Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. An Illustrative Example
5. Mean Value Theorems
- For the weighted ABC derivative: if for , then
- For the ABC derivative: if for , then
- For the CF derivative: if for , then
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. What Euler could further write, or the unnoticed “big bang” of the fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Wang, Z.; Hu, H. Measuring memory with the order of fractional derivative. Sci. Rep. 2013, 3, 3431. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, V.E. Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fund. Inform. 2017, 151, 431–442. [Google Scholar] [CrossRef]
- Cuahutenango-Barro, B.; Taneco-Hernández, M.A.; Lv, Y.-P.; Gómez-Aguilar, J.F.; Osman, M.S.; Jahanshahi, H.; Aly, Ȧ.A. Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel. Results Phys. 2021, 25, 104148. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Baleanu, D. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel. Chaos 2017, 27, 103113. [Google Scholar] [CrossRef]
- Basir, F.A.; Elaiw, A.M.; Kesh, D.; Roy, P.K. Optimal control of a fractional-order enzyme kinetic model. Control Cybernet. 2015, 44, 443–461. [Google Scholar]
- Machado, J.A.T.; Kiryakova, V. Recent history of the fractional calculus: Data and statistics, In Handbook of Fractional Calculus with Applications; De Gruyter: Berlin, Germany, 2019; Volume 1, pp. 1–21. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Generalized Fractional Calculus—New Advancements and Applications; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2021; Volume 305. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. Analytical Inequalities for Fractional Calculus Operators and the Mittag-Leffler Function—Applications of Integral Operators Containing an Extended Generalized Mittag-Leffler Function in the Kernel; Monographs in Inequalities; ELEMENT: Zagreb, Croatia, 2021; Volume 20. [Google Scholar]
- Jin, T.; Yang, X. Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market. Math. Comput. Simul. 2021, 190, 203–221. [Google Scholar] [CrossRef]
- Ammi, M.R.S.; Tahiri, M.; Torres, D.F.M. Necessary optimality conditions of a reaction-diffusion SIR model with ABC fractional derivatives. Discrete Contin. Dyn. Syst. Ser. S 2022, 15, 621–637. [Google Scholar] [CrossRef]
- Connell, E.H.; Porcelli, P. An algorithm of J. Schur and the Taylor series. Proc. Am. Math. Soc. 1962, 13, 232–235. [Google Scholar] [CrossRef]
- Mul, O.V.; Torres, D.F.M. Analysis of vibrations in large flexible hybrid systems. Nonlinear Anal. 2005, 63, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Yonthanthum, W.; Rattana, A.; Razzaghi, M. An approximate method for solving fractional optimal control problems by the hybrid of block-pulse functions and Taylor polynomials. Optim. Control. Appl. Methods 2018, 39, 873–887. [Google Scholar] [CrossRef]
- Al-Zanaidi, M.A.; Grossmann, C.; Noack, A. Implicit Taylor methods for parabolic problems with nonsmooth data and applications to optimal heat control. J. Comput. Appl. Math. 2006, 188, 121–149. [Google Scholar] [CrossRef] [Green Version]
- Drusvyatskiy, D.; Ioffe, A.D.; Lewis, A.S. Nonsmooth optimization using Taylor-like models: Error bounds, convergence, and termination criteria. Math. Program. 2021, 185, 357–383. [Google Scholar] [CrossRef] [Green Version]
- Torres, D.F.M. On a non-Newtonian calculus of variations. Axioms 2021, 10, 171. [Google Scholar] [CrossRef]
- Odibat, Z. Fractional power series solutions of fractional differential equations by using generalized Taylor series. Appl. Comput. Math. 2020, 19, 47–58. [Google Scholar]
- Williams, P.A. Fractional calculus on time scales with Taylor’s theorem. Fract. Calc. Appl. Anal. 2012, 15, 616–638. [Google Scholar] [CrossRef]
- Hardy, G.H. Riemann’s form of Taylor’s series. J. Lond. Math. Soc. 1945, 20, 48–57. [Google Scholar] [CrossRef]
- Watanabe, J. On some properties of fractional powers of linear operators. Proc. Jpn. Acad. 1961, 37, 273–275. [Google Scholar] [CrossRef]
- Trujillo, J.J.; Rivero, M.; Bonilla, B. On a Riemann-Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 1999, 231, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Bilal, M.; Rosli, N.; Jamil, N.M.; Ahmad, I. Numerical solution of fractional pantograph differential equation via fractional Taylor series collocation method. Malays. J. Math. Sci. 2020, 14, 155–169. [Google Scholar]
- Del Teso, F.; Gómez-Castro, D.; Vázquez, J.L. Estimates on translations and Taylor expansions in fractional Sobolev spaces. Nonlinear Anal. 2020, 200, 111995. [Google Scholar] [CrossRef]
- Didgar, M.; Vahidi, A.R.; Biazar, J. An approximate approach for systems of fractional integro-differential equations based on Taylor expansion. Kragujevac J. Math. 2020, 44, 379–392. [Google Scholar] [CrossRef]
- Atangana, A. Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Solitons Fractals 2020, 136, 109860. [Google Scholar] [CrossRef]
- Boudaoui, A.; Moussa, Y.E.h.; Hammouch, Z.; Ullah, S. A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel. Chaos Solitons Fractals 2021, 146, 110859. [Google Scholar] [CrossRef]
- Mozyrska, D.; Torres, D.F.M.; Wyrwas, M. Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales. Nonlinear Anal. Hybrid Syst. 2019, 32, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.-X.; Kanth, A.S.V.R.; Aruna, K.; Raghavendar, K.; Rezazadeh, H.; Inc, M.; Aly, A.A. Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives. J. Funct. Spaces 2021, 2021, 9884027. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; Agarwal, R.P.; Shah, R.; Botmart, T. Analysis of the time fractional-order coupled Burgers equations with non-singular kernel operators. Mathematics 2021, 9, 2326. [Google Scholar] [CrossRef]
- Dhar, B.; Gupta, P.K.; Sajid, M. Solution of a dynamical memory effect COVID-19 infection system with leaky vaccination efficacy by non-singular kernel fractional derivatives. Math. Biosci. Eng. 2022, 19, 4341–4367. [Google Scholar] [CrossRef]
- Kiro, A. Taylor coefficients of smooth functions. J. Anal. Math. 2020, 142, 193–269. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D. The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag-Leffler kernel. Adv. Differ. Equ. 2018, 2018, 86. [Google Scholar] [CrossRef] [PubMed]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Bedi, P.; Kumar, A.; Khan, A. Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives. Chaos Solitons Fractals 2021, 150, 111153. [Google Scholar] [CrossRef]
- Hassouna, M.; Kinani, E.H.E.; Ouhadan, A. Global existence and uniqueness of solution of Atangana-Baleanu Caputo fractional differential equation with nonlinear term and approximate solutions. Int. J. Differ. Equ. 2021, 2021, 5675789. [Google Scholar] [CrossRef]
- Kongson, J.; Sudsutad, W.; Thaiprayoon, C.; Alzabut, J.; Tearnbucha, C. On analysis of a nonlinear fractional system for social media addiction involving Atangana-Baleanu-Caputo derivative. Adv. Differ. Equ. 2021, 2021, 356. [Google Scholar] [CrossRef]
- Hattaf, K. A new generalized definition of fractional derivative with non-singular kernel. Computation 2020, 8, 49. [Google Scholar] [CrossRef]
- Hattaf, K. On some properties of the new generalized fractional derivative with non-singular kernel. Math. Probl. Eng. 2021, 2021, 1580396. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imperial College Press: London, UK, 2012. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Al-Refai, M. On weighted Atangana-Baleanu fractional operators. Adv. Differ. Equ. 2020, 2020, 3. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zine, H.; Lotfi, E.M.; Torres, D.F.M.; Yousfi, N. Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels. Axioms 2022, 11, 231. https://doi.org/10.3390/axioms11050231
Zine H, Lotfi EM, Torres DFM, Yousfi N. Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels. Axioms. 2022; 11(5):231. https://doi.org/10.3390/axioms11050231
Chicago/Turabian StyleZine, Houssine, El Mehdi Lotfi, Delfim F. M. Torres, and Noura Yousfi. 2022. "Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels" Axioms 11, no. 5: 231. https://doi.org/10.3390/axioms11050231
APA StyleZine, H., Lotfi, E. M., Torres, D. F. M., & Yousfi, N. (2022). Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels. Axioms, 11(5), 231. https://doi.org/10.3390/axioms11050231