Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Atangana–Baleanu fractional calculus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 862 KiB  
Article
Exploring SEIR Influenza Epidemic Model via Fuzzy ABC Fractional Derivatives with Crowley–Martin Incidence Rate
by F. Gassem, Ashraf A. Qurtam, Mohammed Almalahi, Mohammed Rabih, Khaled Aldwoah, Abdelaziz El-Sayed and E. I. Hassan
Fractal Fract. 2025, 9(7), 402; https://doi.org/10.3390/fractalfract9070402 - 23 Jun 2025
Viewed by 526
Abstract
Despite initial changes in respiratory illness epidemiology due to SARS-CoV-2, influenza activity has returned to pre-pandemic levels, highlighting its ongoing challenges. This paper investigates an influenza epidemic model using a Susceptible-Exposed-Infected-Recovered (SEIR) framework, extended with fuzzy Atangana–Baleanu–Caputo (ABC) fractional derivatives to incorporate uncertainty [...] Read more.
Despite initial changes in respiratory illness epidemiology due to SARS-CoV-2, influenza activity has returned to pre-pandemic levels, highlighting its ongoing challenges. This paper investigates an influenza epidemic model using a Susceptible-Exposed-Infected-Recovered (SEIR) framework, extended with fuzzy Atangana–Baleanu–Caputo (ABC) fractional derivatives to incorporate uncertainty (via fuzzy numbers for state variables) and memory effects (via the ABC fractional derivative for non-local dynamics). We establish the theoretical foundation by defining the fuzzy ABC derivatives and integrals based on the generalized Hukuhara difference. The existence and uniqueness of the solutions for the fuzzy fractional SEIR model are rigorously proven using fixed-point theorems. Furthermore, we analyze the system’s disease-free and endemic equilibrium points under the fractional framework. A numerical scheme based on the fractional Adams–Bashforth method is used to approximate the fuzzy solutions, providing interval-valued results for different uncertainty levels. The study demonstrates the utility of fuzzy fractional calculus in providing a more flexible and potentially realistic approach to modeling epidemic dynamics under uncertainty. Full article
(This article belongs to the Special Issue Fractional Order Modelling of Dynamical Systems)
Show Figures

Figure 1

20 pages, 761 KiB  
Article
Dynamics of Bone Remodeling by Using Mathematical Model Under ABC Time-Fractional Derivative
by Kamonchat Trachoo, Inthira Chaiya, Sirawit Phakmee and Din Prathumwan
Symmetry 2025, 17(6), 905; https://doi.org/10.3390/sym17060905 - 8 Jun 2025
Viewed by 523
Abstract
Bone remodeling is a dynamic biological process that preserves bone strength and structure through the coordinated actions of osteoblasts, osteoclasts, osteocytes, and bone mass density. Traditional models based on ordinary differential equations often fail to capture the memory-dependent nature of these interactions. In [...] Read more.
Bone remodeling is a dynamic biological process that preserves bone strength and structure through the coordinated actions of osteoblasts, osteoclasts, osteocytes, and bone mass density. Traditional models based on ordinary differential equations often fail to capture the memory-dependent nature of these interactions. In this study, we propose a novel mathematical model of bone remodeling using the Atangana–Baleanu–Caputo fractional derivative, which accounts for the non-local and hereditary characteristics of biological systems. The model introduces fractional-order dynamics into a previously established ODE framework while maintaining the intrinsic symmetry between bone-forming and bone-resorbing mechanisms, as well as the balance mediated by porosity-related feedback. We establish the existence, uniqueness, and positivity of solutions, and analyze the equilibrium points and their global stability using a Lyapunov function. Numerical simulations under various fractional orders demonstrate symmetric convergence toward equilibrium across all biological variables. The results confirm that fractional-order modeling provides a more accurate and balanced representation of bone remodeling and reveal the underlying symmetry in the regulation of bone tissue. This work contributes to the growing use of fractional calculus in modeling physiological processes and highlights the importance of symmetry in both mathematical structure and biological behavior. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

20 pages, 309 KiB  
Article
Fractional Optimal Control Problem for Symmetric System Involving Distributed-Order Atangana–Baleanu Derivatives with Non-Singular Kernel
by Bahaa Gaber Mohamed and Ahlam Hasan Qamlo
Symmetry 2025, 17(3), 417; https://doi.org/10.3390/sym17030417 - 10 Mar 2025
Viewed by 579
Abstract
The objective of this work is to discuss and thoroughly analyze the fractional variational principles of symmetric systems involving distributed-order Atangana–Baleanu derivatives. A component of distributed order, the fractional Euler–Lagrange equations of fractional Lagrangians for constrained systems are studied concerning Atangana–Baleanu derivatives. We [...] Read more.
The objective of this work is to discuss and thoroughly analyze the fractional variational principles of symmetric systems involving distributed-order Atangana–Baleanu derivatives. A component of distributed order, the fractional Euler–Lagrange equations of fractional Lagrangians for constrained systems are studied concerning Atangana–Baleanu derivatives. We give a general formulation and a solution technique for a class of fractional optimal control problems (FOCPs) for such systems. The dynamic constraints are defined by a collection of FDEs, and the performance index of an FOCP is considered a function of the control variables and the state. The formula for fractional integration by parts, the Lagrange multiplier, and the calculus of variations are used to obtain the Euler–Lagrange equations for the FOCPs. Full article
Show Figures

Figure 1

24 pages, 619 KiB  
Article
Nonlinear Fractional Evolution Control Modeling via Power Non-Local Kernels: A Generalization of Caputo–Fabrizio, Atangana–Baleanu, and Hattaf Derivatives
by F. Gassem, Mohammed Almalahi, Osman Osman, Blgys Muflh, Khaled Aldwoah, Alwaleed Kamel and Nidal Eljaneid
Fractal Fract. 2025, 9(2), 104; https://doi.org/10.3390/fractalfract9020104 - 8 Feb 2025
Cited by 1 | Viewed by 969
Abstract
This paper presents a novel framework for modeling nonlinear fractional evolution control systems. This framework utilizes a power non-local fractional derivative (PFD), which is a generalized fractional derivative that unifies several well-known derivatives, including Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf derivatives, as special cases. [...] Read more.
This paper presents a novel framework for modeling nonlinear fractional evolution control systems. This framework utilizes a power non-local fractional derivative (PFD), which is a generalized fractional derivative that unifies several well-known derivatives, including Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf derivatives, as special cases. It uniquely features a tunable power parameter “p”, providing enhanced control over the representation of memory effects compared to traditional derivatives with fixed kernels. Utilizing the fixed-point theory, we rigorously establish the existence and uniqueness of solutions for these systems under appropriate conditions. Furthermore, we prove the Hyers–Ulam stability of the system, demonstrating its robustness against small perturbations. We complement this framework with a practical numerical scheme based on Lagrange interpolation polynomials, enabling efficient computation of solutions. Examples illustrating the model’s applicability, including symmetric cases, are supported by graphical representations to highlight the approach’s versatility. These findings address a significant gap in the literature and pave the way for further research in fractional calculus and its diverse applications. Full article
Show Figures

Figure 1

31 pages, 817 KiB  
Article
Qualitative Analysis of Generalized Power Nonlocal Fractional System with p-Laplacian Operator, Including Symmetric Cases: Application to a Hepatitis B Virus Model
by Mohamed S. Algolam, Mohammed A. Almalahi, Muntasir Suhail, Blgys Muflh, Khaled Aldwoah, Mohammed Hassan and Saeed Islam
Fractal Fract. 2025, 9(2), 92; https://doi.org/10.3390/fractalfract9020092 - 1 Feb 2025
Viewed by 717
Abstract
This paper introduces a novel framework for modeling nonlocal fractional system with a p-Laplacian operator under power nonlocal fractional derivatives (PFDs), a generalization encompassing established derivatives like Caputo–Fabrizio, Atangana–Baleanu, weighted Atangana–Baleanu, and weighted Hattaf. The core methodology involves employing a PFD with a [...] Read more.
This paper introduces a novel framework for modeling nonlocal fractional system with a p-Laplacian operator under power nonlocal fractional derivatives (PFDs), a generalization encompassing established derivatives like Caputo–Fabrizio, Atangana–Baleanu, weighted Atangana–Baleanu, and weighted Hattaf. The core methodology involves employing a PFD with a tunable power parameter within a non-singular kernel, enabling a nuanced representation of memory effects not achievable with traditional fixed-kernel derivatives. This flexible framework is analyzed using fixed-point theory, rigorously establishing the existence and uniqueness of solutions for four symmetric cases under specific conditions. Furthermore, we demonstrate the Hyers–Ulam stability, confirming the robustness of these solutions against small perturbations. The versatility and generalizability of this framework is underscored by its application to an epidemiological model of transmission of Hepatitis B Virus (HBV) and numerical simulations for all four symmetric cases. This study presents findings in both theoretical and applied aspects of fractional calculus, introducing an alternative framework for modeling complex systems with memory processes, offering opportunities for more sophisticated and accurate models and new avenues for research in fractional calculus and its applications. Full article
(This article belongs to the Special Issue Advanced Numerical Methods for Fractional Functional Models)
Show Figures

Figure 1

24 pages, 527 KiB  
Article
Analyzing the Chaotic Dynamics of a Fractional-Order Dadras–Momeni System Using Relaxed Contractions
by Haroon Ahmad, Fahim Ud Din, Mudasir Younis and Liliana Guran
Fractal Fract. 2024, 8(12), 699; https://doi.org/10.3390/fractalfract8120699 - 27 Nov 2024
Cited by 2 | Viewed by 924
Abstract
This paper is inspired by cutting-edge advancements in chaos theory, fractional calculus, and fixed point theory, which together provide a powerful framework for examining the dynamics of complex systems. At the heart of our research is the fractional-order Dadras–Momeni chaotic system, a pivotal [...] Read more.
This paper is inspired by cutting-edge advancements in chaos theory, fractional calculus, and fixed point theory, which together provide a powerful framework for examining the dynamics of complex systems. At the heart of our research is the fractional-order Dadras–Momeni chaotic system, a pivotal model in chaos theory celebrated for its intricate, multi-scroll dynamics. Leveraging the Atangana–Baleanu fractional derivative, we extend fractional computation to chaotic systems, offering deeper insights into their behavior. To fortify the mathematical foundation of our analysis, we employ the relaxed θ rational contractions in the realm of metric spaces, enabling a more precise exploration of the system’s dynamics. A key goal of this work is to simplify the definition of the function class Θ while maintaining the existence and uniqueness of fixed points under θ-relaxed contractions, integrating this framework with the established literature on complete metric spaces. We explore the system’s behavior across six distinct cases by varying δ with a fixed fractional order of =0.98. In the first case, a single scroll forms, while successive cases lead to increased scrolls—reaching up to four by the sixth case. Phase portraits and time series analyses reveal a progression in complexity and chaos, with denser, intertwined scrolls as δ increases. This behavior highlights the system’s heightened sensitivity to parameter variations, demonstrating how fractional parameters influence the chaotic dynamics. Our results offer meaningful contributions to both the theoretical foundations and practical applications of chaos theory and fractional calculus, advancing the understanding of chaotic systems in new and impacted ways. Full article
(This article belongs to the Special Issue Design, Optimization and Applications for Fractional Chaotic System)
Show Figures

Figure 1

19 pages, 1122 KiB  
Article
Comparative Analysis of Influenza Modeling Using Novel Fractional Operators with Real Data
by Mohamed A. Abdoon and Abdulrahman B. M. Alzahrani
Symmetry 2024, 16(9), 1126; https://doi.org/10.3390/sym16091126 - 30 Aug 2024
Cited by 9 | Viewed by 1360
Abstract
In this work, the efficacy of fractional models under Atangana–Baleanu–Caputo, Caputo–Fabrizio, and Caputo is compared to the performance of integer-order models in the forecasting of weekly influenza cases using data from the Kingdom of Saudi Arabia. The suggested fractional influenza model was effectively [...] Read more.
In this work, the efficacy of fractional models under Atangana–Baleanu–Caputo, Caputo–Fabrizio, and Caputo is compared to the performance of integer-order models in the forecasting of weekly influenza cases using data from the Kingdom of Saudi Arabia. The suggested fractional influenza model was effectively verified using fractional calculus. Our investigation uncovered the topic’s essential properties and deepened our understanding of disease progression. Furthermore, we analyzed the numerical scheme’s positivity, limitations, and symmetry. The fractional-order models demonstrated superior accuracy, producing smaller root mean square error (RMSE) and mean absolute error (MAE) than the classical model. The novelty of this work lies in introducing the Atangana–Baleanu–Caputo fractional model to influenza forecasting to incorporate memory of an epidemic, which leads to higher accuracy than traditional models. These models effectively captured the peak and drop of influenza cases. Based on these findings, it can be concluded that fractional-order models perform better than typical integer-order models when predicting influenza dynamics. These insights should illuminate the importance of fractional calculus in addressing epidemic threats. Full article
(This article belongs to the Special Issue Mathematical Modeling of the Infectious Diseases and Their Controls)
Show Figures

Figure 1

15 pages, 512 KiB  
Article
Numerical Solutions of the Multi-Space Fractional-Order Coupled Korteweg–De Vries Equation with Several Different Kernels
by Khaled Mohammed Saad and Hari Mohan Srivastava
Fractal Fract. 2023, 7(10), 716; https://doi.org/10.3390/fractalfract7100716 - 29 Sep 2023
Cited by 12 | Viewed by 1494
Abstract
In this article, the authors propose to investigate the numerical solutions of several fractional-order models of the multi-space coupled Korteweg–De Vries equation involving many different kernels. In order to transform these models into a set or system of differential equations, various properties of [...] Read more.
In this article, the authors propose to investigate the numerical solutions of several fractional-order models of the multi-space coupled Korteweg–De Vries equation involving many different kernels. In order to transform these models into a set or system of differential equations, various properties of the first-kind Chebyshev polynomial are used in this study. The main objective of the present study is to apply the spectral collocation approach for the multi-space fractional-order coupled Korteweg–De Vries equation with different kernels. We use finite differences to numerically solve these differential equations by reducing them to algebraic equations. The Newton (or, more precisely, the Newton–Raphson) method is then used to solve these resulting algebraic equations. By calculating the error involved in our approach, the precision of the numerical solution is verified. The use of spectral methods, which provide excellent accuracy and exponential convergence for issues with smooth solutions, is shown to be a benefit of the current study. Full article
Show Figures

Figure 1

24 pages, 7526 KiB  
Article
Image Denoising Method Relying on Iterative Adaptive Weight-Mean Filtering
by Meixia Wang, Susu Wang, Xiaoqin Ju and Yanhong Wang
Symmetry 2023, 15(6), 1181; https://doi.org/10.3390/sym15061181 - 1 Jun 2023
Cited by 8 | Viewed by 2478
Abstract
Salt-and-pepper noise (SPN) is a common type of image noise that appears as randomly distributed white and black pixels in an image. It is also known as impulse noise or random noise. This paper aims to introduce a new weighted average based on [...] Read more.
Salt-and-pepper noise (SPN) is a common type of image noise that appears as randomly distributed white and black pixels in an image. It is also known as impulse noise or random noise. This paper aims to introduce a new weighted average based on the Atangana–Baleanu fractional integral operator, which is a well-known idea in fractional calculus. Our proposed method also incorporates the concept of symmetry in the window mask structures, resulting in efficient and easily implementable filters for real-time applications. The distinguishing point of these techniques compared to similar methods is that we employ a novel idea for calculating the mean of regular pixels rather than the existing used mean formula along with the median. An iterative procedure has also been provided to integrate the power of removing high-density noise. Moreover, we will explore the different approaches to image denoising and their effectiveness in removing noise from images. The symmetrical structure of this tool will help in the ease and efficiency of these techniques. The outputs are compared in terms of peak signal-to-noise ratio, the mean-square error and structural similarity values. It was found that our proposed methodologies outperform some well-known compared methods. Moreover, they boast several advantages over alternative denoising techniques, including computational efficiency, the ability to eliminate noise while preserving image features, and real-time applicability. Full article
Show Figures

Figure 1

18 pages, 538 KiB  
Article
An Efficient Analytical Approach to Investigate Fractional Caudrey–Dodd–Gibbon Equations with Non-Singular Kernel Derivatives
by Dowlath Fathima, Reham A. Alahmadi, Adnan Khan, Afroza Akhter and Abdul Hamid Ganie
Symmetry 2023, 15(4), 850; https://doi.org/10.3390/sym15040850 - 2 Apr 2023
Cited by 24 | Viewed by 1879
Abstract
Fractional calculus is at this time an area where many models are still being developed, explored, and used in real-world applications in many branches of science and engineering where non-locality plays a key role. Although many wonderful discoveries have already been reported by [...] Read more.
Fractional calculus is at this time an area where many models are still being developed, explored, and used in real-world applications in many branches of science and engineering where non-locality plays a key role. Although many wonderful discoveries have already been reported by researchers in important monographs and review articles, there is still a great deal of non-local phenomena that have not been studied and are only waiting to be explored. As a result, we can continually learn about new applications and aspects of fractional modelling. In this study, a precise and analytical method with non-singular kernel derivatives is used to solve the Caudrey–Dodd–Gibbon (CDG) model, a modification of the fifth-order KdV equation (fKdV). The fractional derivative is taken into account by the Caputo–Fabrizio (CF) derivative and the Atangana–Baleanu derivative in the Caputo sense (ABC). This model illustrates the propagation of magneto-acoustic, shallow-water, and gravity–capillary waves in a plasma medium. The dynamic behaviour of the acquired solutions has been represented in a number of two- and three-dimensional figures. A number of simulations are also performed to demonstrate how the resulting solutions physically behave with respect to fractional order. The significance of the current research is that new solutions are obtained by using a strong analytical approach. Utilizing a fractional derivative operator to solve equivalent models is another benefit of this approach. The results of the present work have similar aspects to the symmetry of partial differential equations. Full article
(This article belongs to the Special Issue Functional Analysis, Fractional Operators and Symmetry/Asymmetry)
Show Figures

Figure 1

16 pages, 867 KiB  
Article
A Dynamic Competition Analysis of Stochastic Fractional Differential Equation Arising in Finance via Pseudospectral Method
by Ishtiaq Ali and Sami Ullah Khan
Mathematics 2023, 11(6), 1328; https://doi.org/10.3390/math11061328 - 9 Mar 2023
Cited by 33 | Viewed by 2614
Abstract
This research focuses on the analysis of the competitive model used in the banking sector based on the stochastic fractional differential equation. For the approximate solution, a pseudospectral technique is utilized for the proposed model based on the stochastic Lotka–Volterra equation using a [...] Read more.
This research focuses on the analysis of the competitive model used in the banking sector based on the stochastic fractional differential equation. For the approximate solution, a pseudospectral technique is utilized for the proposed model based on the stochastic Lotka–Volterra equation using a wide range of fractional order parameters in simulations. Conditions for stable and unstable equilibrium points are provided using the Jacobian. The Lotka–Volterra equation is unstable in the long term and can produce highly fluctuating dynamics, which is also one of the reasons that this equation is used to model the problems arising in finance, where fluctuations are important. For this reason, the conventional analytical and numerical methods are not the best choices. To overcome this difficulty, an automatic procedure is used to solve the resultant algebraic equation after the discretization of the operator. In order to fully use the properties of orthogonal polynomials, the proposed scheme is applied to the equivalent integral form of stochastic fractional differential equations under consideration. This also helps in the analysis of fractional differential equations, which mostly fall in the framework of their integrated form. We demonstrate that this fractional approach may be considered as the best tool to model such real-world data situations with very reasonable accuracy. Our numerical simulations further demonstrate that the use of the fractional Atangana–Baleanu operator approach produces results that are more precise and flexible, allowing individuals or companies to use it with confidence to model such real-world situations. It is shown that our numerical simulation results have a very good agreement with the real data, further showing the efficiency and effectiveness of our numerical scheme for the proposed model. Full article
(This article belongs to the Section C1: Difference and Differential Equations)
Show Figures

Figure 1

12 pages, 303 KiB  
Article
Modified Fractional Difference Operators Defined Using Mittag-Leffler Kernels
by Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Dumitru Baleanu and Khadijah M. Abualnaja
Symmetry 2022, 14(8), 1519; https://doi.org/10.3390/sym14081519 - 25 Jul 2022
Cited by 20 | Viewed by 2145
Abstract
The discrete fractional operators of Riemann–Liouville and Liouville–Caputo are omnipresent due to the singularity of the kernels. Therefore, convexity analysis of discrete fractional differences of these types plays a vital role in maintaining the safe operation of kernels and symmetry of discrete delta [...] Read more.
The discrete fractional operators of Riemann–Liouville and Liouville–Caputo are omnipresent due to the singularity of the kernels. Therefore, convexity analysis of discrete fractional differences of these types plays a vital role in maintaining the safe operation of kernels and symmetry of discrete delta and nabla distribution. In their discrete version, the generalized or modified forms of various operators of fractional calculus are becoming increasingly important from the viewpoints of both pure and applied mathematical sciences. In this paper, we present the discrete version of the recently modified fractional calculus operator with the Mittag-Leffler-type kernel. Here, in this article, the expressions of both the discrete nabla derivative and its counterpart nabla integral are obtained. Some applications and illustrative examples are given to support the theoretical results. Full article
Show Figures

Figure 1

10 pages, 283 KiB  
Article
Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels
by Houssine Zine, El Mehdi Lotfi, Delfim F. M. Torres and Noura Yousfi
Axioms 2022, 11(5), 231; https://doi.org/10.3390/axioms11050231 - 15 May 2022
Cited by 7 | Viewed by 2994
Abstract
We prove a new Taylor’s theorem for generalized weighted fractional calculus with nonsingular kernels. The proof is based on the establishment of new relations for nth-weighted generalized fractional integrals and derivatives. As an application, new mean value theorems for generalized weighted fractional operators [...] Read more.
We prove a new Taylor’s theorem for generalized weighted fractional calculus with nonsingular kernels. The proof is based on the establishment of new relations for nth-weighted generalized fractional integrals and derivatives. As an application, new mean value theorems for generalized weighted fractional operators are obtained. Direct corollaries allow one to obtain the recent Taylor’s and mean value theorems for Caputo–Fabrizio, Atangana–Baleanu–Caputo (ABC) and weighted ABC derivatives. Full article
(This article belongs to the Special Issue Fractional Calculus and Differential Equations)
19 pages, 1405 KiB  
Article
Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control
by Kottakkaran Sooppy Nisar, Kumararaju Logeswari, Veliappan Vijayaraj, Haci Mehmet Baskonus and Chokkalingam Ravichandran
Fractal Fract. 2022, 6(2), 61; https://doi.org/10.3390/fractalfract6020061 - 25 Jan 2022
Cited by 74 | Viewed by 3823
Abstract
In this article, a fractional model of the Capsicum annuum (C. annuum) affected by the yellow virus through whiteflies (Bemisia tabaci) is examined. We analyzed the model by equilibrium points, reproductive number, and local and global stability. The optimal [...] Read more.
In this article, a fractional model of the Capsicum annuum (C. annuum) affected by the yellow virus through whiteflies (Bemisia tabaci) is examined. We analyzed the model by equilibrium points, reproductive number, and local and global stability. The optimal control methods are discussed to decrease the infectious B. tabaci and C. annuum by applying the Verticillium lecanii (V. lecanii) with the Atangana–Baleanu derivative. Numerical results described the population of plants and comparison values of using V. lecanni. The results show that using 60% of V. lecanni will control the spread of the yellow virus in infected B. tabaci and C. annuum in 10 days, which helps farmers to afford the costs of cultivating chili plants. Full article
(This article belongs to the Special Issue Recent Advances in Computational Physics with Fractional Application)
Show Figures

Figure 1

13 pages, 583 KiB  
Article
Fractional-Order Logistic Differential Equation with Mittag–Leffler-Type Kernel
by Iván Area and Juan J. Nieto
Fractal Fract. 2021, 5(4), 273; https://doi.org/10.3390/fractalfract5040273 - 14 Dec 2021
Cited by 23 | Viewed by 3770
Abstract
In this paper, we consider the Prabhakar fractional logistic differential equation. By using appropriate limit relations, we recover some other logistic differential equations, giving representations of each solution in terms of a formal power series. Some numerical approximations are implemented by using truncated [...] Read more.
In this paper, we consider the Prabhakar fractional logistic differential equation. By using appropriate limit relations, we recover some other logistic differential equations, giving representations of each solution in terms of a formal power series. Some numerical approximations are implemented by using truncated series. Full article
Show Figures

Figure 1

Back to TopTop