Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Atriplex halimus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6092 KB  
Article
Biopharmaceutical and Pharmacotechnical Characterization of Plant Powder Tablets Obtained by Direct Compression Process: The Case of Atriplex halimus
by Yacine Nait Bachir, Ramdan Mohamed Said, Nacera Zitouni Terki, Rabea Antar, Mounira Slamani, Dounia Gharbi and Roberta Foligni
Appl. Sci. 2025, 15(15), 8623; https://doi.org/10.3390/app15158623 - 4 Aug 2025
Viewed by 532
Abstract
The present study aims to develop tablets based on plant powder obtained by direct compression. In this work, the effects of two parameters (the powder particle size and the force of compression) have been studied. Powder from the aerial portion of Atriplex halimus [...] Read more.
The present study aims to develop tablets based on plant powder obtained by direct compression. In this work, the effects of two parameters (the powder particle size and the force of compression) have been studied. Powder from the aerial portion of Atriplex halimus was used as a model. The composition of the powder and its technological properties were determined. A compression process study was carried out, and the macroscopic and pharmacotechnical properties of the resulting tablets were studied. Finally, an in vitro dissolution kinetics study in the absence and presence of digestive enzymes was evaluated. Plant powders, with a particle size between 100 and 500 µm, allowed us to have excellent quality tablets after direct compression with a force of 14 KN. The obtained tablets comply with the requirements of the European Pharmacopoeia standards, they have good swelling and erosive properties, and they have shown good structure after observation with a scanning electron microscope. An in vitro dissolution kinetics study of these tablets composed of 100% plant powder showed that maximum dissolution rates are reached after 5 h of dissolution in the absence of digestive enzymes and 3 h in their presence. This result highlights the potential of plant powder administration as a valuable therapeutic strategy. Full article
Show Figures

Graphical abstract

16 pages, 699 KB  
Article
Propagation of Atriplex halimus (Mediterranean Saltbush) in Multi-Contaminated Mine Tailings by Unrooted Cuttings
by Marta Canu, Stefano Milia, Stefano Ubaldini, Elena Tamburini, Alessandra Carucci and Giovanna Cappai
Appl. Sci. 2025, 15(13), 7027; https://doi.org/10.3390/app15137027 - 22 Jun 2025
Viewed by 1055
Abstract
Phytotechnologies offer sustainable solutions for remediating mine residues by combining site rehabilitation with the potential recovery of secondary and critical raw materials (SRMs and CRMs, respectively), contributing to resource efficiency strategies. This study explored the direct propagation of Atriplex halimus unrooted cuttings into [...] Read more.
Phytotechnologies offer sustainable solutions for remediating mine residues by combining site rehabilitation with the potential recovery of secondary and critical raw materials (SRMs and CRMs, respectively), contributing to resource efficiency strategies. This study explored the direct propagation of Atriplex halimus unrooted cuttings into metal-contaminated mine tailings, assessing survival, biomass production, and trace metal accumulation. Treatments were carried out on mine tailings, with and without the addition of organic and inorganic amendments, and on commercial soil as a control. After an 8-week preliminary trial, Atriplex halimus demonstrated moderate survival and growth without phytotoxic symptoms, despite elevated trace metal concentrations. Significant accumulation of zinc, lead, and cadmium as model contaminants in the biomass of Atriplex halimus (up to 495.4, 31.9, and 1.2 mg kg−1, respectively), as well as magnesium and manganese as model CRMs (2081 and 87.8 mg kg−1, respectively) was observed in aerial tissues, comparable with traditional, though more labor-intensive propagation methods. Plants’ ability to accumulate metals was high in the presence of amendments added to promote biomass growth. These results highlight the significance of direct propagation by unrooted cuttings as a promising, low-cost strategy to initiate site restoration in metal-contaminated areas and warrant further investigation under field conditions and over longer durations. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

14 pages, 1349 KB  
Article
Anatomical Adaptations of Halophyte Leaves (Nitraria retusa [Forsskal] Asch. and Atriplex halimus L.) in Response to Cement Dust Pollution in Arid Environments
by Nouha Krir, Mounira Mkaddem Guedri, Mehrez Romdhane and Manel Abdullah Alshaqha
Life 2025, 15(1), 61; https://doi.org/10.3390/life15010061 - 7 Jan 2025
Viewed by 1312
Abstract
This study investigates the anatomical adaptations of leaves from two halophyte species, Nitraria retusa (Forsskal) Asch. and Atriplex halimus L., in response to pollutants from a cement factory and human activities. In industrial areas, these plants absorb pollutants through their leaf surfaces, including [...] Read more.
This study investigates the anatomical adaptations of leaves from two halophyte species, Nitraria retusa (Forsskal) Asch. and Atriplex halimus L., in response to pollutants from a cement factory and human activities. In industrial areas, these plants absorb pollutants through their leaf surfaces, including Cu, Zn, and Pb. The two species were examined for anatomical changes under air pollution, and key factors including leaf blade thickness, palisade parenchyma cell height, spongy parenchyma cell diameter, epidermal characteristics, and stomatal traits were assessed. Under pollution, the leaves displayed smaller and denser stomata and idioblasts in the palisade and spongy parenchyma. These anatomical responses suggest that N. retusa and A. halimus could be effective bioindicators for detecting cement dust pollutants. Their leaf relative water content (RWC) exhibited a range of values: 70.1% and 87% for N. retusa and 64.8% to 74.2% for A. halimus on the highly polluted site (S1) and the control site (S4), respectively. Notably, a statistically significant site effect was observed (p > 0.01), confirming previous studies, and indicating reduced leaf relative water content (RWC) values in plants exposed to heavy metals like Cd and Pb. Heavy metals can lead to mineralization by binding to cell walls, altering their physicochemical properties and plasticity. Furthermore, significant correlations between specific heavy metals and histological parameters in A. halimus leaves indicated potential interactions between metal composition and leaf structure, highlighting their role in modulating anatomical adaptations. The correlation of leaf thickness, upper epidermal thickness, and stomatal density with Zn and Pb levels underlines the importance of these anatomical features in heavy metal accumulation and retention in plant tissues. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

11 pages, 570 KB  
Brief Report
A Comparative Study of the Influence of Soil and Non-Soil Factors on Seed Germination of Edible Salt-Tolerant Species
by Viana Castañeda-Loaiza, Maria João Rodrigues, Eliana Fernandes and Luísa Custódio
Horticulturae 2024, 10(8), 872; https://doi.org/10.3390/horticulturae10080872 - 18 Aug 2024
Cited by 1 | Viewed by 1633
Abstract
Cultivating edible salt-tolerant plants (halophytes) for human consumption is increasingly important due to climate change and soil salinization, and offers sustainable agricultural solutions. Optimizing seed germination, the crucial initial stage of crop growth, is essential for enhancing crop production. This study aimed to [...] Read more.
Cultivating edible salt-tolerant plants (halophytes) for human consumption is increasingly important due to climate change and soil salinization, and offers sustainable agricultural solutions. Optimizing seed germination, the crucial initial stage of crop growth, is essential for enhancing crop production. This study aimed to optimize the germination of edible halophytes under greenhouse conditions, focusing on select soil (salinity and substrate) and non-soil-related factors (chemical and mechanical treatments). The target species were selected for their commercial value and included Mesembryanthemum crystallinum L. (crystalline iceplant), Salicornia ramosissima J. Woods (sea asparagus), Medicago marina L. (sea medick), Ammophila arenaria (L.) Link (European beachgrass), Portulaca oleracea L. (common purslane), and Atriplex halimus L. (Mediterranean saltbush). Salinity negatively impacted germination rates (GRs) and delayed mean germination time (MGT) across species. P. oleracea had the highest GR (95.6%) in coco peat under freshwater irrigation, and the shortest MGT (5.2 days). A. halimus did not germinate under the tested conditions. Scarification with sulfuric acid improved the GR of M. marina by 42.2%, while scarification with ultrasounds improved the GR of A. arenaria by 35.5%. Our results indicate that the choice of substrate and the application of specific treatments like scarification can significantly improve the germination of certain halophyte species under variable saline conditions. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Figure 1

21 pages, 3019 KB  
Article
Enhancing Native Plant Establishment in Mine Tailings under Drought Stress Conditions through the Application of Organo-Mineral Amendments and Microbial Inoculants
by Madline Atika, Benidire Leila, Sofia I. A. Pereira, Paula M. L. Castro and Boularbah Ali
Plants 2024, 13(6), 863; https://doi.org/10.3390/plants13060863 - 17 Mar 2024
Viewed by 1754
Abstract
The implementation of phytoremediation strategies under arid and semiarid climates requires the use of appropriate plant species capable of withstanding multiple abiotic stresses. In this study, we assessed the combined effects of organo-mineral amendments and microbial inoculants on the chemical and biological properties [...] Read more.
The implementation of phytoremediation strategies under arid and semiarid climates requires the use of appropriate plant species capable of withstanding multiple abiotic stresses. In this study, we assessed the combined effects of organo-mineral amendments and microbial inoculants on the chemical and biological properties of mine tailings, as well as on the growth of native plant species under drought stress conditions. Plants were cultivated in pots containing 1 kg of a mixture of mine tailings and topsoil (i.e., pre-mined superficial soil) in a 60:40 ratio, 6% marble sludge, and 10% sheep manure. Moreover, a consortium of four drought-resistant plant growth-promoting rhizobacteria (PGPR) was inoculated. Three irrigation levels were applied: well-watered, moderate water deficit, and severe water deficit, corresponding to 80%, 45%, and 30% of field capacity, respectively. The addition of topsoil and organo-mineral amendments to mine tailings significantly improved their chemical and biological properties, which were further enhanced by bacterial inoculation and plants’ establishment. Water stress negatively impacted enzymatic activities in amended tailings, resulting in a significant decrease in acid and alkaline phosphatases, urease, and dehydrogenase activities. Similar results were obtained for bacteria, fungi, and actinomycete abundance. PGPR inoculation positively influenced the availability of phosphorus, total nitrogen, and organic carbon, while it increased alkaline phosphatase, urease (by about 10%), and dehydrogenase activity (by 50%). The rhizosphere of Peganum harmala showed the highest enzymatic activity and number of culturable microorganisms, especially in inoculated treatments. Severe water deficit negatively affected plant growth, leading to a 40% reduction in the shoot biomass of both Atriplex halimus and Pennisetum setaceum compared to well-watered plants. P. harmala showed greater tolerance to water stress, evidenced by lower decreases observed in root and shoot length and dry weight compared to well-watered plants. The use of bioinoculants mitigated the negative effects of drought on P. harmala shoot biomass, resulting in an increase of up to 75% in the aerial biomass in plants exposed to severe water deficit. In conclusion, the results suggest that the combination of organo-mineral amendments, PGPR inoculation, and P. harmala represents a promising approach to enhance the phytoremediation of metal-polluted soils under semiarid conditions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 2181 KB  
Article
Physiological Responses and Adaptations of the Halophyte Atriplex halimus to Soil Contaminated with Cd, Ni, and NaCl
by Shumailah Ishtiyaq, Harsh Kumar, Rohan J. D’Souza, Mayank Varun, Paulo J. C. Favas and Manoj S. Paul
Soil Syst. 2023, 7(2), 46; https://doi.org/10.3390/soilsystems7020046 - 5 May 2023
Cited by 5 | Viewed by 3587
Abstract
Soils contaminated with potentially toxic elements (PTEs) and salt manifest a large number of physical, chemical, and structural problems by various processes such as reduced water availability, water and air movement in soil space, water holding capacity of soil, as well as perilous [...] Read more.
Soils contaminated with potentially toxic elements (PTEs) and salt manifest a large number of physical, chemical, and structural problems by various processes such as reduced water availability, water and air movement in soil space, water holding capacity of soil, as well as perilous effects on plant growth and physiology. Halophytes have the ability to grow in saline environments and are better adapted to accommodate environmental constraints including PTE ions. An experiment was designed to study the response of the halophyte Atriplex halimus to a range of salinities and different concentrations of Cd and Ni. Tolerance and soil remedial potential of the plant were quantified in terms of PTE uptake and portioning, plant biomass, root/shoot ratio, chlorophyll and anti-oxidative enzyme production, along with stress markers such as lipid peroxidation, proline, and glycine betaine. The plant was also evaluated for its potential to phytoremediate PTE contaminated soil. The results suggest that A. halimus can tolerate moderate concentrations of both the PTEs and salt. The species holds promise for bio-reclamation of saline and PTE-contaminated soil. Full article
Show Figures

Figure 1

12 pages, 2855 KB  
Article
Molecular Characterization of Dehydrin in Azraq Saltbush among Related Atriplex Species
by Anas Musallam, Saeid Abu-Romman and Monther T. Sadder
BioTech 2023, 12(2), 27; https://doi.org/10.3390/biotech12020027 - 7 Apr 2023
Cited by 1 | Viewed by 2597
Abstract
Atriplex spp. (saltbush) is known to survive extremely harsh environmental stresses such as salinity and drought. It mitigates such conditions based on specialized physiological and biochemical characteristics. Dehydrin genes (DHNs) are considered major players in this adaptation. In this study, a [...] Read more.
Atriplex spp. (saltbush) is known to survive extremely harsh environmental stresses such as salinity and drought. It mitigates such conditions based on specialized physiological and biochemical characteristics. Dehydrin genes (DHNs) are considered major players in this adaptation. In this study, a novel DHN gene from Azrak (Jordan) saltbush was characterized along with other Atriplex species from diverse habitats. Intronless DHN-expressed sequence tags (495–761 bp) were successfully cloned and sequenced. Saltbush dehydrins contain one S-segment followed by three K-segments: an arrangement called SK3-type. Two substantial insertions were detected including three copies of the K2-segemnet in A. canescens. New motif variants other than the six-serine standard were evident in the S-segment. AhaDHN1 (A. halimus) has a cysteine residue (SSCSSS), while AgaDHN1 (A. gardneri var. utahensis) has an isoleucine residue (SISSSS). In contrast to the conserved K1-segment, both the K2- and K3-segment showed several substitutions, particularly in AnuDHN1 (A. nummularia). In addition, a parsimony phylogenetic tree based on homologs from related genera was constructed. The phylogenetic tree resolved DHNs for all of the investigated Atriplex species in a superclade with an 85% bootstrap value. Nonetheless, the DHN isolated from Azraq saltbush was uniquely subclustred with a related genera Halimione portulacoides. The characterized DHNs revealed tremendous diversification among the Atriplex species, which opens a new venue for their functional analysis. Full article
Show Figures

Figure 1

19 pages, 1704 KB  
Article
Metabolomic Profiling, Antibacterial, and Molluscicidal Properties of the Medicinal Plants Calotropis procera and Atriplex halimus: In Silico Molecular Docking Study
by Mostafa Y. Morad, Heba El-Sayed, Manal F. El-Khadragy, Asmaa Abdelsalam, Eman Zakaria Ahmed and Amina M. Ibrahim
Plants 2023, 12(3), 477; https://doi.org/10.3390/plants12030477 - 19 Jan 2023
Cited by 23 | Viewed by 4316
Abstract
The potential of plant-based natural compounds in the creation of new molluscicidal and antimicrobial medications has gained attention in recent years. The current study compared the metabolic profiles, antibacterial, and molluscicidal properties of the medicinal plants Calotropis procera (C. procera) and [...] Read more.
The potential of plant-based natural compounds in the creation of new molluscicidal and antimicrobial medications has gained attention in recent years. The current study compared the metabolic profiles, antibacterial, and molluscicidal properties of the medicinal plants Calotropis procera (C. procera) and Atriplex halimus (A. halimus). In both plants, 118 metabolites were identified using gas chromatography-mass spectrometry. Palmitic acid, stigmasterol, and campesterol were the most prevalent constituents. C. procera extract showed stronger antibacterial activity than A. halimus against Escherichia coli and Proteus mirabilis. Both extracts exhibited molluscicidal activity against Biomphalaria alexandrina, with LC50 values of C. procera (135 mg/L) and A. halimus (223.8 mg/L). Survival rates of snails exposed to sub-lethal concentrations (LC25) of C. procera and A. halimus extracts were 5% and 20%, respectively. The hatchability of snail eggs exposed to both extracts has been dramatically reduced. Both extracts significantly decreased the levels of alkaline phosphatase, acid phosphatase, total protein, and albumin in snails, as well as causing DNA damage and resulting in numerous hermaphrodite and digestive gland damages and distortions. Molecular docking showed palmitic acid binding with acid, alkaline, and alanine aminotransferases in treated digestive gland snails. In conclusion, C. procera and A. halimus have antibacterial and molluscicidal properties. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Figure 1

17 pages, 3422 KB  
Article
Biochemical Analyses of Bioactive Extracts from Plants Native to Lampedusa, Sicily Minor Island
by Roberta Di Lecce, Natacha Mérindol, Mayra Galarza Pérez, Vahid Karimzadegan, Lionel Berthoux, Angela Boari, Christian Zidorn, Maurizio Vurro, Giuseppe Surico, Isabel Desgagné-Penix and Antonio Evidente
Plants 2022, 11(24), 3447; https://doi.org/10.3390/plants11243447 - 9 Dec 2022
Cited by 6 | Viewed by 3895
Abstract
Major threats to the human lifespan include cancer, infectious diseases, diabetes, mental degenerative conditions and also reduced agricultural productivity due to climate changes, together with new and more devastating plant diseases. From all of this, the need arises to find new biopesticides and [...] Read more.
Major threats to the human lifespan include cancer, infectious diseases, diabetes, mental degenerative conditions and also reduced agricultural productivity due to climate changes, together with new and more devastating plant diseases. From all of this, the need arises to find new biopesticides and new medicines. Plants and microorganisms are the most important sources for isolating new metabolites. Lampedusa Island host a rich contingent of endemic species and subspecies. Seven plant species spontaneously growing in Lampedusa, i.e., Atriplex halimus L. (Ap), Daucus lopadusanus Tineo (Dl), Echinops spinosus Fiori (Es) Glaucium flavum Crantz (Gf) Hypericum aegypticum L: (Ha), Periploca angustifolia Labill (Pa), and Prasium majus L. (Pm) were collected, assessed for their metabolite content, and evaluated for potential applications in agriculture and medicine. The HPLC-MS analysis of n-hexane (HE) and CH2Cl2 (MC) extracts and the residual aqueous phases (WR) showed the presence of several metabolites in both organic extracts. Crude HE and MC extracts from Dl and He significantly inhibited butyrylcholinesterase, as did WR from the extraction of Dl and Pa. HE and MC extracts showed a significant toxicity towards hepatocarcinoma Huh7, while Dl, Ha and Er HE extracts were the most potently cytotoxic to ileocecal colorectal adenocarcinoma HCT-8 cell lines. Most extracts showed antiviral activity. At the lowest concentration tested (1.56 μg/mL), Dl, Gf and Ap MC extracts inhibited betacoronavirus HCoV-OC43 infection by> 2 fold, while the n-hexane extract of Pm was the most potent. In addition, at 1.56 μg/mL, potent inhibition (>10 fold) of dengue virus was detected for Dl, Er, and Pm HE extracts, while Pa and Ap MC extracts dampened infections to undetectable levels. Regarding to phytotoxicity, MC extracts from Er, Ap and Pm were more effective in inhibiting tomato rootlet elongation; the same first two extracts also inhibited seed cress germination while its radicle elongation, due to high sensitivity, was affected by all the extracts. Es and Gf MC extracts also inhibited seed germination of Phelipanche ramosa. Thus, we have uncovered that many of these Lampedusa plants displayed promising biopesticide, antiviral, and biological properties. Full article
(This article belongs to the Special Issue Plant Synthetic Biology and Plant Transcriptome)
Show Figures

Figure 1

15 pages, 747 KB  
Article
Insecticidal Activities of Atriplex halimus L., Salvia rosmarinus Spenn. and Cuminum cyminum L. against Dactylopius opuntiae (Cockerell) under Laboratory and Greenhouse Conditions
by Imane Naboulsi, Karim El Fakhouri, Rachid Lamzira, Chaimae Ramdani, Gabin Thierry M. Bitchagno, Rachid Boulamtat, Widad Ben Bakrim, Ismail Mahdi, Aziz Aboulmouhajir, Abdelaziz Yasri, Mustapha El Bouhssini, Jane L. Ward and Mansour Sobeh
Insects 2022, 13(10), 930; https://doi.org/10.3390/insects13100930 - 13 Oct 2022
Cited by 11 | Viewed by 2852
Abstract
The wild cochineal Dactylopius opuntiae (Hemiptera: Dactylopiidae) is one of the major insect pests of the prickly pear Opuntia ficus-indica (L.) in Morocco, a well-known fruit and vegetable crop of arid and semi-arid regions around the world. The present study investigated the insecticidal [...] Read more.
The wild cochineal Dactylopius opuntiae (Hemiptera: Dactylopiidae) is one of the major insect pests of the prickly pear Opuntia ficus-indica (L.) in Morocco, a well-known fruit and vegetable crop of arid and semi-arid regions around the world. The present study investigated the insecticidal potential of six extracts (three aqueous and three hydroalcoholic (MeOH/H2O, 20/80 (v/v)) from Atriplex halimus (leaves), Salvia rosmarinus (leaves) and Cuminum cyminum (seeds) to control nymphs and adult females of D. opuntiae under laboratory and greenhouse conditions. Out of the tested samples, A. halimus aqueous extract showed the highest activity, inducing mortality rates of 67.04% (after 4 days) and 85% (after 8 days) on nymphs and adult females of D. opuntiae, respectively, at a concentration of 5% under laboratory conditions. It also showed the highest mortality rate of nymphs with 100% (4 days after application) and 83.75% of adult females (7 days after the second application) at a concentration of 5% when combined with black soap at 10 g/L under greenhouse conditions. The difference in the toxicity of plant species of the study was correlated with their saponin content. A total of 36 of these triterpene glucosides were suggested after a comprehensive LC-MSn profiling of the most active extract, A. halimus, in addition to phytoecdysones and glycosylated phenolic acids and flavonoids. These findings provided evidence that the aqueous leaf extract of A. halimus could be incorporated in the management of the wild cochineal as an alternative to chemical insecticides. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 2202 KB  
Article
LC–MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation
by Amine Elbouzidi, Hayat Ouassou, Marouane Aherkou, Loubna Kharchoufa, Nada Meskali, Abdellah Baraich, Hamza Mechchate, Mohamed Bouhrim, Abderrazak Idir, Christophe Hano, Hassan Zrouri and Mohamed Addi
Pharmaceuticals 2022, 15(9), 1156; https://doi.org/10.3390/ph15091156 - 16 Sep 2022
Cited by 54 | Viewed by 7016
Abstract
Atriplex halimus L., also known as Mediterranean saltbush, and locally as “Lgtef”, an halophytic shrub, is used extensively to treat a wide variety of ailments in Morocco. The present study was undertaken to determine the antioxidant activity and cytotoxicity of the ethanolic extract [...] Read more.
Atriplex halimus L., also known as Mediterranean saltbush, and locally as “Lgtef”, an halophytic shrub, is used extensively to treat a wide variety of ailments in Morocco. The present study was undertaken to determine the antioxidant activity and cytotoxicity of the ethanolic extract of A. halimus leaves (AHEE). We first determined the phytochemical composition of AHEE using a liquid chromatography (LC)–tandem mass spectrometry (MS/MS) technique. The antioxidant activity was evaluated using different methods including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, iron chelation, and the total antioxidant capacity assays. Cytotoxicity was investigated against human cancer breast cells lines MCF-7 and MDA-MB-231. The results showed that the components of the extract are composed of phenolic acids and flavonoids. The DPPH test showed strong scavenging capacity for the leaf extract (IC50 of 0.36 ± 0.05 mg/mL) in comparison to ascorbic acid (IC50 of 0.19 ± 0.02 mg/mL). The β-carotene test determined an IC50 of 2.91 ± 0.14 mg/mL. The IC50 values of ABTS, iron chelation, and TAC tests were 44.10 ± 2.92 TE µmol/mL, 27.40 ± 1.46 mg/mL, and 124 ± 1.27 µg AAE/mg, respectively. In vitro, the AHE extract showed significant inhibitory activity in all tested tumor cell lines, and the inhibition activity was found in a dose-dependent manner. Furthermore, computational techniques such as molecular docking and ADMET analysis were used in this work. Moreover, the physicochemical parameters related to the compounds’ pharmacokinetic indicators were evaluated, including absorption, distribution, metabolism, excretion, and toxicity prediction (Pro-Tox II). Full article
(This article belongs to the Special Issue Anticancer Compounds in Medicinal Plants 2023)
Show Figures

Figure 1

24 pages, 7758 KB  
Article
The C4 Atriplex halimus vs. the C3 Atriplex hortensis: Similarities and Differences in the Salinity Stress Response
by Roberta Calone, Antonio Cellini, Luigi Manfrini, Carla Lambertini, Paola Gioacchini, Andrea Simoni and Lorenzo Barbanti
Agronomy 2021, 11(10), 1967; https://doi.org/10.3390/agronomy11101967 - 29 Sep 2021
Cited by 10 | Viewed by 3726
Abstract
Soil properties and the ability to sustain agricultural production are seriously impaired by salinity. The cultivation of halophytes is seen as a solution to cope with the problem. In this framework, a greenhouse pot experiment was set up to assess salinity response in [...] Read more.
Soil properties and the ability to sustain agricultural production are seriously impaired by salinity. The cultivation of halophytes is seen as a solution to cope with the problem. In this framework, a greenhouse pot experiment was set up to assess salinity response in the perennial C4 species Atriplex halimus, and in the following three cultivars of the annual C3 Atriplex hortensis: green, red, and scarlet. The four genotypes were grown for 35 days with water salinity (WS) ranging from 0 to 360 mM NaCl. Plant height and fresh weight (FW) increased at 360 vs. 0 WS. The stomatal conductance (GS) and transpiration rate (E) were more severely affected by salinity in the C4 A. halimus than in the C3 species A. hortensis. This was reflected in a lower leaf water potential indicating stronger osmotic adjustment, and a higher relative water content associated with more turgid leaves, in A. halimus than A. hortensis. In a PCA including all the studied traits, the GS and E negatively correlated to the FW, which, in turn, positively correlated with Na concentration and intrinsic water use efficiency (iWUE), indicating that reduced gas exchange associated with Na accumulation contributed to sustain iWUE under salinity. Finally, FTIR spectroscopy showed a reduced amount of pectin, lignin, and cellulose under salinity, indicating a weakened cell wall structure. Overall, both species were remarkably adapted to salinity: From an agronomic perspective, the opposite strategies of longer vs. faster soil coverage, involved by the perennial A. halimus vs. the annual A. hortensis cv. scarlet, are viable natural remedies for revegetating marginal saline soils and increasing soil organic carbon. Full article
(This article belongs to the Special Issue Management of Soil Organic Carbon for Soil Health in Agroecosystems)
Show Figures

Figure 1

17 pages, 1124 KB  
Article
Recycled Wastewater and Reverse Osmosis Brine Use for Halophytes Irrigation: Differences in Physiological, Nutritional and Hormonal Responses of Crithmum maritimum and Atriplex halimus Plants
by María José Gómez-Bellot, Beatriz Lorente, María Fernanda Ortuño, Sonia Medina, Ángel Gil-Izquierdo, Sebastián Bañón and María Jesús Sánchez-Blanco
Agronomy 2021, 11(4), 627; https://doi.org/10.3390/agronomy11040627 - 26 Mar 2021
Cited by 23 | Viewed by 3763
Abstract
Halophytes are capable of coping with excessive NaCl in their tissues, although some species may differ in their degree of salt tolerance. In addition, it is not clear whether they can tolerate other confounding factors and impurities associated with non-conventional waters. The experiment [...] Read more.
Halophytes are capable of coping with excessive NaCl in their tissues, although some species may differ in their degree of salt tolerance. In addition, it is not clear whether they can tolerate other confounding factors and impurities associated with non-conventional waters. The experiment was performed in a greenhouse with Crithmum maritimum and Atriplex halimus plants, growing on soil and irrigated with two different water types: reclaimed wastewater (RWW) (EC: 0.8–1.2 dS m−1) and reverse osmosis brine (ROB) (EC: 4.7–7.9 dS m−1). Both species showed different physiological and nutritional responses, when they were irrigated with ROB. Atriplex plants reduced leaf water potential and maintained leaf turgor as consequence of an osmotic adjustment process. Atriplex showed higher intrinsic water use efficiency than Crithmum, regardless of the type of water used. In Crithmum, the water status and photosynthetic efficiency were similar in both treatments. Crithmum presented a higher leaf accumulation of B and Ca ions, while Atriplex a higher amount of K, Mg, Na and Zn. Crithmum plants irrigated with ROB presented higher concentrations of 1-aminocyclopropane-1-carboxylic acid and trans-zeatin-glucoside, whereas abscisic acid concentration was lower. Atriplex showed a lower concentration of trans-zeatin-riboside and scopoletin. The characteristics associated to water irrigation did not influence negatively the development of any of these species, which confirms the use of brine as an alternative to irrigate them with conventional waters. Full article
Show Figures

Figure 1

17 pages, 4255 KB  
Article
Physiological Adaptation to Water Salinity in Six Wild Halophytes Suitable for Mediterranean Agriculture
by Roberta Calone, Simone Bregaglio, Rabab Sanoubar, Enrico Noli, Carla Lambertini and Lorenzo Barbanti
Plants 2021, 10(2), 309; https://doi.org/10.3390/plants10020309 - 5 Feb 2021
Cited by 35 | Viewed by 4487
Abstract
Owing to the high interspecific biodiversity, halophytes have been regarded as a tool for understanding salt tolerance mechanisms in plants in view of their adaptation to climate change. The present study addressed the physiological response to salinity of six halophyte species common in [...] Read more.
Owing to the high interspecific biodiversity, halophytes have been regarded as a tool for understanding salt tolerance mechanisms in plants in view of their adaptation to climate change. The present study addressed the physiological response to salinity of six halophyte species common in the Mediterranean area: Artemisia absinthium, Artemisia vulgaris, Atriplex halimus, Chenopodium album, Salsola komarovii, and Sanguisorba minor. A 161-day pot experiment was conducted, watering the plants with solutions at increasing NaCl concentration (control, 100, 200, 300 and 600 mM). Fresh weight (FW), leaf stomatal conductance (GS), relative water content (RWC) and water potential (WP) were measured. A principal component analysis (PCA) was used to describe the relationships involving the variables that accounted for data variance. A. halimus was shown to be the species most resilient to salinity, being able to maintain FW up to 300 mM, and RWC and WP up to 600 mM; it was followed by C. album. Compared to them, A. vulgaris and S. komarovii showed intermediate performances, achieving the highest FW (A. vulgaris) and GS (S. komarovii) under salinity. Lastly, S. minor and A. absinthium exhibited the most severe effects with a steep drop in GS and RWC. Lower WP values appeared to be associated with best halophyte performances under the highest salinity levels, i.e., 300 and 600 mM NaCl. Full article
(This article belongs to the Special Issue Plants Subjected to Salinity Stress)
Show Figures

Graphical abstract

14 pages, 497 KB  
Article
Halophytes of the Mediterranean Basin—Underutilized Species with the Potential to Be Nutritious Crops in the Scenario of the Climate Change
by Agatha Agudelo, Micaela Carvajal and María del Carmen Martinez-Ballesta
Foods 2021, 10(1), 119; https://doi.org/10.3390/foods10010119 - 8 Jan 2021
Cited by 39 | Viewed by 4733
Abstract
Halophyte plants are adapted to saline environments and represent a novel type of crops given their possible uses at both culinary and industrial levels. In this work, the nutritional quality of different Mediterranean halophyte species, Atriplex halimus, Salicornia fruticosa, and Cakile [...] Read more.
Halophyte plants are adapted to saline environments and represent a novel type of crops given their possible uses at both culinary and industrial levels. In this work, the nutritional quality of different Mediterranean halophyte species, Atriplex halimus, Salicornia fruticosa, and Cakile maritima, was evaluated under conditions of high salinity. For this, plants were grown at different NaCl concentrations (0, 100, 200, and 300 mM) and the contents of proteins, total lipids, polyphenols, and mineral elements were analyzed as well as growth. Of the three species, C. maritima was the most sensitive to salt stress and therefore showed the highest phenolic compounds content. By contrast, whereas salinity increased the amounts of proteins and phenolics with respect to the control in A. halimus and S. fruticosa, it decreased them in C. maritima. Plants of A. halimus accumulated higher amounts of Na+ in their leaves, but the level of this ion, considering human consumption, was below that of other culinary halophyte species. In conclusion, all the results indicate that these three halophyte species grown at high salt levels represent optimal crops for—new foodstuff—production as green salt or spice due to their nutritional potential. Full article
(This article belongs to the Special Issue Climate Changes and Global Warming—the Future of Foods)
Show Figures

Figure 1

Back to TopTop