorting operations for ship parts mainly rely on laborers, resulting in weak control over the production process and key nodes. With the gradual advancement of intelligent manufacturing technology in the shipbuilding process, the trend of machines replacing humans is obvious. In order to promote the automation of the sorting process, intelligent scene recognition and route planning algorithms are needed. In this work, we introduce a localization method based on a laser line profile sensor and ship parts layout analysis algorithm, aiming at obtaining the information needed for sorting route planning. In addition, a heuristic-based route planning algorithm is proposed to solve the built mathematical model of the ship part sorting process. The proposed method can optimize the sorting order of parts, realize stable stacking, shorten sorting distance (taking about 490 m for 43 parts), and thereby improve operation efficiency. These results show that the proposed approach can make intelligent and comprehensible sorting route planning for the ship parts layout. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4146 KB  
Article
Integration of Drone-Based 3D Scanning and BIM for Automated Construction Progress Control
by Nerea Tárrago Garay, Jose Carlos Jimenez Fernandez, Rosa San Mateos Carreton, Marco Antonio Montes Grova, Oskari Kruth and Peru Elguezabal
Buildings 2025, 15(19), 3487; https://doi.org/10.3390/buildings15193487 - 26 Sep 2025
Abstract
The work progress control is a key aspect for correcting deviations in construction, but currently is a task still carried out very manually by personnel moved to the execution place. This work proposes to digitize and automate the procedure through the combination and [...] Read more.
The work progress control is a key aspect for correcting deviations in construction, but currently is a task still carried out very manually by personnel moved to the execution place. This work proposes to digitize and automate the procedure through the combination and contrast of digital models of the actual state of the work and the theoretical planning. The models of the real situation are generated from the laser scanning executed by drones, the theoretical planning is reflected in the BIM4D models of the project, and their combination is automated with Feature Manipulation Engine (FME) visual programming routines. A web-based digital twin platform allows access to the end user of the service in an agile way. The methodology developed has been validated with its application on a residential building in the structural erection phase in Helsinki (Finland). Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

17 pages, 20573 KB  
Article
Digital Twin-Based Intelligent Monitoring System for Robotic Wiring Process
by Jinhua Cai, Hongchang Ding, Ping Wang, Xiaoqiang Guo, Han Hou, Tao Jiang and Xiaoli Qiao
Sensors 2025, 25(19), 5978; https://doi.org/10.3390/s25195978 - 26 Sep 2025
Abstract
In response to the growing demand for automation in aerospace harness manufacturing, this study proposes a digital twin-based intelligent monitoring system for robotic wiring operations. The system integrates a seven-degree-of-freedom robotic platform with an adaptive servo gripper and employs a five-dimensional digital twin [...] Read more.
In response to the growing demand for automation in aerospace harness manufacturing, this study proposes a digital twin-based intelligent monitoring system for robotic wiring operations. The system integrates a seven-degree-of-freedom robotic platform with an adaptive servo gripper and employs a five-dimensional digital twin framework to synchronize physical and virtual entities. Key innovations include a coordinated motion model for minimizing joint displacement, a particle-swarm-optimized backpropagation neural network (PSO-BPNN) for adaptive gripping based on wire characteristics, and a virtual–physical closed-loop interaction strategy covering the entire wiring process. Methodologically, the system enables motion planning, quality prediction, and remote monitoring through Unity3D visualization, SQL-driven data processing, and real-time mapping. The experimental results demonstrate that the system can stably and efficiently complete complex wiring tasks with 1:1 trajectory reproduction. Moreover, the PSO-BPNN model significantly reduces prediction error compared to standard BPNN methods. The results confirm the system’s capability to ensure precise wire placement, enhance operational efficiency, and reduce error risks. This work offers a practical and intelligent solution for aerospace harness production and shows strong potential for extension to multi-robot collaboration and full production line scheduling. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

19 pages, 4834 KB  
Article
Continuous Picking Path Planning Based on Lightweight Marigold Corollas Recognition in the Field
by Baojian Ma, Zhenghao Wu, Yun Ge, Bangbang Chen, Jijing Lin, He Zhang and Hao Xia
Biomimetics 2025, 10(10), 648; https://doi.org/10.3390/biomimetics10100648 - 26 Sep 2025
Abstract
This study addresses the core challenges of precise marigold corollas recognition and efficient continuous path planning under complex natural conditions (strong illumination, occlusion, adhesion) by proposing an integrated lightweight visual recognition and real-time path planning framework. We introduce MPD-YOLO, an optimized model based [...] Read more.
This study addresses the core challenges of precise marigold corollas recognition and efficient continuous path planning under complex natural conditions (strong illumination, occlusion, adhesion) by proposing an integrated lightweight visual recognition and real-time path planning framework. We introduce MPD-YOLO, an optimized model based on YOLOv11n, incorporating (1) a Multi-scale Information Enhancement Module (MSEE) to boost feature extraction; (2) structured pruning for significant model compression (final size: 2.1 MB, 39.6% of original); and (3) knowledge distillation to recover accuracy loss post-pruning. The resulting model achieves high precision (P: 89.8%, mAP@0.5: 95.1%) with reduced computational load (3.2 GFLOPs) while demonstrating enhanced robustness in challenging scenarios—recall significantly increased by 6.8% versus YOLOv11n. Leveraging these recognition outputs, an adaptive ant colony algorithm featuring dynamic parameter adjustment and an improved pheromone strategy reduces average path planning time to 2.2 s—a 68.6% speedup over benchmark methods. This integrated approach significantly enhances perception accuracy and operational efficiency for automated marigold harvesting in unstructured environments, providing robust technical support for continuous automated operations. Full article
(This article belongs to the Special Issue Biomimicry for Optimization, Control, and Automation: 3rd Edition)
Show Figures

Figure 1

30 pages, 14129 KB  
Article
Evaluating Two Approaches for Mapping Solar Installations to Support Sustainable Land Monitoring: Semantic Segmentation on Orthophotos vs. Multitemporal Sentinel-2 Classification
by Adolfo Lozano-Tello, Andrés Caballero-Mancera, Jorge Luceño and Pedro J. Clemente
Sustainability 2025, 17(19), 8628; https://doi.org/10.3390/su17198628 - 25 Sep 2025
Abstract
This study evaluates two approaches for detecting solar photovoltaic (PV) installations across agricultural areas, emphasizing their role in supporting sustainable energy monitoring, land management, and planning. Accurate PV mapping is essential for tracking renewable energy deployment, guiding infrastructure development, assessing land-use impacts, and [...] Read more.
This study evaluates two approaches for detecting solar photovoltaic (PV) installations across agricultural areas, emphasizing their role in supporting sustainable energy monitoring, land management, and planning. Accurate PV mapping is essential for tracking renewable energy deployment, guiding infrastructure development, assessing land-use impacts, and informing policy decisions aimed at reducing carbon emissions and fostering climate resilience. The first approach applies deep learning-based semantic segmentation to high-resolution RGB orthophotos, using the pretrained “Solar PV Segmentation” model, which achieves an F1-score of 95.27% and an IoU of 91.04%, providing highly reliable PV identification. The second approach employs multitemporal pixel-wise spectral classification using Sentinel-2 imagery, where the best-performing neural network achieved a precision of 99.22%, a recall of 96.69%, and an overall accuracy of 98.22%. Both approaches coincided in detecting 86.67% of the identified parcels, with an average surface difference of less than 6.5 hectares per parcel. The Sentinel-2 method leverages its multispectral bands and frequent revisit rate, enabling timely detection of new or evolving installations. The proposed methodology supports the sustainable management of land resources by enabling automated, scalable, and cost-effective monitoring of solar infrastructures using open-access satellite data. This contributes directly to the goals of climate action and sustainable land-use planning and provides a replicable framework for assessing human-induced changes in land cover at regional and national scales. Full article
Show Figures

Figure 1

Back to TopTop