How Does the Construction of New Generation of National AI Innovative Development Pilot Zones Affect Carbon Emissions Intensity? Empirical Evidence from China
Abstract
1. Introduction
2. Literature Review and Research Hypotheses
2.1. Policy Background
2.2. Resource-Based View Theory
2.3. Research Hypotheses
2.3.1. The Impact of the AIPZ Policy on CEI
2.3.2. The Mechanism of the AIPZ Policy on CEI
2.3.3. Spatial Spillover Effects of the AIPZ Policy on CEI
3. Research Design
3.1. Baseline Model
3.2. Variable Selection and Interpretation
3.2.1. Dependent Variable
3.2.2. Explanatory Variable
3.2.3. Mechanism Variables
3.2.4. Control Variables
3.3. Data Sources
4. Empirical Results and Analysis
4.1. Benchmark Regression Analysis
4.2. Robustness Tests
4.2.1. Pre-Test Trend Analysis
4.2.2. Placebo Test
4.2.3. Heterogeneous Treatment Effect
4.2.4. Instrumental Variables Method
4.2.5. Other Robustness Tests
- (1)
- Replacing the explanatory variable
- (2)
- Lagging control variables by one period
- (3)
- Outlier removal
- (4)
- Excluding the influence of other policies
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Carbon | CEI | CEI | CEI | |
AIPZ | −0.050 ** (0.021) | −0.058 ** (0.023) | −0.068 ** (0.035) | −0.069 ** (0.031) |
Constant | 10.332 *** (0.289) | 10.276 *** (0.431) | 11.404 *** (0.497) | 10.813 *** (0.544) |
controls | Yes | Yes | Yes | Yes |
Individual Fixed | Yes | Yes | Yes | Yes |
Time Fixed | Yes | Yes | Yes | Yes |
R-squared | 0.436 | 0.374 | 0.983 | 0.714 |
N | 300 | 270 | 260 | 300 |
4.3. Mechanism Analysis
4.4. Heterogeneity Analysis
4.4.1. Geographical Differences Based on Location
4.4.2. Regional Differences Based on Energy Endowments
5. Further Discussion
5.1. Spatial Autocorrelation Test
5.2. Spatial Econometric Model Setting and Testing
5.3. Spatial Spillover Effect Analysis
6. Conclusions and Recommendations
- (1)
- The baseline regression analysis indicates that the AIPZ policy significantly reduces CEI, achieving an average emissions reduction of 6.9% per province. Robustness tests further support this conclusion;
- (2)
- The mechanism analysis indicates that human, technological, and financial resources are essential for achieving the emissions reduction goals of the AIPZ policy. A skilled workforce enhances AI research and development, advanced green technologies improve energy efficiency, and adequate financial support is critical for the successful implementation of projects;
- (3)
- The heterogeneity analysis indicates that the AIPZ policy affects CEI differently across various regions. Eastern regions, characterized by strong economies and high levels of innovation, achieve greater emissions reductions compared to central and western regions. Additionally, energy-rich areas demonstrate significant reductions, underscoring the necessity of integrating AI with traditional energy industries to reduce carbon emissions;
- (4)
- Spatial lag models indicate that the AIPZ policy not only exerts effects within its regions but also generates significant negative impacts on adjacent regions, demonstrating pronounced spatial spillover effects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Z.; Xiao, H.; Li, J.; Chen, H.; Chen, W. Study on how the digital economy affects urban carbon emissions. Renew. Sustain. Energy Rev. 2025, 207, 114910. [Google Scholar] [CrossRef]
- Ma, R.; Bu, S. Evaluation and mitigation of carbon emissions in energy industry. Renew. Sustain. Energy Rev. 2025, 212, 115329. [Google Scholar] [CrossRef]
- Feng, L.; Qi, J.; Zheng, Y. How can AI reduce carbon emissions? Insights from a quasi-natural experiment using generalized random forest. Energy Econ. 2025, 141, 108040. [Google Scholar] [CrossRef]
- The International Energy Agency. Global Energy Review 2025; IEA: Paris, France, 2025; Available online: https://www.iea.org/reports/global-energy-review-2025#overview (accessed on 17 July 2025).
- Zhou, W.; Zhuang, Y.; Chen, Y. How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology. Energy Econ. 2024, 131, 107355. [Google Scholar] [CrossRef]
- An, K.; Wang, C.; Cai, W. Low-carbon technology diffusion and economic growth of China: An evolutionary general equilibrium framework. Struct. Change Econ. Dyn. 2023, 65, 253–263. [Google Scholar] [CrossRef]
- He, G.; Wang, S.; Zhang, B. Watering down environmental regulation in China. Q. J. Econ. 2020, 135, 2135–2185. [Google Scholar] [CrossRef]
- Piccialli, F.; Di Cola, V.S.; Giampaolo, F.; Cuomo, S. The role of artificial intelligence in fighting the COVID-19 pandemic. Inf. Syst. Front. 2021, 23, 1467–1497. [Google Scholar] [CrossRef]
- International Data Corporation. Worldwide AI and Generative AI Spending Guide; IDC: Framingham, MA, USA, 2024; Available online: https://my.idc.com/getdoc.jsp?containerId=IDC_P33198 (accessed on 18 July 2025).
- Forward-Looking Industry Research Institute. Analysis of the Current Status and Development Prospects of the Machine Learning Market in China in 2021. Forward-Looking Economist. 2021. Available online: https://baijiahao.baidu.com/s?id=1712049652611421985&wfr=spider&for=pc (accessed on 20 July 2025).
- Jiang, W.; Hu, Y.; Zhao, X. The impact of artificial intelligence on carbon market in China: Evidence from quantile-on-quantile regression approach. Technol. Forecast. Soc. Change 2025, 212, 123973. [Google Scholar] [CrossRef]
- Du, Z.; Xu, J.; Lin, B. What does the digital economy bring to household carbon emissions?—From the perspective of energy intensity. Appl. Energy 2024, 370, 123613. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, S.; Zheng, M.; Li, C.; Chang, F.; Zhang, F. Impact of digitization and artificial intelligence on carbon emissions considering variable interaction and heterogeneity: An interpretable deep learning modeling framework. Sustain. Cities Soc. 2025, 125, 106333. [Google Scholar] [CrossRef]
- Cho, H.; Ackom, E. Artificial Intelligence (AI)-driven approach to climate action and sustainable development. Nat Commun 2025, 16, 1228. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Y.; Li, R. Ecological footprints, carbon emissions, and energy transitions: The impact of artificial intelligence (AI). Hum. Soc. Sci. Commun. 2024, 11, 1043. [Google Scholar] [CrossRef]
- Cong, R.; Han, T.; Wang, P.; Zhao, L.; Gu, X.; Li, Z.; Qu, S.; Wei, Y. Advances and Prospects in Artificial Intelligence for Climate Change Governance. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2025, 27, 37–47. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, S.; Gan, J.; Liu, B.; Wu, Y. How does the construction of new generation of national AI innovative development pilot zones drive enterprise ESG development? Empirical evidence from China. Energy Econ. 2024, 140, 108011. [Google Scholar] [CrossRef]
- Mijit, R.; Hu, Q.; Xu, J.; Ma, G. Greening through AI? The impact of Artificial Intelligence Innovation and Development Pilot Zones on green innovation in China. Energy Econ. 2025, 146, 108507. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Leading-edge Artificial Intelligence (AI), Machine Learning (ML), Blockchain, and Internet of Things (IoT) technologies for enhanced wastewater treatment systems. SSRN Electron. J. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4641557 (accessed on 24 July 2025).
- Wang, Z.; Zhang, T.; Ren, X.; Shi, Y. AI adoption rate and corporate green innovation efficiency: Evidence from Chinese energy companies. Energy Econ. 2024, 132, 107499. [Google Scholar] [CrossRef]
- Rasheed, M.Q.; Yuhuan, Z.; Ahmed, Z.; Haseeb, A.; Saud, S. Information communication technology, economic growth, natural resources, and renewable energy production: Evaluating the asymmetric and symmetric impacts of artificial intelligence in robotics and innovative economies. J. Clean Prod. 2024, 447, 141466. [Google Scholar] [CrossRef]
- Lin, B.; Yang, Y. Building efficiency: How the national AI innovation pilot zones enhance green energy utilization? Evidence from China. J. Environ. Manag. 2025, 387, 125945. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Wernerfelt, B. A resource-based view of the firm. Strateg. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Grant, R.M. The resource-based theory of competitive advantage: Implications for strategy formulation. Calif. Manag. Rev. 1991, 33, 114–135. [Google Scholar] [CrossRef]
- Das, T.K.; Teng, B.S. Resource and risk management in the strategic alliance making process. J. Manag. 1998, 24, 21–42. [Google Scholar] [CrossRef]
- Sha, W.; Li, Y. Reverse technology spillover effects of OFDI, knowledge management and regional innovation capabilities. World Econ. Stud. 2018. Available online: https://kns.cnki.net/kcms2/article/abstract?v=mdHrqfOh4rH0vr8w8D1jnABSYLbkiUcLJG4RthhSG2-CnKiXyqQ9-xDnREuiRI4sjjQO7O4LOjGvG052Ofnlz_IXcGRBHqfUAHHo2YK_KpBGwK9A58QKnpLyU6C2DNoY-fwftPxYfgjRYH1MF1Af4pi6nX6weN0Ag5iOYjIg679beoocd_a8TvQeGYZi_qc5&uniplatform=NZKPT (accessed on 24 July 2025).
- Taddeo, M.; Tsamados, A.; Cowls, J.; Floridi, L. Artificial intelligence and the climate emergency: Opportunities, challenges, and recommendations. One Earth 2021, 4, 776–779. [Google Scholar] [CrossRef]
- Ariyanti, S.; Suryanegara, M.; Arifin, A.S.; Nurwidya, A.I.; Hayati, N. Trade-off between energy consumption and three configuration parameters in artificial intelligence (AI) training: Lessons for environmental policy. Sustainability 2025, 17, 5359. [Google Scholar] [CrossRef]
- Capozzoli, A.; Primiceri, G. Cooling Systems in Data Centers: State of Art and Emerging Technologies. In Proceedings of the 7th International Conference on Sustainability in Energy and Buildings (SEB-15), Lisbon, Portugal, 1–3 July 2015; pp. 484–493. [Google Scholar] [CrossRef]
- Luan, F.; Yang, X.; Chen, Y.; Regis, P.J. Industrial robots and air environment: A moderated mediation model of population density and energy consumption. Sustain. Prod. Consum. 2022, 30, 870–888. [Google Scholar] [CrossRef]
- Zhang, K.; Kou, Z.; Zhu, P.; Qian, X.; Yang, Y. How does AI affect urban carbon emissions? Quasi-experimental evidence from China’s AI innovation and development pilot zones. Econ. Anal. Policy 2025, 85, 426–447. [Google Scholar] [CrossRef]
- Delanoë, P.; Tchuente, D.; Colin, G. Method and evaluations of the effective gain of artificial intelligence models for reducing CO2 emissions. J. Environ. Manag. 2023, 331, 117261. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, Y.; Dong, K.; Ni, G. Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China. Energy Econ. 2024, 138, 107829. [Google Scholar] [CrossRef]
- Liang, S.; Yang, J.; Ding, T. Performance evaluation of AI driven low carbon manufacturing industry in China: An interactive network DEA approach. Comput. Ind. Eng. 2022, 170, 108248. [Google Scholar] [CrossRef]
- Cavalcanti, J.H.; Kovacs, T.; Ko, A.; Pocsarovszky, K. Production system efficiency optimization through application of a hybrid artificial intelligence solution. Int. J. Comput. Integr. Manuf. 2024, 37, 790–807. [Google Scholar] [CrossRef]
- Fontoura, L.; Luiz de Mattos Nascimento, D.; Neto, J.V.; Gusmão Caiado, R.G. Energy Gen-AI technology framework: A perspective of energy efficiency and business ethics in operation management. Technol. Soc. 2025, 81, 102847. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Awaworyi Churchill, S.; Inekwe, J.; Smyth, R.; Zhang, X. R&D intensity and carbon emissions in the G7: 1870–2014. Energy Econ. 2019, 80, 30–37. [Google Scholar] [CrossRef]
- Allal-Chérif, O.; Yela Aránega, A.; Castaño Sánchez, R. Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence. Technol. Forecast. Soc. Change 2021, 169, 120822. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, L.; Yunfang, L.; Wang, W. Can enterprise green technology innovation performance achieve “corner overtaking” by using artificial intelligence?—Evidence from Chinese manufacturing enterprises. Technol. Forecast. Soc. Change 2023, 194, 122732. [Google Scholar] [CrossRef]
- Yin, K.; Cai, F.; Huang, C. How does artificial intelligence development affect green technology innovation in China? Evidence from dynamic panel data analysis. Env. Sci Pollut Res 2022, 30, 28066–28090. [Google Scholar] [CrossRef]
- Bahoo, S.; Cucculelli, M.; Goga, X.; Mondolo, J. Artificial intelligence in Finance: A comprehensive review through bibliometric and content analysis. SN Bus Econ 2024, 4, 23. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, W. Green finance: The catalyst for artificial intelligence and energy efficiency in Chinese urban sustainable development. Energy Econ. 2024, 139, 107883. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.L.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technol. Forecast. Soc. Change 2020, 158, 120142. [Google Scholar] [CrossRef]
- Ding, T.; Li, J.; Shi, X.; Li, X.; Chen, Y. Is artificial intelligence associated with carbon emissions reduction? Case of China. Resour. Policy 2023, 85, 103892. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Ma, S.; Zheng, Y.; Pan, C. Does the construction of innovative cities promote urban green innovation? J. Environ. Manag. 2022, 318, 115605. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, T.; Li, R. Does artificial intelligence promote green innovation? An assessment based on direct, indirect, spillover, and heterogeneity effects. Energy Environ. 2025, 36, 1005–1037. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, X.; Liu, Y.; He, C. Exploring the effect of emission trading system on marginal abatement cost-based on the frontier synthetic difference-in-differences model. J. Environ. Manag. 2023, 347, 119155. [Google Scholar] [CrossRef] [PubMed]
- Ball, L.; Sheridan, N. Does Inflation Targeting Matter? In The Inflation-Targeting Debate; Bernanke, B.S., Woodford, M., Eds.; University of Chicago Press: Chicago, IL, USA, 2004; pp. 249–276. [Google Scholar]
- Alesina, A.; Zhuravskaya, E. Segregation and the quality of government in a cross section of countries. Am. Econ. Rev. 2011, 101, 1872–1911. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, F. Hybrid input-output analysis for life-cycle energy consumption and carbon emissions of China’s building sector. Build. Environ. 2016, 104, 188–197. [Google Scholar] [CrossRef]
- Li, H. Does industrial robot adoption inhibit environmental pollution in China? An empirical study on energy consumption and green technology innovation. J. Environ. Manag. 2025, 373, 123392. [Google Scholar] [CrossRef]
- Ouyang, J.; Wei, D.; Wang, Y. The Impact of Artificial Intelligence on New Qualitative Productivity: Based on New Generation of Artificial Intelligence Innovation and Development Pilot Zone Policy Effects. Soft Sci. 2025, 39, 28–36. [Google Scholar] [CrossRef]
- Qin, M.; Su, A.H.; Li, R.; Su, C.W. Speculation, climate or pandemic: Who drives the Chinese herbal medicine bubbles? China Econ. Rev. 2024, 87, 102213. [Google Scholar] [CrossRef]
- Besley, T.; Case, A. Unnatural Experiments? Estimating the Incidence of Endogenous Policies. Econ. J. 2000, 110, 672–694. [Google Scholar] [CrossRef]
- Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; Dong, K. Pathway to prosperity? The impact of low-carbon energy transition on China’s common prosperity. Energy Econ. 2023, 124, 106819. [Google Scholar] [CrossRef]
- Nan, S.; Huo, Y.; You, W.; Guo, Y. Globalization spatial spillover effects and carbon emissions: What is the role of economic complexity? Energy Econ. 2022, 112, 106184. [Google Scholar] [CrossRef]
- Lesage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009; pp. 27–47. [Google Scholar]
Policy Year | Region | Number of Regions with Policies |
---|---|---|
2019 | Beijing, Shanghai, Tianjin, Shenzhen, Hangzhou, Hefei, Deqing | 7 |
2020 | Chongqing, Chengdu, Xi’an, Jinan, Guangzhou, Wuhan | 6 |
2021 | Suzhou, Changsha, Zhengzhou, Shenyang, Harbin | 5 |
Variables | Definition | Description or Calculation Method |
---|---|---|
CEI | Carbon emissions intensity | Natural logarithm of revenue per unit of carbon emissions. |
AIPZ | Policy dummy variable | A value of 1 is assigned if a province implemented an AI pilot zone in the pilot year and in subsequent years; otherwise, a value of 0 is assigned. |
URB | Urbanization | The proportion of the urban population in relation to the total population. |
IND | Industrialization | Industrial added value as a percentage of regional GDP. |
MAR | Technology market development level | The transaction volume of the technology market divided by the regional gross domestic product. |
FIN | Financial development level | The total of deposits and loans divided by the regional GDP. |
OPEN | Trade openness | (Total value of goods imported and exported * exchange rate of the US dollar to RMB)/Regional GDP |
CON | Social consumption | The total sales of consumer goods in a society divided by the regional gross domestic product. |
TSC | Scale of talent | The full-time equivalent of R&D personnel in large-scale industrial enterprises (person-years). |
TST | Talent structure | The proportion of employed personnel in urban units of the information transmission, software, and information technology service industry among the permanent residents at the end of the year. |
QGTI | The number of green technology innovations | The logarithm of the number of green patent applications per 10,000 people. |
QGTQ | The quality of green technological innovation | The logarithm of the number of green invention patent applications per 10,000 individuals. |
GFS | The scale of green finance | The ratio of regional green credit to regional GDP. |
GFT | Green finance efficiency | The reduction in carbon emissions resulting from the implementation of the green credit program by the unit. |
Variables | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
CEI | 300 | 9.586 | 0.736 | 8.145 | 11.654 |
AIPZ | 300 | 0.140 | 0.348 | 0.000 | 1.000 |
URB | 300 | 0.614 | 0.114 | 0.379 | 0.896 |
IND | 300 | 0.322 | 0.075 | 0.100 | 0.510 |
MAR | 300 | 0.020 | 0.031 | 0.000 | 0.191 |
FIN | 300 | 3.535 | 1.085 | 1.912 | 7.622 |
OPEN | 300 | 0.266 | 0.257 | 0.008 | 1.257 |
CON | 300 | 0.391 | 0.060 | 0.180 | 0.504 |
TSC | 300 | 10.719 | 1.402 | 7.054 | 13.557 |
TST | 300 | 0.364 | 0.675 | 0.082 | 4.623 |
QGTI | 300 | 1.733 | 2.205 | 0.138 | 14.602 |
QGTQ | 300 | 0.882 | 1.430 | 0.059 | 10.963 |
GFS | 300 | 0.076 | 0.127 | 0.000 | 0.862 |
GFT | 300 | 1.287 | 0.851 | 0.129 | 4.908 |
Variables | (1) | (2) | (3) |
---|---|---|---|
CEI | CEI | CEI | |
AIPZ | −0.258 *** (0.032) | −0.069 ** (0.030) | −0.069 ** (0.031) |
URB | −4.102 *** (0.258) | −1.953 ** (0.878) | |
IND | −0.688 * (0.378) | −0.874 (0.516) | |
MAR | −2.634 *** (0.998) | −1.464 (1.060) | |
FIN | 0.140 *** (0.032) | 0.143 *** (0.041) | |
OPEN | 0.486 *** (0.120) | 0.138 (0.095) | |
CON | 0.022 (0.249) | −0.160 (0.273) | |
Constant | 9.622 *** (0.127) | 11.756 *** (0.341) | 10.813 *** (0.544) |
Individual Fixed | NO | NO | Yes |
Time Fixed | NO | NO | Yes |
R-squared | 0.192 | 0.683 | 0.714 |
N | 300 | 300 | 300 |
Variables | (1) | (2) |
---|---|---|
First Stage | Second Stage | |
AIPZ | CEI | |
AIPZ | −2.8731 *** (0.594) | |
IV_FO | 0.2281 *** (0.043) | |
controls | Yes | Yes |
Individual Fixed | Yes | Yes |
Time Fixed | Yes | Yes |
N | 300 | 300 |
F statistic | 15.90 | |
C–D Wald F statistic | 27.981 (16.38) |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
TST | TSC | QGTI | QGTQ | GFS | GFT | |
AIPZ | 0.062 * (0.033) | 0.101 * (0.060) | 0.424 *** (0.137) | 0.244 ** (0.109) | 0.052 ** (0.021) | 0.350 ** (0.132) |
Constant | 3.835 ** (1.496) | 7.799 *** (0.809) | 15.089 ** (5.760) | 10.868 * (5.839) | 1.312 ** (0.597) | −2.020 (1.693) |
controls | Yes | Yes | Yes | Yes | Yes | Yes |
Individual Fixed | Yes | Yes | Yes | Yes | Yes | Yes |
Time Fixed | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.601 | 0.415 | 0.768 | 0.585 | 0.249 | 0.642 |
N | 300 | 300 | 300 | 300 | 300 | 300 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
CEI | CEI | CEI | CEI | CEI | |
AIPZ | −0.085 ** (0.030) | 0.021 (0.044) | −0.058 (0.062) | −0.089 * (0.047) | −0.060 (0.037) |
Constant | 9.853 *** (0.747) | 14.054 *** (1.105) | 12.968 *** (0.858) | 12.522 *** (0.648) | 9.929 *** (0.599) |
controls | Yes | Yes | Yes | Yes | Yes |
Individual Fixed | Yes | Yes | Yes | Yes | Yes |
Time Fixed | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.886 | 0.836 | 0.660 | 0.698 | 0.769 |
N | 110 | 80 | 110 | 100 | 200 |
Year | Moran’s I | p-Value | Year | Moran’s I | p-Value |
---|---|---|---|---|---|
2013 | 0.188 | 0.193 | 2018 | 0.260 | 0.086 |
2014 | 0.213 | 0.146 | 2019 | 0.278 | 0.069 |
2015 | 0.258 | 0.088 | 2020 | 0.279 | 0.069 |
2016 | 0.194 | 0.181 | 2021 | 0.281 | 0.066 |
2017 | 0.252 | 0.092 | 2022 | 0.288 | 0.061 |
Inspection Type | Statistic | p-Value |
---|---|---|
LM_Error | 4.233 | 0.000 |
R_LM_Error | 2.438 | 0.118 |
LM_Lag | 17.962 | 0.000 |
R_LM_Lag | 16.167 | 0.000 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Main | Direct | Indirect | Total | |
AIPZ | −0.061 ** (0.030) | −0.062 ** (0.030) | −0.067 ** (0.033) | −0.129 *** (0.046) |
URB | −3.799 *** (0.306) | −3.849 *** (0.250) | −0.373 * (0.220) | −4.222 *** (0.239) |
IND | −0.775 ** (0.364) | −0.767 ** (0.383) | −0.081 (0.075) | −0.848 * (0.434) |
MAR | −2.475 *** (0.956) | −2.419 ** (0.992) | −0.225 (0.169) | −2.644 ** (1.071) |
FIN | 0.122 *** (0.031) | 0.119 *** (0.036) | 0.012 (0.008) | 0.131 *** (0.039) |
OPEN | 0.435 *** (0.116) | 0.437 *** (0.111) | 0.042 (0.026) | 0.479 *** (0.120) |
CON | 0.005 (0.237) | 0.020 (0.222) | 0.002 (0.025) | 0.022 (0.242) |
Rho | 0.095 * (0.054) | |||
sigma2_e | 0.012 *** (0.001) | |||
Individual Fixed | Yes | Yes | Yes | Yes |
Time Fixed | Yes | Yes | Yes | Yes |
R-squared | 0.686 | 0.686 | 0.686 | 0.686 |
N | 300 | 300 | 300 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhao, Z.; Xu, X.; Wang, X.; Wang, Y. How Does the Construction of New Generation of National AI Innovative Development Pilot Zones Affect Carbon Emissions Intensity? Empirical Evidence from China. Sustainability 2025, 17, 6858. https://doi.org/10.3390/su17156858
Wang L, Zhao Z, Xu X, Wang X, Wang Y. How Does the Construction of New Generation of National AI Innovative Development Pilot Zones Affect Carbon Emissions Intensity? Empirical Evidence from China. Sustainability. 2025; 17(15):6858. https://doi.org/10.3390/su17156858
Chicago/Turabian StyleWang, Lu, Ziying Zhao, Xiaojun Xu, Xiaoli Wang, and Yuting Wang. 2025. "How Does the Construction of New Generation of National AI Innovative Development Pilot Zones Affect Carbon Emissions Intensity? Empirical Evidence from China" Sustainability 17, no. 15: 6858. https://doi.org/10.3390/su17156858
APA StyleWang, L., Zhao, Z., Xu, X., Wang, X., & Wang, Y. (2025). How Does the Construction of New Generation of National AI Innovative Development Pilot Zones Affect Carbon Emissions Intensity? Empirical Evidence from China. Sustainability, 17(15), 6858. https://doi.org/10.3390/su17156858