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Abstract

Geospatial Artificial Intelligence (GeoAI) offers a scalable solution for automating the
generation and updating of volunteered geographic information (VGI) maps—addressing
the limitations of manual contributions to crowd-source mapping platforms such as Open-
StreetMap (OSM). This study evaluates the accuracy of GeoAI-generated buildings specifi-
cally, using two Generative Adversarial Network (GAN) models. These are OSM-GAN—
trained on OSM vector data and Google Earth imagery—and OSi-GAN—trained on author-
itative “ground truth” Ordnance Survey Ireland (OSi) vector data and aerial orthophotos.
Altogether, we assess map feature completeness, shape accuracy, and positional accuracy
and conduct qualitative visual evaluations using live OSM database features and OSi map
data as a benchmark. The results show that OSi-GAN achieves higher completeness (88.2%),
while OSM-GAN provides more consistent shape fidelity (mean HD: 3.29 m; σ = 2.46 m)
and positional accuracy (mean centroid distance: 1.02 m) compared to both OSi-GAN and
the current OSM map. The OSM dataset exhibits moderate average deviation (mean HD
5.33 m) but high variability, revealing inconsistencies in crowd-source mapping. These
empirical results demonstrate the potential of GeoAI to augment manual VGI mapping
workflows to support timely downstream applications in urban planning, disaster response,
and many other location-based services (LBSs). The findings also emphasize the need for
robust Quality Assurance (QA) frameworks to address “AI slop” and ensure the reliability
and consistency of GeoAI-generated data.

Keywords: GeoAI; map feature accuracy; OpenStreetMap; Quality Assurance; volunteered
geographic information

1. Introduction
Recent advances in Machine Learning (ML) and Deep Learning (DL) technologies have

transformed various industries, including geographic mapping [1,2]. Modern Geospatial
Artificial Intelligence (GeoAI) modeling techniques introduce new AI methods for generat-
ing, updating, and analyzing spatial datasets, fundamentally reshaping how geographic
information is produced, maintained, and consumed. For example, GeoAI-generated
spatial data (i.e., map features of all types) can quickly create detailed representations of
built environments, essential for urban planning, disaster management, environmental
monitoring, and many other location-based services and downstream applications.

Among the many areas where GeoAI has shown significant promise is for predicting
map features (e.g., roads, buildings), which involves applying advanced computer vision
and DL techniques to the problem of keeping crowd-source mapping platforms such as
OSM up-to-date [3]. However, as AI models increasingly become tested for automating the
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VGI mapping process (e.g., by maintaining the completeness/correctness of online maps),
concerns regarding their accuracy and reliability have increasingly become more important.

For example, OpenStreetMap (OSM) is a collaborative, crowd-source mapping plat-
form that enables the public to create and edit map features across the globe [4]. OSM
datasets are widely used in various applications, including navigation, urban planning,
and environmental monitoring. Yet maintaining the accuracy and completeness of OSM
map data, especially in fast-changing urban areas or under-mapped remote areas, remains
a significant challenge. To address this, OSM relies on human volunteers (VGI mappers) to
manually input/update map feature data. This approach, while effective, is labor-intensive
and suffers from varying feature quality/detail, leading to data reliability concerns and
delays in updating online maps, particularly in regions that are not well-covered by local
VGI contributors [5].

To address these limitations, recent research has explored the use of GeoAI techniques
to assist/automate the creation and maintenance of online map data [6]. Among these,
Generative Adversarial Networks (GANs) have emerged as a promising approach for
generating synthetic map feature data that closely resembles real-world objects—like
buildings. These generative AI models [3,7] leverage large datasets of satellite imagery to
quickly produce detailed maps of built environments. They are specifically designed to
generate geospatial data that could be seamlessly integrated into OSM, thereby significantly
reducing the time and effort required for manual map edits.

However, despite the promise of GeoAI, few studies have systematically evaluated
AI-generated building footprints using independent, geometry-specific metrics. Prior
work often relies solely on completeness or centroid-based positional accuracy, which may
conflate different types of errors and fail to capture subtle shape deviations, especially in
complex or occluded urban environments. This study addresses this gap by combining
conventional Quality Assurance (QA) metrics with qualitative assessments, offering a more
comprehensive framework for evaluating AI-generated geospatial data.

This paper assesses the reliability of GeoAI-generated building footprint data specifi-
cally for its applicability to keeping online OSM maps up-to-date. Importantly, this study is
strictly analytical and does not involve the final upload or integration of AI-generated data
into the live OSM map. We recognize the OpenStreetMap community’s concerns regarding
their “Automated Edits Code of Conduct” and agree that any future use of GeoAI-derived
data should comply with OSM guidelines, including prior consultation, transparency, and
manual or semi-automated validation processes.

This study focuses on four key spatial data quality metrics: completeness; shape accuracy;
positional accuracy; and qualitative assessment. The current live OSM database is utilized
as the benchmark for evaluating our OSi-GAN and OSM-GAN AI outputs against OSi
(Ordnance Survey Ireland) “ground truth” building footprints. These evaluation metrics
are well-established in the geospatial literature as critical indicators of data accuracy and
usability [8–11]. Completeness measures the extent to which the AI model successfully
captures all the relevant map features (i.e., buildings in our case) from new satellite imagery
of an area [12]. Measuring shape accuracy and positional accuracy is essential for ensuring
that AI-generated data conforms to actual building geometries and locations in the real-
world, which is fundamental for urban planning and related applications [13,14]. A final
qualitative assessment adds a subjective measure that can capture nuances missed by
quantitative measurements alone, especially in complex urban environments.

Taken together, these four components provide a more robust basis for evaluating
GeoAI-generated data quality, emphasizing the importance of map feature validation
before it is uploaded and utilized in downstream LBS applications. Figure 1 illustrates
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an example of GeoAI-generated building footprints detected in a satellite image of the
Grangegorman area of Dublin city.

 

Figure 1. Comparing building footprints of different spatial datasets highlights demonstrable differ-
ences in published map feature quality.

In addition to assessing these metrics, this paper aims to demonstrate that such
traditional geo-evaluation measures, while useful, may not fully capture the nuances of
AI-generated map data specifically. Comparing synthetic (i.e., predicted map features) to
real-world spatial datasets serves to show the strengths and limitations of contemporary
GeoAI-generated map data, highlighting areas where further studies could be carried out.

2. Background and Related Work
OpenStreetMap, established in 2004, has grown into a vital geospatial resource for

many value-added location-based services, supporting navigation, urban planning, disaster
response, and environmental monitoring [15]. The utility of these downstream applications
is highly dependent on the accuracy, completeness, and currency of the OSM database.
However, ensuring up-to-date and accurate mapping is challenging due to OSM’s reliance
on manual VGI contributions, which can be inconsistent in coverage and quality, especially
in underpopulated or economically disadvantaged regions [15].

To address these limitations, current research has increasingly turned to automated
mapping techniques, particularly those leveraging GeoAI. Recent advances in Deep Neural
Networks (DNNs) and Generative Adversarial Networks (GANs) have demonstrated
substantial promise for automating the extraction of spatial features from satellite im-
agery [16–20]. For instance, OSM-GAN [3] and Poly-GAN [7] leverage widely available
satellite imagery (Google Earth) to generate accurate building footprints, thereby enabling
rapid online map updating in areas with sparse VGI contributions.

These recent advances have significantly demonstrated the utility of GeoAI tech-
niques for generating geospatial data. For example, hybrid DL frameworks, such as
Mobile-UNet combined with GANs, have shown high F1 scores (0.62–0.75) across complex
landscapes [21]. Two-stage GAN-based enhancement pipelines (e.g., DeOldify and Real-
ESRGAN) have also enabled accurate feature extraction from degraded historical imagery,
achieving mAP scores of over 85% [22]. These methods now serve not just as generators
but also as pre-processing tools for improving input data fidelity.

A promising new development in geospatial analysis is the emergence of GeoAI
Foundation Models, which are trained on large-scale, unlabeled remote sensing data
using self-supervised learning [23]. Once fine-tuned on small task-specific datasets, these
models can generalize across a variety of geospatial tasks (e.g., classification, segmentation,
and object detection), thereby minimizing the need for extensive labeled data from each
location [23,24]. By reducing reliance on extensive labeled data from each region, they offer
a scalable approach to mapping, especially for under-mapped areas, while helping to close
long-standing gaps in global geospatial coverage.
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However, while these advances demonstrate the technical capability of AI for auto-
mated mapping, they also reveal an active debate in the literature regarding the adequacy
of traditional Quality Assurance frameworks. Existing metrics, primarily completeness,
positional accuracy, and overlap-based measures such as Jaccard Similarity, are often de-
signed for conventional, human-curated VGI datasets. Consequently, while JSC remains
useful for evaluating extents of feature overlap and thus, implicitly, spatial alignment,
it may inadequately describe shape nuances and boundary-level errors inherent in AI-
generated outputs.

As such, incorporating GeoAI into the traditional (manual) mapping workflow demon-
strates a need for a more systematic Quality Assurance (QA) framework. While traditional
QA metrics, such as completeness, shape accuracy, and positional accuracy, remain central,
studies suggest that QA should also monitor complex building geometries and their se-
mantic correctness. Intrinsically, contemporary GeoAI-based generative models require a
more nuanced and adaptable quality evaluation strategy [25–27].

Therefore, our approach explicitly positions itself within this debate by proposing a
QA framework that combines both conventional and geometry-specific metrics (Table 1).
Specifically, we use JSC to measure alignment and overlap coverage between generated and
reference features and Hausdorff Distance (HD) to evaluate fine-grained shape deviations
independent of spatial alignment [28]. This hybrid strategy provides a more robust and
interpretable assessment of AI-generated building footprints, as it overcomes the limitations
of existing studies that rely on centroid-based only positional measures.

Table 1. QA criteria used to evaluate the reliability of AI-generated buildings.

QA Criteria Description

Completeness

- The extent to which a spatial dataset, such as building
footprints, includes all the relevant features or objects of
interest within a given area, ensuring comprehensive
coverage of the target location [8,12,15].

Shape Accuracy

- The degree of conformity between the geometric
representation of a feature in a dataset and its true shape in
the real world, measuring how well the digital
representation captures the actual physical form [7,13,15].

Positional Accuracy

- The level of agreement between the spatial location of a
feature in a dataset and its true location in the real world,
assessing the accuracy of a feature’s placement and
orientation [13,29].

Qualitative Assessment

- A subjective evaluation of the quality of a dataset based
on expert judgment or user feedback, considering factors
beyond purely quantitative measurements to capture
nuanced aspects of data quality such as interpretability,
contextual relevance, and overall usability [30].

In summary, Mooney et al. (2010) emphasized the foundational importance of QA
for “traditional” VGI maps and proposed a framework for assessing positional accuracy,
completeness, and attribute consistency [10]. More recent QA studies have commonly
adopted overlap-based metrics such as the Intersection over Union (IoU) or Jaccard Simi-
larity Coefficient (JSC) to evaluate the geometric similarity between conjugate shapes [31].
While JSC is useful for assessing feature alignment and overlap agreement, it mixes shape
and positional differences, making it less suitable for independently evaluating shape
accuracy. To address this, we incorporate both JSC and Hausdorff Distance (HD) into our
QA approach, where JSC is used to measure spatial alignment and overlap consistency,
and HD serves as a boundary-based metric that quantifies maximum shape deviation.
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This combination provides a more comprehensive and independent accuracy measure of
AI-generated building footprints.

3. Methodology
As discussed, this study presents a multi-phase QA methodology to evaluate the

reliability, spatial accuracy, and usability of GeoAI-generated building footprints. The
process incorporates both quantitative and qualitative assessments across four key phases:
data preparation, completeness analysis, shape accuracy evaluation, and positional accu-
racy assessment, followed by a qualitative visual inspection. Two benchmark datasets are
used in this study: OSi as the authoritative “ground truth” and OpenStreetMap as the
representative crowd-source dataset. This dual-reference approach allows for a balanced
evaluation of GeoAI outputs in terms of both authoritative correctness and VGI reality.
Figure 2 outlines the overall QA process followed in this mapping workflow.

Figure 2. The QA process: Mapping workflow for assessing AI-predicted building footprints,
comparing them to OSi and OSM data to evaluate completeness, shape accuracy, positional accuracy,
and qualitative relevance. The overall process includes extracting reference data.

3.1. Data Preparation Phase

Ordnance Survey Ireland, Ireland’s national mapping agency, is the official source of
authoritative spatial data for the country and is widely used in commercial and academic
geospatial research applications [31]. Its building footprints (i.e., vector data derived from
high-resolution orthophotos, LiDAR scans, and field surveys) serve as the reference dataset
for all QA comparisons in this study due to their spatial accuracy and geometric fidelity.

AI-generated predictions of building footprints (first comparison dataset) were ac-
quired from two sources (these resolution settings were selected based on a previous
study [6], in which we evaluated 16 GAN models trained and tested across varying spatial
granularities; the models used here were chosen for their performance in terms of stability
and predictive accuracy across real-world datasets):

• OSi-GAN: trained on OSi building vectors and 25 cm/pixel aerial orthophotos.
• OSM-GAN: trained on current OSM building footprints and 30 cm/pixel Google Earth

satellite imagery.

The evaluation process begins by acquiring AI-generated vector predictions and ex-
tracting ground coordinates from their resulting footprints. These coordinates are then
used to retrieve the corresponding polygons from the OSi dataset. OSM building footprints
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are simultaneously extracted from the live OSM database to form the second compari-
son dataset.

This three-fold comparison between AI-generated footprints based on different data
sources (OSM-GAN and OSi-GAN), live OSM data, and the reference OSi dataset is de-
signed to assess and highlight discrepancies in building geometries and positional accuracy
derived from various mapping methods, ultimately determining the relative strengths and
limitations of each approach. The spatial datasets are first transformed into a consistent
coordinate reference system, specifically EPSG:2157 (https://epsg.io/2157 (accessed on
29 September 2025)) (Irish Transverse Mercator), to ensure the uniformity of metric-based
evaluations throughout the QA process. A summary of the datasets used in this QA
workflow is provided in Table 2 below.

Table 2. Overview of datasets used in QA evaluation.

Dataset Source Training Imagery Image
Resolution

Data
Type Purpose

OSi Ordnance Survey
Ireland (OSi)

Aerial orthophotos,
LiDAR Varies Vector

(reference)
Authoritative ground truth
for QA benchmark

OSM OpenStreetMap
(live database) Crowdsource Varies Vector Community-generated

comparison dataset

OSM-GAN AI model trained
on OSM data

Google Earth
imagery 30 cm/pixel AI-generated

vector
Evaluated for shape,
position, completeness

OSi-GAN AI model trained
on OSi data

OSi aerial
orthophotos 25 cm/pixel AI-generated

vector
Evaluated for shape,
position, completeness

While this study focuses on building footprints in Ireland, the proposed QA method-
ology assessing completeness, positional accuracy, and shape accuracy can be applied to
other geographic regions. Performance metrics may vary depending on urban density,
building morphology, or OSM coverage in the target area.

We acknowledge that this study introduces multiple sources of variation from using
different vector datasets (i.e., OSM and OSi footprints) and different imagery sources (i.e.,
Google Earth and OSi orthophotos) to train/evaluate the GeoAI models. While this reflects
practical end-to-end data pipelines in real-world GeoAI workflows, it also introduces a
confounding factor that limits the ability to isolate the influence of a single variable (e.g.,
vector data quality vs. image characteristics). As such, the comparison between OSM-GAN
and OSi-GAN should be interpreted as a comparison of combined data pipelines rather than
isolated components [6].

3.2. Completeness

Completeness is considered a fundamental QA metric that quantifies the degree to
which a spatial dataset captures all relevant features in a given area [12,32,33]. In this
context, completeness was evaluated by comparing both AI-generated and current OSM
footprints (i.e., the three comparison datasets in this study) against the OSi reference dataset
using a map feature relationship model as follows:

• 1:1—perfect match.
• 1:0—omission in the comparison dataset.
• 0:1—commission in the comparison dataset.
• 1:many/many:1—segmentation differences.
• many:many—complex matching.

Only 1:1, many:1, and many:many matches were counted as “complete” for the
purpose of the completeness score. Omission (1:0) and over-segmentation (1:many) rela-
tionships were excluded, as they indicate missing or fragmented features [34] (see Figure 3).

https://epsg.io/2157
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Figure 3. Visualization of map feature relationships. OSi reference (red) vs. OSM comparison vectors
(blue). Note that OSi geometries often contain more intricate outlines (details) than OSM.

This metric provides a clear understanding of dataset coverage and agreement, helping
to reveal not only the raw quantity of features detected, but also the quality of those
detections relative to real-world structures.

3.3. Shape Accuracy

Shape accuracy was assessed using two complementary metrics: Hausdorff Distance
(HD) and Jaccard Similarity Coefficient (JSC). This dual-measure approach allows for a
more nuanced evaluation of AI-generated building footprints by independently capturing
both geometric fidelity and spatial alignment.

Hausdorff Distance (HD) is a boundary-based metric that quantifies the maximum
deviation between the edges of two shapes. It measures the degree of dissimilarity by
identifying the greatest distance from a point on one polygon to the closest point on the
corresponding polygon. Formally, the directed Hausdorff Distance between two-point sets
A and B is defined as

H(A, B) = max
a∈A

min
b∈B

∥a − b∥

Therefore, the symmetric (undirected) Hausdorff Distance is then computed as

HD(A, B) = max{H(A, B), H(B, A)}

For each comparison, building footprints were first converted into discrete point sets
representing their boundaries. HD was then calculated between each footprint in the
test dataset (OSM, OSM-GAN, and OSi-GAN) and its corresponding footprint in the OSi
reference dataset. Only 1:1-matched buildings were included to avoid distortions caused
by over- or under-segmentation. The resulting HD values were aggregated to compute
descriptive statistics (mean, standard deviation, min, max), offering insight into the typical
and extreme geometric deviations across datasets.

The Jaccard Similarity Coefficient (JSC), also known as the Intersection over Union
(IoU), was used to assess the area-based coverage and alignment between polygons.
It is calculated as the ratio of the area of intersection to the area of union between
two polygons. While JSC is influenced by both shape and position, it remains a use-
ful indicator of overall spatial agreement. Values close to 1.0 indicate strong overlap
and therefore alignment (orientation), whereas lower values suggest misalignment or
geometric (shape) mismatch.

By using both HD and JSC, we distinguish between shape fidelity (boundary-level de-
viations) and spatial alignment (area-based similarity), allowing for a more comprehensive
accuracy assessment of AI-generated building outlines (See Figure 4).
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Figure 4. Comparing building shape dissimilarities between OSi reference (red), OSM (blue), OSi-
GAN (yellow), and OSM-GAN (green) generated footprints for the same building. Note how
OSi-GAN, in this case, tries to incorporate the building shadow visible in the orthophoto into its
outline (bottom right edge).

3.4. Positional Accuracy

Positional accuracy is a core spatial data quality metric that assesses the shift between
a dataset’s features and their true locations on the ground [13,29,35]. In this study, it is
measured as the Euclidean distance between centroids of corresponding building footprints.
By comparing centroid coordinates between AI-generated and OSM footprints and those
from the OSi dataset, this analysis reveals both systematic spatial shifts and random
positional errors (Figure 5).

Figure 5. Positional discrepancies between OSi, OSM, and AI-generated building footprints. All
buildings are overlaid on the same OSi orthophoto.

Together, these similarity metrics provide a multi-dimensional evaluation of AI-
generated building footprints. Completeness measures the extent of building feature
detection, shape accuracy evaluates geometric fidelity independent of feature posi-
tion/orientation, and centroid-based positional accuracy quantifies feature displacement.
Qualitative assessment complements these by capturing nuanced aspects of building rep-
resentation and contextual relevance. However, each metric has limitations: for example,
centroid-based positional accuracy may overlook edge misalignments, while HD does
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not directly account for missing features. Combining these metrics with visual inspection
ensures a more balanced evaluation of GeoAI outputs.

4. Results and Discussion
4.1. Completeness

This analysis evaluates how carefully each comparison dataset captures the building
features present in the authoritative OSi reference dataset. Table 3 summarizes the frequency
and percentage of feature matching relationships across the three datasets: OSM (baseline),
OSi-GAN, and OSM-GAN.

Table 3. Completeness analysis: feature relationships between each dataset and OSi ground truth.
The final completeness score is highlighted in the last row of the table.

Relationship OSM
(Match %)

OSi-GAN
(Match %)

OSM-GAN
(Match %)

1:1 332 (35.24%) 272 (36.69%) 345 (28.87%)

1:0 18 (1.91%) 0 (0.00%) 0 (0.00%)

1:many 121 (12.85%) 199 (11.83%) 111 (21.13%)

many:1 344 (36.62%) 307 (42.91%) 404 (32.59%)

many:many 117 (12.42%) 163 (8.57%) 80 (17.41%)

Completeness Score 84.28% 88.17% 78.87%

OSM footprints exhibit moderate completeness but also contain omissions (1:0), over-
segmentation (1:many), and aggregation (many:1). Interestingly, both AI-generated datasets
achieved zero missing features (1:0), indicating much improved feature recall. The OSi-
GAN model outperforms both OSM and OSM-GAN in overall completeness (88.17%), likely
due to its training on high-quality OSi vectors. OSM-GAN shows reduced completeness
(78.87%), consistent with the more variable nature of its VGI training data (OSM vectors). A
bar chart can visually represent completeness analysis results for each relationship category,
comparing OSM- and AI-generated footprint completeness percentages with OSi (Figure 6).

Figure 6. Completeness comparison across datasets. 1:1 indicates a perfect match with the OSi
reference, 1:0 represents omissions (i.e., buildings missing in the comparison dataset), and many:1
reflects cases where multiple reference buildings correspond to a single comparison polygon. A
higher 1:1 percentage indicates better agreement with the OSi reference.
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These results demonstrate that GeoAI models, particularly those trained on author-
itative “ground truth” data, can approach or exceed traditional VGI mapping in feature
coverage. However, completeness alone does not imply geometric or locational fidelity,
leading to further evaluations below.

4.2. Shape Accuracy

Shape accuracy was assessed using two complementary metrics: Hausdorff Dis-
tance (HD) for boundary-level discrepancies and Jaccard Similarity Coefficient (JSC) for
area-based alignment. Both metrics were computed for 1:1-matched buildings across the
three datasets.

Table 4 presents a summary of the HD values for each comparison dataset, including
mean distances, variability, and extreme cases. Among the datasets, OSM-GAN achieved
the lowest mean HD (3.29 m), suggesting closer geometric shape agreement with the OSi
reference. OSM followed with a mean of 5.33 m, while OSi-GAN had the highest mean
HD (6.54 m). Higher standard deviations indicate increasingly inconsistent performance,
particularly in geometrically complex areas. OSM’s variability could reflect its diverse
crowdsource digitizing practices, while OSi-GAN’s higher HD could stem from visual
artifacts (e.g., clouds, shadows, occlusions) in aerial imagery.

Table 4. HD shape accuracy between comparison datasets and OSi ground truth.

Mean HD
(m)

Std.
Deviation (m)

Highest HD
(m)

Lowest HD
(m)

OSi vs. OSM 5.33 4.49 9.15 0.29
OSi vs. OSi-GAN 6.54 4.42 9.33 1.20

OSi vs. OSM-GAN 3.29 2.46 9.17 0.38

Table 5 shows the corresponding JSC values. OSM-GAN again outperforms the other
comparison datasets with a mean JSC of 0.61, followed by OSi-GAN (0.55) and OSM
(0.52). However, OSM-GAN also exhibits the highest variance (σ = 0.37), indicating uneven
overlap positioning across features. The lowest JSC values (0.00) in all datasets point to
instances of severe mismatches or failed detections.

Table 5. JSC shape alignment between comparison datasets and OSi ground truth.

Mean JSC Std.
Deviation Highest JSC Lowest JSC

OSi vs. OSM 0.52 0.18 0.94 0.0
OSi vs. OSi-GAN 0.55 0.31 0.97 0.0

OSi vs. OSM-GAN 0.61 0.37 0.97 0.0

These empirical results highlight distinct trade-offs between datasets. OSM-GAN,
trained on VGI data, shows better shape alignment and lower boundary deviation but
at the cost of higher inconsistency. OSi-GAN, despite training on authoritative vectors,
performs worse in boundary fidelity—likely due to noise in the imagery or more intricate
detail in the structures. Taken together, the combined use of HD and JSC provides a more
comprehensive picture of map feature shape quality by separately measuring geometric
deviation and spatial alignment.

4.3. Positional Accuracy

Positional accuracy was evaluated using Euclidean distance calculations between
centroids of 1:1-matched building footprints. Table 6 compares the results.
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Table 6. Positional accuracy of buildings compared to OSi.

Mean
Distance (m)

Std. Deviation
(m)

Highest
(m)

Lowest
(m)

OSi vs. OSM 2.71 5.91 16.22 0.14
OSi vs. OSi-GAN 1.83 2.59 12.69 0.08

OSi vs. OSM-GAN 1.02 3.63 9.10 0.11

OSM exhibits the worst feature positional accuracy of 2.71 m (~9 ft.), likely due to
inconsistent manual digitization methods and a lack of standard background imagery reg-
istration. OSi-GAN improves accuracy significantly to 1.83 m (~6 ft.) but still incorporates
some errors. Shadows can distort the learned representations and lead to inaccuracies in
centroid placement. OSM-GAN demonstrates the highest positional accuracy (1.02 m),
likely due to more consistent/shadow-minimized nadir satellite imagery from Google Earth.
While centroid-based measures alone do not capture feature orientation misalignments, it
exhibit a reliable proxy for positional quality in most applications (see Figure 5).

In the example qualitative vector-on-raster overlay scenario shown in Figure 7, the
OSi-GAN output exhibits clear alignment with the OSi orthophoto background. This
demonstrates consistency not only in shape and positional accuracy but also in feature
orientation, affirming that buildings are correctly oriented to the reference dataset. Similarly,
OSM-GAN buildings exhibit positive agreement when compared to their corresponding
Google Earth image background. This alignment illustrates contemporary GeoAI capacity
to adhere to the characteristics of its respective training data sources to produce predictions
(synthetic data) that closely match reference (real-world) datasets.

 
Figure 7. Vector-on-raster qualitative comparison. OSi-GAN and OSM-GAN match to their underly-
ing images, while VGI data in OSM shows feature segmentation errors.

Figure 8 expands this view with a vector-on-vector overlay, showing clear geometric
and positional alignment in AI-generated features relative to both OSM and OSi datasets.

In contrast, the differences in performance between OSi-GAN and OSM-GAN reflect
the influence of training data characteristics. OSi-GAN achieves higher completeness due
to its authoritative OSi training vectors, but its shape accuracy is slightly lower, likely
because detailed reference geometries make it sensitive to shadows and closely spaced
buildings. In contrast, OSM-GAN exhibits higher shape fidelity, possibly benefiting from
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smoother, more generalized OSM training data, though at the cost of lower completeness.
These results highlight a trade-off between completeness and geometric precision linked to
the source of training data. They also show that AI model performance may vary across
regions with different urban densities or mapping coverages, suggesting the need for more
adaptable or hybrid training approaches.

Figure 8. Comparative alignment of all datasets. OSM-GAN and OSi-GAN footprints (hatched
and gradient) align closely with OSi (red), while OSM (blue) shows feature fragmentation and
greater misalignment.

5. Conclusions
This study evaluated the reliability of GeoAI-generated building footprints for up-

dating crowd-source maps. It considered the established spatial data quality metrics of
completeness, shape accuracy, and positional accuracy, along with a qualitative (visual)
assessment. To better capture the overall fidelity of building shapes, we adopted a dual-
measure approach, employing both the Jaccard Similarity Coefficient (JSC) to evaluate
shape alignment and Hausdorff Distance (HD) to assess boundary-level deviations inde-
pendent of feature position. This approach enables a more comprehensive understanding
of both overlap and spatial divergence, addressing the limitations of relying on a single
metric to fully capture shape variances.

Our results show that both GeoAI models tested (OSM-GAN and OSi-GAN) outper-
forms current VGI data (OSM) in terms of completeness and positional accuracy. However,
absolute shape accuracy remains a challenge, particularly in visually occluded areas (e.g.,
tree cover, shadows) and for buildings with complex geometries. While OSM-GAN demon-
strates better average shape alignment (higher JSC) and lower HD, it exhibits greater
variability across cases, underscoring the trade-offs between training data quality and
model generalization.

These findings highlight the potential of GeoAI to enhance crowdsource mapping work-
flows, especially where timely, high-quality spatial data updates are needed. At the same time,
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our evaluation shows that quantitative QA methods alone may not fully capture all structural
irregularities, semantic mismatches, or alignment inconsistencies in AI-generated data.

To address these gaps, we suggest that a more systematic, multi-dimensional QA
framework is needed—one capable of assessing feature-level correctness, structural com-
plexity, and semantic validity. As such, future work could explore comparisons based on
high-fidelity reference points, such as building corners or edge networks, and incorporate
machine-augmented but human-verified QA workflows to manage complexity on a larger
scale. Importantly, such frameworks should be standardized across datasets and online
mapping platforms like OpenStreetMap to ensure consistency, trust, and reproducibility.

A second research direction could improve the experimental design by decoupling
confounding variables such as image and vector training sources. In this study, both the
imagery (e.g., Google Earth vs. OSi orthophotos) and the training vectors (e.g., OSM vs.
OSi footprints) varied across models, which limits the ability to isolate the influence of
individual contributing factors. Future experiments can better control these variables, for
example, by training multiple GeoAI models using the same imagery but different vector
sources, or vice versa. This would enable a clearer assessment of how training data quality
and image characteristics independently affect model performance and serve to improve
the generalizability of evaluation outcomes in real-world mapping applications.

Furthermore, it is important to acknowledge that the findings are based on Irish data,
and performance may vary across regions with different urban densities, architectural
styles, or OSM coverages. Urban centers, suburban peripheries, and rural areas focus on
different model behaviors, and variations across continents such as Europe, North America,
or East Asia will likely further affect model performance. Nevertheless, the proposed
QA methodology is applicable in general across regions and can support comparative
analyses globally, although retraining or adapting GeoAI models to local environments
is recommended.

Beyond technical QA implications, these findings hold practical value for disciplines
such as urban planning, land-use monitoring, geography, and environmental governance.
Particularly in regions with limited mapping resources or rapidly changing built envi-
ronments, validated GeoAI outputs can reduce the burden of manual digitization and
enable more responsive planning interventions. As such, this work can contribute to
broader scientific and policy contexts concerned with sustainable urban development and
spatial equity.

This work represents an initial investigation into the need to formalize QA practices for
GeoAI outputs in general and underscores a particular requirement for more standardized,
reproducible evaluation protocols for VGI datasets. Such QA practices are essential to
ensure the accuracy, applicability, and trustworthiness of AI-assisted mapping in real-world
scenarios as GeoAI becomes increasingly embedded in urban governance, environmental
monitoring, and risk assessment applications.

Author Contributions: Conceptualization, J.D.C.; Methodology, J.D.C. and L.N.; Software, L.N.;
Investigation, L.N.; Data Curation, J.D.C. and L.N.; Writing—Original Draft Preparation, L.N.;
Writing—Review and Editing, J.D.C.; Visualization, L.N.; Supervision, J.D.C.; Project Administration,
J.D.C.; Funding Acquisition, J.D.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded by Technological University Dublin College of Arts and Tourism,
SEED FUNDING INITIATIVE 2019–2020.



Land 2025, 14, 1978 14 of 15

Data Availability Statement: The OpenStreetMap data used in this study were sourced from www.
openstreetmap.org via the Overpass API and are publicly accessible via the provided DOI reference:
https://doi.org/10.5281/zenodo.8389699. Please note that the vector data acquired from Ordnance
Survey Ireland are not publicly available due to licensing restrictions. Additionally, the codes
utilized in this research are openly accessible and can be found at the following GitHub repository:
https://github.com/Lasith-Niro/Quality-Assurance-Paper (accessed on 29 September 2025).

Acknowledgments: The authors wish to thank all VGI contributors involved with the OpenStreetMap
project and Ordnance Survey Ireland (OSi) for providing both raster and vector ground truth data
used to verify the accuracy of experiments. We also gratefully acknowledge the Irish Centre for
High-End Computing (ICHEC) for the provision of Kay Supercomputer facilities to train the AI
models. This research is funded by Technological University Dublin College of Arts and Tourism,
SEED FUNDING INITIATIVE 2019–2020.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gao, S. Geospatial Artificial Intelligence (GeoAI). In Geography; Oxford University Press: Oxford, UK, 2021. [CrossRef]
2. Lavallin, A.; Downs, J.A. Machine learning in geography–Past, present, and future. Geogr. Compass 2021, 15, e12563. [CrossRef]
3. Niroshan, L.; Carswell, J.D. OSM-GAN: Using generative adversarial networks for detecting change in high-resolution spatial

images. In Geoinformatics and Data Analysis: Selected Proceedings of ICGDA 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 95–105.

4. OpenStreetMap Contributors. OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 11 June 2024).
5. Niroshan, L.; Carswell, J.D. ML Updates for OpenStreetMap: Analysis of Research Gaps and Future Directions. arXiv 2024.

[CrossRef]
6. Niroshan, L.; Carswell, J.D. DeepMapper: A GeoAI Approach to Automate the VGI Mapping Workflow. IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens. 2025, 18, 16162–16175. [CrossRef]
7. Niroshan, L.; Carswell, J.D. Poly-GAN: Regularizing Polygons with Generative Adversarial Networks. In Proceedings of the

International Symposium on Web and Wireless Geographical Information Systems, Quebec City, QC, Canada, 12–13 June 2023;
pp. 179–193.

8. Brovelli, M.A.; Zamboni, G. A new method for the assessment of spatial accuracy and completeness of OpenStreetMap building
footprints. ISPRS Int. J. Geo-Inf. 2018, 7, 289. [CrossRef]

9. Jilani, M.; Bertolotto, M.; Corcoran, P.; Alghanim, A. Traditional vs. machine-learning techniques for OSM quality assessment. In
Geospatial Intelligence: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 469–487.

10. Mooney, P.; Corcoran, P.; Winstanley, A.C. Towards quality metrics for OpenStreetMap. In Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 514–517.

11. Rodríguez-Avi, J.; Ariza-López, F.J. Finite Mixture Models in the Evaluation of Positional Accuracy of Geospatial Data. Remote
Sens. 2022, 14, 2062. [CrossRef]

12. Xu, Y.; Chen, Z.; Xie, Z.; Wu, L. Quality assessment of building footprint data using a deep autoencoder network. Int. J. Geogr. Inf.
Sci. 2017, 31, 1929–1951. [CrossRef]

13. Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28,
700–719. [CrossRef]

14. Goodchild, M.F.; Hunter, G.J. A simple positional accuracy measure for linear features. Int. J. Geogr. Inf. Sci. 1997, 11, 299–306.
[CrossRef]

15. Haklay, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey
datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [CrossRef]

16. Team, B.M. Microsoft Releases 125 million Building Footprints in the US as Open Data. Available online: https://blogs.bing.
com/maps/2018-06/microsoft-releases-125-million-building-footprints-in-the-us-as-open-data (accessed on 1 August 2020).

17. Kang, L.; Wang, Q.; Yan, H.W. Building extraction based on OpenStreetMap tags and very high spatial resolution image in urban
area. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 715–718. [CrossRef]

18. Zhao, K.; Kang, J.; Jung, J.; Sohn, G. Building extraction from satellite images using mask R-CNN with building boundary
regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 247–251.

19. Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges.
Remote Sens. 2020, 12, 1688. [CrossRef]

www.openstreetmap.org
www.openstreetmap.org
https://doi.org/10.5281/zenodo.8389699
https://github.com/Lasith-Niro/Quality-Assurance-Paper
https://doi.org/10.1093/obo/9780199874002-0228
https://doi.org/10.1111/gec3.12563
https://www.openstreetmap.org/
https://doi.org/10.48550/arxiv.2407.03365
https://doi.org/10.1109/JSTARS.2025.3581499
https://doi.org/10.3390/ijgi7080289
https://doi.org/10.3390/rs14092062
https://doi.org/10.1080/13658816.2017.1341632
https://doi.org/10.1080/13658816.2013.867495
https://doi.org/10.1080/136588197242419
https://doi.org/10.1068/b35097
https://blogs.bing.com/maps/2018-06/microsoft-releases-125-million-building-footprints-in-the-us-as-open-data
https://blogs.bing.com/maps/2018-06/microsoft-releases-125-million-building-footprints-in-the-us-as-open-data
https://doi.org/10.5194/isprs-archives-XLII-3-715-2018
https://doi.org/10.3390/rs12101688


Land 2025, 14, 1978 15 of 15

20. Khan, S.D.; Alarabi, L.; Basalamah, S. An encoder–decoder deep learning framework for building footprints extraction from
aerial imagery. Arab. J. Sci. Eng. 2023, 48, 1273–1284. [CrossRef]

21. Huang, Y.; Jin, Y. Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications
for Fine Scale Wildland–Urban Interface Mapping. Remote Sens. 2022, 14, 3622. [CrossRef]

22. Chen, P.; Wang, S.; Wang, C.; Wang, S.; Huang, B.; Huang, L.; Zang, Z. A GAN-Enhanced Deep Learning Framework for Rooftop
Detection from Historical Aerial Imagery. Int. J. Remote Sens. 2025, 46, 6260–6283. [CrossRef]

23. Mai, G.; Huang, W.; Sun, J.; Song, S.; Mishra, D.; Liu, N.; Gao, S.; Liu, T.; Cong, G.; Hu, Y.; et al. On the Opportunities and
Challenges of Foundation Models for GeoAI (Vision Paper). ACM Trans. Spatial Algorithms Syst. 2024, 10, 11. [CrossRef]

24. Strong, B.; Boyda, E.; Kruse, C.; Ingold, T.; Maron, M. Digital applications unlock remote sensing AI foundation models for
scalable environmental monitoring. Front. Clim. 2025, 7, 1520242. [CrossRef]

25. Trigka, M.; Dritsas, E. A Comprehensive Survey of Deep Learning Approaches in Image Processing. Sensors 2025, 25, 531.
[CrossRef]

26. Yuan, X.; Li, Z.; Basiri, A.; Wang, M. Where England’s cities are growing: Evidence from big building footprint data and
explainable AI. Habitat Int. 2025, 163, 103457. [CrossRef]

27. Farjad, M.; Farjad, M. High-Accuracy AI Models Classifies Topographic Mapping Faster Than Traditional. GeoPard—Precision
agriculture Mapping Software. May 2025. Available online: https://geopard.tech/blog/high-accuracy-ai-models-classifies-
topographic-mapping-faster-than-traditional/ (accessed on 3 July 2025).

28. Taha, A.A.; Hanbury, A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell.
2015, 37, 2153–2163. [CrossRef]

29. Zielstra, D.; Zipf, A. A comparative study of proprietary geodata and volunteered geographic information for Germany. In
Proceedings of the 13th AGILE International Conference on Geographic Information Science, Guimarães, Portugal, 11–14 May
2010; pp. 1–15.

30. Jung, J.-K.; Elwood, S. Extending the qualitative capabilities of GIS: Computer-aided qualitative GIS. Trans. GIS 2010, 14, 63–87.
[CrossRef]
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