Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (33,401)

Search Parameters:
Keywords = Artificial intelligence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 590 KiB  
Review
Comprehensive Review of Dielectric, Impedance, and Soft Computing Techniques for Lubricant Condition Monitoring and Predictive Maintenance in Diesel Engines
by Mohammad-Reza Pourramezan, Abbas Rohani and Mohammad Hossein Abbaspour-Fard
Lubricants 2025, 13(8), 328; https://doi.org/10.3390/lubricants13080328 (registering DOI) - 29 Jul 2025
Abstract
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. [...] Read more.
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. In contrast, dielectric spectroscopy, impedance analysis, and soft computing offer real-time, non-destructive, and cost-effective alternatives. This review examines recent advances in integrating these techniques to predict lubricant properties, evaluate wear conditions, and optimize maintenance scheduling. In particular, dielectric and impedance spectroscopies offer insights into electrical properties linked to oil degradation, such as changes in viscosity and the presence of wear particles. When combined with soft computing algorithms, these methods enhance data analysis, reduce reliance on expert interpretation, and improve predictive accuracy. The review also addresses challenges—including complex data interpretation, limited sample sizes, and the necessity for robust models to manage variability in real-world operations. Future research directions emphasize miniaturization, expanding the range of detectable contaminants, and incorporating multi-modal artificial intelligence to further bolster system robustness. Collectively, these innovations signal a shift from reactive to predictive maintenance strategies, with the potential to reduce costs, minimize downtime, and enhance overall engine reliability. This comprehensive review provides valuable insights for researchers, engineers, and maintenance professionals dedicated to advancing diesel engine lubricant monitoring. Full article
Show Figures

Graphical abstract

17 pages, 1102 KiB  
Article
Topic Modeling Analysis of Children’s Food Safety Management Using BigKinds News Big Data: Comparing the Implementation Times of the Comprehensive Plan for Children’s Dietary Safety Management
by Hae Jin Park, Sang Goo Cho, Kyung Won Lee, Seung Jae Lee and Jieun Oh
Foods 2025, 14(15), 2650; https://doi.org/10.3390/foods14152650 - 28 Jul 2025
Abstract
As digital technologies and food environments evolve, ensuring children’s food safety has become a pressing public health priority. This study examines how the policy discourse on children’s dietary safety in Korea has shifted over time by applying Latent Dirichlet Allocation (LDA) topic modeling [...] Read more.
As digital technologies and food environments evolve, ensuring children’s food safety has become a pressing public health priority. This study examines how the policy discourse on children’s dietary safety in Korea has shifted over time by applying Latent Dirichlet Allocation (LDA) topic modeling to news articles from 2010 to 2024. Using a large-scale news database (BigKinds), the analysis identifies seven key themes that have emerged across five phases of the national Comprehensive Plans for Safety Management of Children’s Dietary Life. These include experiential education, data-driven policy approaches, safety-focused meal management, healthy dietary environments, nutritional support for children’s growth, customized safety education, and private-sector initiatives. A significant increase in digital keywords—such as “big data” and “artificial intelligence”—highlights a growing emphasis on data-oriented policy tools. By capturing the evolving language and priorities in food safety policy, this study provides new insights into the digital transformation of public health governance and offers practical implications for adaptive and technology-informed policy design. Full article
(This article belongs to the Section Food Quality and Safety)
22 pages, 3772 KiB  
Article
Three-Dimensional Extended Target Tracking and Shape Learning Based on Double Fourier Series and Expectation Maximization
by Hongge Mao and Xiaojun Yang
Sensors 2025, 25(15), 4671; https://doi.org/10.3390/s25154671 - 28 Jul 2025
Abstract
This paper investigates the problem of tracking targets with unknown but fixed 3D star-convex shapes using point cloud measurements. While existing methods typically model shape parameters as random variables evolving according to predefined prior models, this evolution process is often unknown in practice. [...] Read more.
This paper investigates the problem of tracking targets with unknown but fixed 3D star-convex shapes using point cloud measurements. While existing methods typically model shape parameters as random variables evolving according to predefined prior models, this evolution process is often unknown in practice. We propose a particular approach within the Expectation Conditional Maximization (ECM) framework that circumvents this limitation by treating shape-defining quantities as parameters estimated directly via optimization. The objective is the joint estimation of target kinematics, extent, and orientation in 3D space. Specifically, the 3D shape is modeled using a radial function estimated via double Fourier series (DFS) expansion, and orientation is represented using the compact, singularity-free axis-angle method. The ECM algorithm facilitates this joint estimation: an Unscented Kalman Smoother infers kinematics in the E-step, while the M-step estimates DFS shape parameters and rotation angles by minimizing regularized cost functions, promoting robustness and smoothness. The effectiveness of the proposed algorithm is substantiated through two experimental evaluations. Full article
20 pages, 1414 KiB  
Systematic Review
Comparison of the Effects of Cold-Water Immersion Applied Alone and Combined Therapy on the Recovery of Muscle Fatigue After Exercise: A Systematic Review and Meta-Analysis
by Junjie Ma, Changfei Guo, Long Luo, Xiaoke Chen, Keying Zhang, Dongxue Liang and Dong Zhang
Life 2025, 15(8), 1205; https://doi.org/10.3390/life15081205 - 28 Jul 2025
Abstract
Cold-water immersion (CWI), as a common recovery method, has been widely used in the field of post-exercise fatigue recovery. However, there is still a lack of comprehensive and systematic scientific evaluation of the combined effects of cold-water immersion combined with other therapies (CWI [...] Read more.
Cold-water immersion (CWI), as a common recovery method, has been widely used in the field of post-exercise fatigue recovery. However, there is still a lack of comprehensive and systematic scientific evaluation of the combined effects of cold-water immersion combined with other therapies (CWI + Other). The aim of this study was to compare the effects of CWI and CWI + Other in post-exercise fatigue recovery and to explore the potential benefits of CWI + Other. We systematically searched PubMed, Embase, Web of Science, Cochrane Library and EBSCO databases to include 24 studies (475 subjects in total) and performed a meta-analysis using standardized mean difference (SMD) and 95% confidence intervals (CIs). The results showed that both CWI + Other (SMD = −0.68, 95% CI: −1.03 to −0.33) and CWI (SMD = −0.37, 95% CI: −0.65 to −0.10) were effective in reducing delayed-onset muscle soreness (DOMS). In subgroup analyses of athletes, both CWI + Other (SMD = −1.13, 95% CI: −1.76 to −0.49) and CWI (SMD = −0.47, 95% CI: −0.87 to −0.08) also demonstrated significant effects. In addition, CWI + Other significantly reduced post-exercise C-reactive protein (CRP) levels (SMD = −0.62, 95% CI: −1.12 to −0.13), and CWI with water temperatures higher than 10 °C also showed a CRP-lowering effect (MD = −0.18, 95% CI: −0.30 to −0.07), suggesting a potential benefit in anti-inflammation. There were no significant differences between the two interventions in the metrics of creatine kinase (CK; CWI: SMD = −0.01, 95% CI: −0.27 to 0.24; CWI + Other: SMD = 0.26, 95% CI: −0.51 to 1.03) or countermovement jump (CMJ; CWI: SMD = 0.22, 95% CI: −0.13 to 0.57; CWI + Other: SMD = 0.07, 95% CI: −0.70 to 0.85). Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

51 pages, 3418 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
22 pages, 684 KiB  
Review
Radiomics Beyond Radiology: Literature Review on Prediction of Future Liver Remnant Volume and Function Before Hepatic Surgery
by Fabrizio Urraro, Giulia Pacella, Nicoletta Giordano, Salvatore Spiezia, Giovanni Balestrucci, Corrado Caiazzo, Claudio Russo, Salvatore Cappabianca and Gianluca Costa
J. Clin. Med. 2025, 14(15), 5326; https://doi.org/10.3390/jcm14155326 - 28 Jul 2025
Abstract
Background: Post-hepatectomy liver failure (PHLF) is the most worrisome complication after a major hepatectomy and is the leading cause of postoperative mortality. The most important predictor of PHLF is the future liver remnant (FLR), the volume of the liver that will remain after [...] Read more.
Background: Post-hepatectomy liver failure (PHLF) is the most worrisome complication after a major hepatectomy and is the leading cause of postoperative mortality. The most important predictor of PHLF is the future liver remnant (FLR), the volume of the liver that will remain after the hepatectomy, representing a major concern for hepatobiliary surgeons, radiologists, and patients. Therefore, an accurate preoperative assessment of the FLR and the prediction of PHLF are crucial to minimize risks and enhance patient outcomes. Recent radiomics and deep learning models show potential in predicting PHLF and the FLR by integrating imaging and clinical data. However, most studies lack external validation and methodological homogeneity and rely on small, single-center cohorts. This review outlines current CT-based approaches for surgical risk stratification and key limitations hindering clinical translation. Methods: A literature analysis was performed on the PubMed Dataset. We reviewed original articles using the subsequent keywords: [(Artificial intelligence OR radiomics OR machine learning OR deep learning OR neural network OR texture analysis) AND liver resection AND CT]. Results: Of 153 pertinent papers found, we underlined papers about the prediction of PHLF and about the FLR. Models were built according to machine learning (ML) and deep learning (DL) automatic algorithms. Conclusions: Radiomics models seem reliable and applicable to clinical practice in the preoperative prediction of PHLF and the FLR in patients undergoing major liver surgery. Further studies are required to achieve larger validation cohorts. Full article
(This article belongs to the Special Issue Advances in Gastroenterological Surgery)
17 pages, 1009 KiB  
Article
Binary-Weighted Neural Networks Using FeRAM Array for Low-Power AI Computing
by Seung-Myeong Cho, Jaesung Lee, Hyejin Jo, Dai Yun, Jihwan Moon and Kyeong-Sik Min
Nanomaterials 2025, 15(15), 1166; https://doi.org/10.3390/nano15151166 - 28 Jul 2025
Abstract
Artificial intelligence (AI) has become ubiquitous in modern computing systems, from high-performance data centers to resource-constrained edge devices. As AI applications continue to expand into mobile and IoT domains, the need for energy-efficient neural network implementations has become increasingly critical. To meet this [...] Read more.
Artificial intelligence (AI) has become ubiquitous in modern computing systems, from high-performance data centers to resource-constrained edge devices. As AI applications continue to expand into mobile and IoT domains, the need for energy-efficient neural network implementations has become increasingly critical. To meet this requirement of energy-efficient computing, this work presents a BWNN (binary-weighted neural network) architecture implemented using FeRAM (Ferroelectric RAM)-based synaptic arrays. By leveraging the non-volatile nature and low-power computing of FeRAM-based CIM (computing in memory), the proposed CIM architecture indicates significant reductions in both dynamic and standby power consumption. Simulation results in this paper demonstrate that scaling the ferroelectric capacitor size can reduce dynamic power by up to 6.5%, while eliminating DRAM-like refresh cycles allows standby power to drop by over 258× under typical conditions. Furthermore, the combination of binary weight quantization and in-memory computing enables energy-efficient inference without significant loss in recognition accuracy, as validated using MNIST datasets. Compared to prior CIM architectures of SRAM-CIM, DRAM-CIM, and STT-MRAM-CIM, the proposed FeRAM-CIM exhibits superior energy efficiency, achieving 230–580 TOPS/W in a 45 nm process. These results highlight the potential of FeRAM-based BWNNs as a compelling solution for edge-AI and IoT applications where energy constraints are critical. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
24 pages, 1008 KiB  
Article
Artificial Intelligence and Immersive Technologies: Virtual Assistants in AR/VR for Special Needs Learners
by Azza Mohamed, Rouhi Faisal, Ahmed Al-Gindy and Khaled Shaalan
Computers 2025, 14(8), 306; https://doi.org/10.3390/computers14080306 - 28 Jul 2025
Abstract
This article investigates the revolutionary potential of AI-powered virtual assistants in augmented reality (AR) and virtual reality (VR) environments, concentrating primarily on their impact on special needs schooling. We investigate the complex characteristics of these virtual assistants, the influential elements affecting their development [...] Read more.
This article investigates the revolutionary potential of AI-powered virtual assistants in augmented reality (AR) and virtual reality (VR) environments, concentrating primarily on their impact on special needs schooling. We investigate the complex characteristics of these virtual assistants, the influential elements affecting their development and implementation, and the joint efforts of educational institutions and technology developers, using a rigorous quantitative approach. Our research also looks at strategic initiatives aimed at effectively integrating AI into educational practices, addressing critical issues including infrastructure, teacher preparedness, equitable access, and ethical considerations. Our findings highlight the promise of AI technology, emphasizing the ability of AI-powered virtual assistants to provide individualized, immersive learning experiences adapted to the different needs of students with special needs. Furthermore, we find strong relationships between these virtual assistants’ features and deployment tactics and their subsequent impact on educational achievements. This study contributes to the increasing conversation on harnessing cutting-edge technology to improve educational results for all learners by synthesizing current research and employing a strong methodological framework. Our analysis not only highlights the promise of AI in increasing student engagement and comprehension but also emphasizes the importance of tackling ethical and infrastructure concerns to enable responsible and fair adoption. Full article
Show Figures

Figure 1

37 pages, 1037 KiB  
Review
Machine Learning for Flood Resiliency—Current Status and Unexplored Directions
by Venkatesh Uddameri and E. Annette Hernandez
Environments 2025, 12(8), 259; https://doi.org/10.3390/environments12080259 - 28 Jul 2025
Abstract
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural [...] Read more.
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

19 pages, 338 KiB  
Article
Top Management Challenges in Using Artificial Intelligence for Sustainable Development Goals: An Exploratory Case Study of an Australian Agribusiness
by Amanda Balasooriya and Darshana Sedera
Sustainability 2025, 17(15), 6860; https://doi.org/10.3390/su17156860 - 28 Jul 2025
Abstract
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life [...] Read more.
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life on Land (SDG 15). However, such implementations are fraught with multifaceted challenges. This study explores the technological, organizational, and environmental challenges confronting top management in the agricultural sector utilizing the technological–organizational–environmental framework. As interest in AI-enabled sustainable initiatives continues to rise globally, this exploration is timely and relevant. The study employs an interpretive case study approach, drawing insights from a carbon sequestration project within the agricultural sector where AI technologies have been integrated to support sustainability goals. The findings reveal six key challenges: sustainable policy inconsistency, AI experts lacking farming knowledge, farmers’ resistance to change, limited knowledge and expertise to deploy AI, missing links in the existing system, and transition costs, which often hinder the achievement of long-term sustainability outcomes. This study emphasizes the importance of field realities and cross-disciplinary collaboration to optimize the role of AI in sustainability efforts. Full article
Show Figures

Figure 1

23 pages, 1047 KiB  
Review
The Effectiveness of Artificial Intelligence-Based Interventions for Students with Learning Disabilities: A Systematic Review
by Andrea Paglialunga and Sergio Melogno
Brain Sci. 2025, 15(8), 806; https://doi.org/10.3390/brainsci15080806 - 28 Jul 2025
Abstract
Background/Objectives: While artificial intelligence (AI) is rapidly transforming education, its specific effectiveness for students with learning disabilities (LD) requires rigorous evaluation. This systematic review aims to assess the efficacy of AI-based educational interventions for students with LD, with a specific focus on [...] Read more.
Background/Objectives: While artificial intelligence (AI) is rapidly transforming education, its specific effectiveness for students with learning disabilities (LD) requires rigorous evaluation. This systematic review aims to assess the efficacy of AI-based educational interventions for students with LD, with a specific focus on the methodological quality and risk of bias of the available evidence. Methods: A systematic search was conducted across seven major databases (Google Scholar, ScienceDirect, APA PsycInfo, ERIC, Scopus, PubMed) for experimental studies published between 2022 and 2025. This review followed PRISMA guidelines, using the PICOS framework for inclusion criteria. A formal risk of bias assessment was performed using the ROBINS-I and JBI critical appraisal tools. Results: Eleven studies (representing 10 independent experiments), encompassing 3033 participants, met the inclusion criteria. The most studied disabilities were dyslexia (six studies) and other specific learning disorders (three studies). Personalized/adaptive learning systems and game-based learning were the most common AI interventions. All 11 studies reported positive outcomes. However, the risk of bias assessment revealed significant methodological limitations: no studies were rated as having a low risk of bias, with most presenting a moderate (70%) to high/serious (30%) risk. Despite these limitations, quantitative results from the stronger studies showed large effect sizes, such as in arithmetic fluency (d = 1.63) and reading comprehension (d = −1.66). Conclusions: AI-based interventions demonstrate significant potential for supporting students with learning disabilities, with unanimously positive reported outcomes. However, this conclusion must be tempered by the considerable risk of bias and methodological weaknesses prevalent in the current literature. The limited and potentially biased evidence base warrants cautious interpretation. Future research must prioritize high-quality randomized controlled trials (RCTs) and longitudinal assessments to establish a definitive evidence base and investigate long-term effects, including the risk of cognitive offloading. Full article
26 pages, 1881 KiB  
Article
How Does the Construction of New Generation of National AI Innovative Development Pilot Zones Affect Carbon Emissions Intensity? Empirical Evidence from China
by Lu Wang, Ziying Zhao, Xiaojun Xu, Xiaoli Wang and Yuting Wang
Sustainability 2025, 17(15), 6858; https://doi.org/10.3390/su17156858 - 28 Jul 2025
Abstract
At a critical juncture in the global low-carbon transition, the role of artificial intelligence (AI) in facilitating low-carbon growth has become increasingly significant. To accelerate the integration of AI with socio-economic development, China has established National New Generation Artificial Intelligence Innovation and Development [...] Read more.
At a critical juncture in the global low-carbon transition, the role of artificial intelligence (AI) in facilitating low-carbon growth has become increasingly significant. To accelerate the integration of AI with socio-economic development, China has established National New Generation Artificial Intelligence Innovation and Development Pilot Zones (AIPZ). However, the specific impact of these zones on low-carbon development remains unclear. This study utilized panel data from 30 provinces in China from 2013 to 2022 and employed the multi-period difference-in-differences (DID) model and the spatial autoregressive difference-in-differences (SARDID) model to examine the carbon emissions reduction effects of the AIPZ policy and its spatial spillover effects. The findings revealed that the policy significantly reduced carbon emissions intensity (CEI) across provinces, with an average reduction effect of 6.9%. The analysis of the impact mechanism confirmed the key role of human, technological, and financial resources. Heterogeneity analysis indicated varying effects across regions, with more significant reductions in eastern and energy-rich areas. Further analysis using the SARDID model confirmed spatial spillover effects on CEI. This paper aims to enhance understanding of the relationship between AIPZ and CEI and provide empirical evidence for policymakers during the low-carbon transition. By exploring the potential of the AIPZ policy in emissions reduction, it proposes targeted strategies and implementation pathways for policymakers and industry participants to promote the sustainable development of China’s low-carbon economy. Full article
(This article belongs to the Special Issue Artificial Intelligence and Sustainable Development)
Show Figures

Figure 1

22 pages, 825 KiB  
Article
Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
by Cheng Shen and Yuewei Liu
Mathematics 2025, 13(15), 2430; https://doi.org/10.3390/math13152430 - 28 Jul 2025
Abstract
Detection of surface defects can significantly elongate mechanical service time and mitigate potential risks during safety management. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Some machine learning algorithms and artificial intelligence models for [...] Read more.
Detection of surface defects can significantly elongate mechanical service time and mitigate potential risks during safety management. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Some machine learning algorithms and artificial intelligence models for defect detection, such as Convolutional Neural Networks (CNNs), present outstanding performance, but they are often data-dependent and cannot provide guarantees for new test samples. To this end, we construct a detection model by combining Mask R-CNN, selected for its strong baseline performance in pixel-level segmentation, with Conformal Risk Control. The former evaluates the distribution that discriminates defects from all samples based on probability. The detection model is improved by retraining with calibration data that is assumed to be independent and identically distributed (i.i.d) with the test data. The latter constructs a prediction set on which a given guarantee for detection will be obtained. First, we define a loss function for each calibration sample to quantify detection error rates. Subsequently, we derive a statistically rigorous threshold by optimization of error rates and a given guarantee significance as the risk level. With the threshold, defective pixels with high probability in test images are extracted to construct prediction sets. This methodology ensures that the expected error rate on the test set remains strictly bounded by the predefined risk level. Furthermore, our model shows robust and efficient control over the expected test set error rate when calibration-to-test partitioning ratios vary. Full article
Show Figures

Figure 1

20 pages, 2631 KiB  
Article
Automatic 3D Reconstruction: Mesh Extraction Based on Gaussian Splatting from Romanesque–Mudéjar Churches
by Nelson Montas-Laracuente, Emilio Delgado Martos, Carlos Pesqueira-Calvo, Giovanni Intra Sidola, Ana Maitín, Alberto Nogales and Álvaro José García-Tejedor
Appl. Sci. 2025, 15(15), 8379; https://doi.org/10.3390/app15158379 - 28 Jul 2025
Abstract
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) [...] Read more.
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) and its successor, Gaussian splatting (GS)—as state-of-the-art techniques in the domain. The study advocates for replacing point cloud data in heritage building information modeling workflows with image-based inputs, proposing a novel “photo-to-BIM” pipeline. A proof-of-concept system is presented, capable of processing photographs or video footage of ancient ruins—specifically, Romanesque–Mudéjar churches—to automatically generate 3D mesh reconstructions. The system’s performance is assessed using both objective metrics and subjective evaluations of mesh quality. The results confirm the feasibility and promise of image-based reconstruction as a viable alternative to conventional methods. The study successfully developed a system for automated 3D mesh reconstruction of AH from images. It applied GS and Mip-splatting for NeRFs, proving superior in noise reduction for subsequent mesh extraction via surface-aligned Gaussian splatting for efficient 3D mesh reconstruction. This photo-to-mesh pipeline signifies a viable step towards HBIM. Full article
Back to TopTop