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Abstract: In this article, a fractional model of the Capsicum annuum (C. annuum) affected by the yellow
virus through whiteflies (Bemisia tabaci) is examined. We analyzed the model by equilibrium points,
reproductive number, and local and global stability. The optimal control methods are discussed to
decrease the infectious B. tabaci and C. annuum by applying the Verticillium lecanii (V. lecanii) with the
Atangana–Baleanu derivative. Numerical results described the population of plants and comparison
values of using V. lecanni. The results show that using 60% of V. lecanni will control the spread of the
yellow virus in infected B. tabaci and C. annuum in 10 days, which helps farmers to afford the costs of
cultivating chili plants.

Keywords: fractional calculus; stability analysis; Atangana–Baleanu fractional derivative; optimal
control; mathematical models; yellow virus
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1. Introduction

Growth of Capsicum annuum (chili plant) [1,2] is excessive in the mid-hill region of
India. It contains vitamin C, provitamin A, and calcium, which are good for health. The
spicy taste and high nutritional benefit the marketing of C. annuum. Capsicum annuum is
used in the pharmaceutical industries to increase immunity, antiulcer, analgesic, antidia-
betic, and antihemorrhoid agents. The extracts of C. annuum employ to relieve the pain of
inflammation of joints, headaches, neuralgia, and burns. The framers require advantages to
yield the C. annuum in large amounts. Due to natural obstacles like soil erosion, irrigation,
and diseases spread, farmers encounter heavy losses while fertilizing C. annuum.

The cause of Geminivirus (yellow virus) [3–5] is one of the difficulties experienced
by farmers in the cultivation of C. annuum. Yellow spots appear in young leaves and
shoots, and the leaves turn out to be bright yellow or mixed yellow-green, which are
symptoms of the yellow virus. This virus spreads by whitefly (Bemisia tabaci) from one host
to another continuously.

Controlling these viruses using overlapping cropping methods is very difficult, since
insecticide must be applied to mature plants. Controlling techniques vary depending on
the conditions of the plants infected by virus variety, environment, and time. To reduce
the populations of white-flies, systemic insecticides are applied to control the spread of
the virus, as well as to cure the infected white-fly insect and plants, like rust fungi, etc.,
who have the host cyclodepsipeptide toxin. This toxin was produced via the mycelium of
entomopathogenic fungi (Verticillium lecanii) [6–8]. However, the excess use of V. lecanii
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generates high costs. To minimize costs of controlling the B. tabaci population, an optimal
control method must be found.

Over the past few decades, numerous analyses, real-world problems, and numerical
methods were resolved by fractional derivatives and integrals [9–16]. The applications
are fluid mechanics, electrochemistry, viscoelasticity, optics, and signals processing in
engineering and science. Riemann–Liouville, Caputo, Caputo–Fabrizio, and Atangana–
Baleanu are some of the fractional derivatives developed by several researchers. The
Atangana–Baleanu fractional derivative (AB-derivative) [17] is a new one among the
Mittag–Leffler Kernel. Recently, the existence analysis [18–21], stability analysis [22,23]
and models [24–27] of AB-derivative were elaborated by many authors.

Optimal control is the approach of ascertaining control and circumstances path for
dynamic systems to minimize an accomplishment period. The origin of the optimal
control is related to the calculus of variations. In the 1940s, the formulation of dynamic
programming in the optimal control was developed by Rochard Bellman. Using the
analytical method, some of the optimal control problems’ solutions are difficult to find.
N.H. Sweilam et al. [28] discussed the optimal control method for cancer treatment using
AB-derivative. R. Amelia et al. [29] showed results to help farmers afford the costs of
cultivating the red chilies by optimal control. In [30] N.H. Sweilam and S.M. AL–Mekhlafi
described the fractional model of multistrain TB cure with optimal control. The optimal
control problems to solve numerical procedures were investigated in [31,32].

To the best of our knowledge, the study of the C. annuum of the yellow virus with
optimal control by applying the AB-derivative to the model is yet to come. This article was
organized as follows: the basic results and definitions of the AB-derivative are discussed
in Section 2. In Section 3, the formation of the C. annuum model with AB-derivative
is explained. In Section 4, the optimality conditions demonstrate. In Sections 5 and 6,
numerical results with graphs for the fractional optimal control problem have presented
and conclusions.

Motivated by [22,23,28,30], this document discusses the fractional model of Gemi-
nivirus in C. annuum with AB-derivative via optimal control and stability analysis. The
main contributions are organized as follows:

(A) The fractional model of Geminivirus in C. annuum with AB-derivative constructed.
(B) We obtained some stability results of this fractional model and discussed the equilib-

rium points and reproductive number of the model.
(C) We derived the optimal control of this fractional model and plotted the population

and comparison results of each variable in the model.

2. Preliminaries

This section briefly discussed some preliminaries regarding fractional derivatives.
There are few definitions for the fractional derivatives, including Riemann–Liouville,
Caputo, and Caputo–Fabrizio [9,18]. Recently, a new fractional derivative with Mittag–
Leffler Kernel was elaborated and implemented in a few real-world models [24–27]. We
present the following definitions.

The Riemann–Liouville fractional integral (RL) is defined as follows [9,18]

(0 Iζ φ)(t) =
1

Γ(ζ)

∫ t

0
(t− s)ζ−1φ(s)ds, ζ > 0.

The Riemann–Liouville fractional order derivative (RL) is defined as follows [9,18]

(R
0 Dζ φ)(t) =

d
dt

(
1

Γ(1− ζ)

∫ t

0
(t− s)−ζ φ(s)ds

)
, 0 < ζ < 1.
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The Caputo fractional order derivative (C) is defined as follows [9,18]

(C
0 Dζ φ)(t) =

1
Γ(1− ζ)

∫ t

0
(t− s)−ζ φ

′
(s)ds, 0 < ζ < 1.

The Caputo-Fabrizio fractional order derivative in Caputo sense (CFC) is defined as
follows [33]

(CFC
0 Dζφ)(t) =

M(ζ)

1− ζ

∫ t

0
φ
′
(s)exp

[
−ζ

1− ζ
(t− s)ζ

]
ds, 0 < ζ < 1.

where φ
′ ∈ H1(0, T), M(ζ) is a constant of normalization that depends on ζ, which satisfies

that, M(0) = M(1) = 1.
The Atangana–Baleanu fractional order derivative in the Riemann–Liouville sense

(ABR) is defined as follows [17]

(ABR
0 Dζ φ)(t) =

B(ζ)
1− ζ

d
dt

∫ t

0
φ(s)Eζ

[
−ζ

(t− s)ζ

1− ζ

]
ds, 0 < ζ < 1.

where φ
′ ∈ H1(0, T), B(ζ) is a normalization function, B(0) = B(1) = 1.

The Atangana–Baleanu fractional order derivative in the Caputo sense (ABC) is
defined as follows [17]

(ABC
0 Dζ φ)(t) =

B(ζ)
1− ζ

∫ t

0
φ
′
(s)Eζ

[
−ζ

(t− s)ζ

1− ζ

]
ds, 0 < ζ < 1.

where φ
′ ∈ H1(0, T), B(ζ) is a normalization function, B(0) = B(1) = 1.

The Atangana–Baleanu fractional integral of order ζ of a function φ(t) is defined
as [17]

(AB
0 Iζφ)(t) =

1− ζ

B(ζ)
φ(t) +

ζ

B(ζ)
(0 Iζφ)(t).

The Mittag–Leffler function of one and two parameters Eα(z), Eα,β(z) is defined as [9]

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
z, α ∈ C, Re(α) > 0.

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
z, α, β ∈ C, Re(α) > 0, Re(β) > 0.

The generalized Mittag–Leffler function is defined as [9]

Eγ
α,β(z) =

∞

∑
k=0

(γ)n

Γ(αk + β)

zk

k!
z, α, β, γ ∈ C, Re(α) > 0, Re(β) > 0, Re(γ) > 0,

where Γ(·) denotes the Gamma function, and note that

E1
1,1(z) = ez, E1

α,1(z) = Eα(z), E1
α,β(z) = Eα,β(z).

3. Modeling Framework of Gemini Virus

The fractional model based on the cure of yellow virus in C. annuum by V. lecanii
with modified variables and parameters is presented. Here, the parameters depend on the
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fractional model, which is an extension of the integer model given in [29]. The mathematical
model of C. annuum with AB fractional derivative is represented as follows:

(ABC
0 Dζ

t )(Sv(t)) = A− αSv − β1(1− δp)Sv IBT − µpSv

(ABC
0 Dζ

t )(Iv(t)) = β1(1− δp)Sv IBT − µp Iv

(ABC
0 Dζ

t )(Sg(t)) = αSv − β2(1− δp)Sg IBT − µpSg

(ABC
0 Dζ

t )(Ig(t)) = β2(1− δp)Sg IBT − µp Ig

(ABC
0 Dζ

t )(SBT(t)) = BNv − γ1(1− δp)IvSBT − γ2(1− δp)IgSBT

− θ1δpSBT Np − µ1SBT

(ABC
0 Dζ

t )(IBT(t)) = γ1(1− δp)IvSBT + γ2(1− δp)IgSBT

− θ1δp IBT Np − µ1 IBT

with Sv(0) = Sv0, Iv(0) = Iv0,

Sg(0) = Sg0, Ig(0) = Ig0,

SBT(0) = SBT0, IBT(0) = IBT0,



(1)

where 0 < ζ < 1.
The total population is denoted by Np of C. annuum Np = Sv + Iv + Sg + Ig is taken

to be constant. The total population of B. tabaci is denoted by Nv = SBT + IBT . Here, the
total population can be divided into 6 subgroups.

• Sv denotes a set of noninfected C. annuum in vegetative phase liable to possible infection.
• Iv denotes a set of infected C. annuum in vegetative phase.
• Sg denotes a set of noninfected C. annuum in generative phase liable to possible infection.
• Ig denotes a set of infected C. annuum in generative phase.
• SBT denotes a set of noninfected B. tabaci (white bug) liable to possible infection.
• IBT denotes a set of infected B. tabaci.

The recruitment rate of C. annuum and B. tabaci is denoted by A and B respectively. The
growth rate of C. annuum from vegetative to generative phase is denoted by α. β1, and β2
denoted the infection rate of C. annuum in the vegetative and generative phase respectively.
γ1, and γ2 denoted the infection rate of B. tabaci in the vegetative and generative phase
respectively. δp stands for the rate of use of V. lecanii. The death rate of C. annuum is
denoted by µp. The natural death rate of B. tabaci is denoted by µ1, and the death rate of
B. tabaci due to curative intervention is denoted by θ1.

4. Basic Analysis of the Model
4.1. Invariant Region

The fractional order C. annuum model of yellow virus (1) can be analyzed in the
biological feasible region discussed as follows. The system (1) is split into two parts,
namely the C. annuum population (Np; with Np = Sv + Iv + Sg + Ig) and the B. tabaci
population (Nv; with Nv = SBT + IBT).

Let the feasible region F = Fp ∪ Fv ⊂ R4
+ × R2

+ with

Fp =

{
(Sv, Iv, Sg, Ig) ∈ R4

+ : Sv + Iv + Sg + Ig ≤
A
µp

}
,

Fv =

{
(SBT , IBT) ∈ R2

+ : SBT + IBT ≤
B

θ1δpNp + µ1

}
.
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To establish the positive invariance of F〈i.e., solutions in F remain in F for all t > 0〉.
Adding the first four equations and the last two equations of the model (1) gives

ABC
0 Dζ

t Np(t) = A− µp(Sv + Iv + Sg + Ig) = A− µpNp (2)
ABC
0 Dζ

t Nv(t) = BNv − (θ1δpNp + µ1)Nv = B− (θ1δpNp + µ1)Nv (3)

This can be used to show that the fractional order of the C. annuum and B. tabaci
population in the system (1) shows that

ABC
0 Dζ

t Np(t) ≤ A− µpNp,
ABC
0 Dζ

t Nv(t) ≤ B− (θ1δpNp + µ1)Nv.

}
(4)

which implies that

Np(t) ≤ Atζ Eζ,ζ+1(−µptζ)− Np(0)Eζ,1(−µptζ),

Nv(t) ≤ Btζ Eζ,ζ+1(−(θ1δpNp + µ1)tζ) + Nv(0)Eζ,1(−(θ1δpNp + µ1)tζ).

From above inequality, we observe that Np(t) ≤ A
µp

& Nv(t) ≤ B
(θ1δp Np+µ1)

. Thus, the
region F is positively-invariant.

Hence, it is sufficient to consider the dynamics model of system (1) in F. The mathe-
matical model is well-posed in the region F.

∴ Every solution of the basic model (1) with initial conditions in F remains in F for all
t > 0. The result is summarized below.

Lemma 1. The region F = Fp ∪ Fv ⊂ R4
+ × R2

+ is positively invariant for the basic model (1)
with non-negative initial conditions in R6

+.

4.2. Disease-Free Equilibrium Point

To evaluate the equilibrium points
Let

ABC
0 Dζ

t Sv(t) = 0, ABC
0 Dζ

t Sg(t) = 0, ABC
0 Dζ

t SBT(t) = 0,
ABC
0 Dζ

t Iv(t) = 0, ABC
0 Dζ

t Ig(t) = 0, ABC
0 Dζ

t IBT(t) = 0.

Then

E0(S0
v, I0

v , S0
g, I0

g , S0
BT , I0

BT) =

(
A
µp

, 0, 0, 0,
B

θ1δpNp + µ1
, 0
)

.

4.3. Reproduction Number

For the basic reproduction number for the C. annuum model (1), suppose that y =
(Sv, Sg, IBT) and using next generation matrix approach [34], we have

dy
dt

= F (y)− V(y),

where Jacobian of F and V at E0, we have

F =

α + µp 0 0
−α µp 0
0 0 µ1

 & V =


β1(1−δp)B
θ1δp Np+µ1

0 β1(1−δp)A
µp

0 β2(1−δp)B
θ1δp Np+µ1

β2(1−δp)A
µp

0 0 θ1δpNp

.
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The basic reproduction number ψ0 comes from the spectral radius ψ0 = ρ[FV−1],
given by

ψ0 =
(α + µp)(θ1δpNp + µ1)

β1(1− δp)B
,

where

FV−1 =


(α+µp)(θ1δp Np+µ1)

β1(1−δp)B 0 0

0 µp(θ1δp Np+µ1)

β2(1−δp)B 0

0 0 µ1
θ1δp Np

.

Theorem 1. There exists a unique positive endemic equilibrium point E∗ for system (1) if ψ0 > 1.

Proof. Endemic equilibrium point is obtained from system (1), and by putting right-hand
side of each equation equal to zero, we have

S∗v =
A
a

I∗v =
Aβ1(1− δp)IBT

µpa

S∗g =
Aα

ab

I∗g =
Aαβ2(1− δp)IBT

µpab

S∗BT =
BNvµpab

γ1(1− δ2
p Aβ1)IBTb + γ2β2αA(1− δp)2 IBT + (θ1δpNp − µ1)µpab

,

where a = α + β1(1− δp)IBT − µp and b = β2(1− δp)IBT + µp and I∗BT is the positive root
of K(IBT) = i5 I5

BT + i4 I4
BT + i3 I3

BT + i2 I2
BT + i1 IBT = 0,

where

i1 = (θ1δp Np + µ1)
2µ4

p(α− µp)[(α− µp) + 2β1(1− δp)]

− ABNv(γ1β1µ2
p + αγ2β2µp)(1− δp)

2[αµp − µ2
p],

i2 = (Aαγ1β1µ2
p(1− δp)

2 − Aγ1β1µ3
p(1− δp)

2 + Aα2γ2β2µ2
p(1− δp)

2 − Aαγ2β2µ3
p(1− δp)

2

+ 2β2(θ1δp Np + µ1)µ
3
p(α− µp)

2(1− δp))(θ1δp Np + µ1)− ABNvγ1β1β2µp(1− δp)
3[αµp − µ2

p]

− ABNv(γ1β1µ2
p + αγ2β2µp)(1− δp)

2[αβ2(1− δp) + µpβ1(1− δp)− µpβ2(1− δp)],

i3 = (Aαγ1β1β2µp(1− δp)
3 + Aγ1β2

1µp(1− δp)
3 − Aγ1β1β2µ2

p(1− δp)
3 + Aα2γ2β2

2µp(1− δp)
3

+ Aαγ2β1β2µ2
p(1− δp)

3 − Aαγ2β2
2µ2

p(1− δp)
3

+ (θ1δp Np + µ1)µ
2
p

[
β2

2(α− µp)
2(1− δp)

2 + 4β1β2µp(1− δp)
2(α− µp) + β2

1µ2
p(1− δp)

2
]
)

× (θ1δp Np + µ1)− ABNvγ1β1β2µp(1− δp)
3[αβ2(1− δp) + µpβ1(1− δp)− µpβ2(1− δp)]

− ABNvγ1β2
1β2µ2

p(1− δp)
4 − ABNvαγ2β1β2

2µp(1− δp)
4,

i4 = (Aγ1β2
1β2µp(1− δp)

4 + Aαγ2β1β2
2µp(1− δp)

4

+ (θ1δp Np + µ1)µ
2
p[2β1(1− δp)

3β2
2(α− µp) + 2µpβ2

1β2(1− δp)
3])(θ1δp Np + µ1)

− ABNvγ1β2
1β2µp(1− δp)

5,

i5 = β2
1β2

2(1− δp)
4(θ1δp Np + µ1)

2µ2
p.

It is obvious from the values of S∗v , I∗v , S∗g, I∗g , S∗BT & I∗BT that there exists a unique
positive endemic equilibrium point E∗, if ψ(0) > 1.
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Theorem 2. The system (1) is locally stable at E0 for ψ0 < 1 and unstable for ψ0 > 1.

Proof. The Jacobian of system (1) is

J =



Q1 0 0 0 0 −β1(1−δp)A
µp

β1(1−δp)B
θ1δp Np+µ1

−µp 0 0 0 β1(1−δp)A
µp

α 0 Q2 0 0 −β2(1−δp)A
µp

0 0 β2(1−δp)B
θ1δp Np+µ1

−µp 0 β2(1−δp)A
µp

0 −γ1(1−δp)B
θ1δp Np+µ1

0 −γ2(1−δp)B
θ1δp Np+µ1

Q3 0

0 γ1(1−δp)B
θ1δp Np+µ1

0 γ2(1−δp)B
θ1δp Np+µ1

Q4 Q5


where

Q1 = −[α + µp + β1(1− δp)IBT ],

Q2 = −[µp + β2(1− δp)IBT ],

Q3 = −[γ1(1− δp)Iv + γ2(1− δp)Ig + θ1δpNp + µ1],

Q4 = γ1(1− δp)Iv + γ2(1− δp)Ig,

Q5 = −[θ1δpNp + µ1].

Along E0, it implies that

J(E0) =



−(α + µp) 0 0 0 0 0
0 −µp 0 0 0 0
α 0 −µp 0 0 0
0 0 0 −µp 0 0
0 0 0 0 −(θ1δpNp + µ1) 0
0 0 0 0 0 −(θ1δpNp + µ1)


which follows that all the eigenvalues are negative if ψ0 < 1 and eigenvalues are positive
for ψ0 > 1. Hence, we conclude that the system (1) is locally stable under the condition
ψ0 < 1 and unstable for ψ0 > 1.

Theorem 3. The system (1) is globally stable, if ψ0 > 1 at E0.

Proof. First, we construct the Lyapunov function L(t), for the system as:

L(t) = 1 + IBT(t)−
lnIBT(t)
IBT(0)

. (5)

Then, differentiating the Equation (5) with respect to time, we have

d
dt
(L(t)) = dIBT(t)

dt
− 1

IBT(t)
dIBT(t)

dt

=

(
1− 1

IBT

)
dIBT

dt

=
dIBT

dt
− θ1δpNp − µ1.
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By manipulating along the point E0, we get

d
dt
(L(t)) = −(θ1δpNp + µ1)

≤ 0 for ψ0 > 1.

Again differentiating the above equation, we have

d2

dt
(L(t)) = d2 IBT(t)

dt
−

dNp

dt

=
d2 IBT(t)

dt
− 4µp.

By manipulating along the point E0, we get

d2

dt
(L(t)) = −4µp

≤ 0 for ψ0 > 1.

Therefore, if ψ0 > 1, then d
dt (L(t)) < 0, which implies that the system (1) is globally

stable for ψ0 > 1 at E0.

Remark 1. In the case of ψ0 < 1 at E∗, it is an interesting problem to find an effective strategy to
prevent the disease.

5. Optimal Control

The purpose of the dynamic red chili model is to minimize the population of plants
infected during vegetative or generative period and insects infected by optimizing V. lecanni
using AB-derivative [28–30].

The objective functions used are as follows:

J(u) =
∫ Tf

0
(A1 Iv(t) + A2 Ig(t) + A3 IBT + A4u1

2(t))dt, (6)

where u1 is the late of giving V. lecanni and Ai ≥ 0, for i = 1, 2, . . ., 4 is the cost coefficient
and t f is end time in [0, Tf ].

Therefore, by using u1 V. lecanni in the Equation (1), it becomes

(ABC
0 Dζ

t )(Sv(t)) = A− αSv − β1(1− u1)Sv IBT − µpSv

(ABC
0 Dζ

t )(Iv(t)) = β1(1− u1)Sv IBT − µp Iv

(ABC
0 Dζ

t )(Sg(t)) = αSv − β2(1− u1)Sg IBT − µpSg

(ABC
0 Dζ

t )(Ig(t)) = β2(1− u1)Sg IBT − µp Ig

(ABC
0 Dζ

t )(SBT(t)) = BNv − γ1(1− u1)IvSBT − γ2(1− u1)IgSBT

− θ1u1SBT Np − µ1SBT

(ABC
0 Dζ

t )(IBT(t)) = γ1(1− u1)IvSBT + γ2(1− u1)IgSBT

− θ1u1 IBT Np − µ1 IBT

with Sv(0) = Sv0, Iv(0) = Iv0,

Sg(0) = Sg0, Ig(0) = Ig0,

SBT(0) = SBT0, IBT(0) = IBT0.



(7)
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Now, to minimize the objective functional:

J(u) =
∫ Tf

0
η(Sv, Iv, Sg, Ig, SBT , IBT , u1, t)dt, (8)

subject to the constraints

ABC
0 Dζ

t Sv(t) = ξ1,
ABC
0 Dζ

t Iv(t) = ξ2,
ABC
0 Dζ

t Sg(t) = ξ3,
ABC
0 Dζ

t Ig(t) = ξ4,
ABC
0 Dζ

t SBT(t) = ξ5,
ABC
0 Dζ

t IBT(t) = ξ6,

where, ξi = ξ(Sv, Iv, Sg, Ig, SBT , IBT , u1, t), i = 1, 2, . . ., 6, with initial conditions:

Sv(0) = Sv(0), Sg(0) = Sg(0), SBT(0) = SBT(0),

Iv(0) = Iv(0), Ig(0) = Ig(0), IBT(0) = IBT(0).

The modified equation of (8) is [30]

J̃ =
∫ Tf

0
[Ha(Sv, Iv, Sg, Ig, SBT , IBT , u1, t)

−
6

∑
i=1

λiξi(Sv, Iv, Sg, Ig, SBT , IBT , u1, t)]dt, (9)

where the Hamiltonian is:

Ha(Sv, Iv, Sg, Ig, SBT , IBT , u1, λi, t) = η(Sv, Iv, Sg, Ig, SBT , IBT , u1, t)

+
6

∑
i=1

λiξi(Sv, Iv, Sg, Ig, SBT , IBT , u1, t). (10)

from (9) and (10) the necessary conditions for FOCPs [35–38] are,

ABC
0 Dζ

t f
λ1 =

∂Ha

∂Sv
,

ABC
0 Dζ

t f
λ2 =

∂Ha

∂Iv
,

ABC
0 Dζ

t f
λ3 =

∂Ha

∂Sg
,

ABC
0 Dζ

t f
λ4 =

∂Ha

∂Ig
,

ABC
0 Dζ

t f
λ5 =

∂Ha

∂SBT
,

ABC
0 Dζ

t f
λ6 =

∂Ha

∂IBT
,



(11)

0 =
∂H
∂u

, (12)
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ABC
0 Dζ

t Sv =
∂Ha

∂λ1
,

ABC
0 Dζ

t Iv =
∂Ha

∂λ2
,

ABC
0 Dζ

t Sg =
∂Ha

∂λ3
,

ABC
0 Dζ

t Ig =
∂Ha

∂λ4
,

ABC
0 Dζ

t SBT =
∂Ha

∂λ5
,

ABC
0 Dζ

t IBT =
∂Ha

∂λ6
,



(13)

λj(Tf ) = 0, (14)

where λj = 1, 2, 3, . . ., 6 are the Lagrange Multiplies.

Theorem 4. If u1 be the optimal controls with corresponding stats S∗v , I∗v , S∗g, I∗g , S∗BT , and I∗BT ,
then ∃ λ∗j , j = 1, 2, . . ., 6, satisfies the following.

(i) Adjoint equations:

ABC
0 Dζ

t f
λ1 =

∂Ha

∂Sv

= λ1(−α− β1(1− u1)IBT − µp) + λ2β1(1− u1)IBT

+ λ3α− λ5θ1u1SBT − λ6θ1u1 IBT ,

ABC
0 Dζ

t f
λ2 =

∂Ha

∂Iv

= A1 − λ2µp − λ5(γ1(1− u1)SBT + θ1u1SBT),

ABC
0 Dζ

t f
λ3 =

∂Ha

∂Sg

= −λ3β2(1− u1)IBT − λ3µp + λ4β2(1− u1)IBT

− λ5θ1u1SBT − λ6θ1u1 IBT ,

ABC
0 Dζ

t f
λ4 =

∂Ha

∂Ig

= A2 − λ4µp + λ5[BNv − γ2(1− u1)SBT − θ1u1SBT ]

+ λ6[γ2(1− u1)SBT − θ1u1 IBT ],

ABC
0 Dζ

t f
λ5 =

∂Ha

∂SBT

= λ5[B− γ1(1− u1)Iv − γ2(1− u1)Ig − θ1u1Np − µ1

+ λ6[γ1(1− u1)Iv + γ2(1− u1)Ig],

ABC
0 Dζ

t f
λ6 =

∂Ha

∂IBT

= A3 − λ1β1(1− u1)Sv − λ2β1(1− u1)Sv

− λ3β2(1− u1)Sg + λ4β2(1− u1)Sg − λ6(θ1u1Np − µ1).



(15)
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(ii) Transversality conditions:

λ∗j (Tf ) = 0, j = 1, 2, . . ., 6. (16)

(iii) Optimality conditions:

Ha(S∗v , I∗v , S∗g, I∗g , S∗BT , I∗BT , u, λ∗) = min
0≤u≤1

H(S∗v , I∗v , S∗g, I∗g , S∗BT , I∗BT , u, λ∗). (17)

Furthermore, the control functions u1 are given by,

u∗1 = max{min[
1

2A4
(λ∗1 β1Sv IBT − λ∗2 β1Sv IBT + λ∗3 β2Sg IBT

− λ∗4 β2Sg IBT + λ∗5γ1 IvSBT + λ∗5γ2 IgSBT − λ∗5θ1SBT Np

− λ∗6γ1 IvSBT − λ∗6γ2 IgSBT − λ∗6θ1 IBT Np), 1], 0} (18)

Proof. We can state that (7) using the conditions (11), where H∗a is,

H∗a = A1 + A2 + A3 + A4u2
1 + λ∗1

ABC
0 Dζ

t S∗v + λ∗2
ABC
0 Dζ

t I∗v

+ λ∗3
ABC
0 Dζ

t S∗g + λ∗4
ABC
0 Dζ

t I∗g

+ λ∗5
ABC
0 Dζ

t S∗BT + λ∗6
ABC
0 Dζ

t I∗BT .

Moreover, λ∗j (Tf ) = 0, j = 1, . . ., 6 holds.
The optimal control Equation (18) are proved by minimizing the condition (17). Sub-

stitute u∗1 in (7) we get,

ABC
0 Dζ S∗v = A− αS∗v − β1(1− u∗1)S

∗
v I∗BT − µpS∗v

ABC
0 Dζ I∗v = β1(1− u∗1)S

∗
v I∗BT − µp I∗v

ABC
0 Dζ S∗g = αS∗v − β2(1− u∗1)S

∗
g I∗BT − µpS∗g

ABC
0 Dζ I∗g = β2(1− u∗1)S

∗
g I∗BT − µp I∗g

ABC
0 Dζ S∗BT = B∗N∗v − γ1(1− u∗1)I∗v S∗BT − γ2(1− u∗1)I∗g S∗BT − θ1u∗1S∗BT N∗p − µ1S∗BT
ABC
0 Dζ I∗BT = γ1(1− u∗1)I∗v S∗BT − γ2(1− u∗1)I∗g S∗BT − θ1u∗1 I∗BT N∗p − µ1 I∗BT .

6. Numerical Results

Here, we examine the mathematical model of C. annuum with AB fractional derivative
and optimal control numerically. We assume initial conditions and parameter values in
Table 1 with ζ = 0.9 and N(ζ) = 1.

The optimal control is

u∗1 = max{min[
1

2A
(λ∗1 β1Sv IBT − λ∗2 β1Sv IBT + λ∗3 β2Sg IBT − λ∗4 β2Sg IBT

+ λ∗5γ1 IvSBT + λ∗5γ2 IgSBT − λ∗5θ1SBT Np − λ∗6γ1 IvSBT − λ∗6γ2 IgSBT − λ∗6θ1 IBT Np), 1], 0}

since 0 ≤ u1 ≤ 1. Consider u1 = 0.6 and using the parametric values in (7) then,
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Snv(t) = 50 +
(

0.1 +
(t)0.9

Γ(0.9)

)
[10− 0.07S(n−1)v(t)− 0.001× 0.4× S(n−1)v(t)I(n−1)BT(t)

− 0.03S(n−1)v(t)]

Iv(t) = 10 +
(

0.1 +
(t)0.9

Γ(0.9)

)
[0.001× 0.4× S(n−1)v(t)I(n−1)BT(t)− 0.03I(n−1)v(t)]

Sg(t) = 30 +
(

0.1 +
(t)0.9

Γ(0.9)

)
[0.07S(n−1)v(t)− 0.001× 0.4× S(n−1)g(t)I(n−1)BT(t)

− 0.03S(n−1)g(t)]

Ig(t) = 10 +
(

0.1 +
(t)0.9

Γ(0.9)

)
[0.001× 0.4× S(n−1)g(t)I(n−1)BT(t)− 0.03I(n−1)g(t)]

SBT(t) = 30 +
(

0.1 +
(t)0.9

Γ(0.9)

)
[10× 40− 0.025× 0.4× I(n−1)v(t)S(n−1)BT(t)− 0.02

× 0.4× I(n−1)g(t)S(n−1)BT(t)− 0.05× 0.6× S(n−1)BT(t)× 80− 0.07S(n−1)BT(t)]

IBT(t) = 10 +
(

0.1 +
(t)0.9

Γ(0.9)

)
[0.025× 0.4× I(n−1)v(t)S(n−1)BT(t) + 0.02× 0.4

× I(n−1)g(t)S(n−1)BT(t)− 0.05× 0.6× I(n−1)BT(t)× 80− 0.07I(n−1)BT(t)]

which gives the numerical values plotted in Figures 1–6.
In Figures 1–6, we show that the use of 60% V. lecanni for 5 days changed the population

of susceptible and infected plants in vegetative and generative phases, as well as the
variation of population of susceptible and infected white bugs.

Figure 1. Optimal control of susceptible vegetative phase Sv(t) of C. annuum.

Figure 2. Optimal control of infected vegetative phase Iv(t) of C. annuum.
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Figure 3. Optimal control of susceptible generative phase Sg(t) of C. annuum.

Figure 4. Optimal control of infected generative phase Iv(g) of C. annuum.

Figure 5. Optimal control of susceptible B. tabaci SBT(t) in C. annuum.
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Figure 6. Optimal control of infected B. tabaci IBT(t) in C. annuum.

Table 1. Parametric representation with approximation values of (1) in [29].

Variable with Values Definition

Np = 80 C. annuum population

Nv = 40 B. tabaci population

Sv = 50 Vegetative phase of Susceptible C. annuum

Iv = 10 Vegetative phase of Infected C. annuum

Sg = 30 Generative phase of Susceptible C. annuum

Ig = 10 Generative phase of Infected C. annuum

SBT = 30 B. tabaci Susceptible insect

IBT = 10 B. tabaci Infected insect

A = 10 Recruitment of C. annuum

B = 10 Recruitment of B. tabaci

α = 0.07 Rate of growth from vegetative to generative phase

β1 = 0.001 Rate of infected C. annuum in the vegetaive phase

β2 = 0.001 Rate of infected C. annuum in the generative phase

γ1 = 0.025 Rate of B. tabaci infection in the vegetaive phase

γ2 = 0.02 Rate of B. tabaci infection in the generative phase

δp = 0.2 V. lecanii

µp = 0.03 The death rate of C. annuum

µ1 = 0.07 Rate of natural death in B. tabaci

θ1 = 0.05 The death rate of B. tabaci due to curative intervention

When u1 = 0, i.e., without V. lecanni, the control system reduce to the model
given below:

ABC
0 Dζ

t Sv(t) = A− αSv − β1Sv IBT − µpSv

ABC
0 Dζ

t Iv(t) = β1Sv IBT − µp Iv

ABC
0 Dζ

t Sg(t) = αSv − β2Sg IBT − µpSg

ABC
0 Dζ

t Ig(t) = β2Sg IBT − µp Ig

ABC
0 Dζ

t SBT(t) = BNv − γ1 IvSBT − γ2 IgSBT − µ1SBT

ABC
0 Dζ

t IBT(t) = γ1 IvSBT + γ2 IgSBT − µ1 IBT .
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In Figures 7–12, we compare the numerical values of the variables Sv(t), Iv(t), Sg(t),
Ig(t), SBT(t) and IBT(t) with and without V. lecanii u1. The comparison of these variables
of ordinary differential equations is shown in [29] of the figures are Figures 2–7. The
results with V. lecanni in each stage of plants and insects are more effective and accurate in
Atangana–Baleanu fractional derivative than ordinary differential equations stated in [29].

Figure 7. Comparison of susceptible vegetative phase Sv(t) in C. annuum with and without V. lecanni.

Figure 8. Comparison of infected vegetative phase Iv(t) in C. annuum with and without V. lecanni.
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Figure 9. Comparison of susceptible generative phase Sg(t) in C. annuum with and without V. lecanni.

Figure 10. Comparison of infected generative phase Iv(g) in C. annuum with and without V. lecanni.

Figure 11. Comparison of susceptible B. tabaci SBT(t) in C. annuum with and without V. lecanni.
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Figure 12. Comparison of infected B. tabaci IBT(t) in C. annuum with and without V. lecanni.

Figures 7 and 9 show that the susceptible C. annuum in vegetative and generative
phases, which increased the population by 1% with V. lecanni compared to that of without
V. lecanni because the infected B. tabaci cannot transmit the virus through chili plants.
Figures 8 and 10 show the comparison of infected C. annuum in vegetative and generative
phases, which decrease the population by 1% with V. lecanni compared to that of without
V. lecanni.

In Figure 11, the comparison of susceptible B. tabaci population decreases with
V. lecanni by 50% compared to that of without V. lecanni because the infected B. tabaci
cannot infect the healthy one with an antidote. In Figure 11, the comparison of infected
B. tabaci population decreases with V. lecanni by 4% compared to that of without V. lecanni
because the infected ones were either cured or dead due to curative intervention.

In Figure 13, the measure of implementing 60% of V. lecanni per day will reduce 1%
of infected C. annuum and 1% of infected B. tabaci. By continuing this process, the 60% of
V. lecanni control the spread of the yellow virus within 10 days, which helps the farmers to
afford the costs of cultivating the C. annuum.

Figure 13. Control of V. lecanni.
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7. Conclusions

In this study, we described the C. annuum model of the yellow virus in two discrete
aspects. First, we examined the C. annuum model and applied the optimal control. Second,
we analyzed the C. annuum model using the Atangana–Baleanu derivative. The threshold
quantity is less than one when the presented model is locally stable. Furthermore, the
model is globally stable when ψ0 > 1. With the help of V. lecanii (an entomopathogenic
fungus), u1(t) optimal control reduced the population of infected B. tabaci and C. annuum.
The numerical results of optimal conditions of the C. annuum model with AB-derivative
are described detailly by successive approximation method. The infected population of
C. annuum increases and decreases according to V. lecanii use and vice-versa for susceptible.
The results show that using 60% of V. lecanni controls the spread of the yellow virus in
infected B. tabaci and C. annuum over 10 days, which helps farmers to afford the costs
of cultivation.
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