Radiomics Beyond Radiology: Literature Review on Prediction of Future Liver Remnant Volume and Function Before Hepatic Surgery
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Prediction of Post-Hepatectomy Liver Failure
4.2. Prediction and Functional Evaluation of Future Liver Remnant
4.3. Remaining Gray Areas and Future Perspectives
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
FRL | future remnant liver |
PHLF | post-hepatectomy liver failure |
VIPP | volume-associated ICG-PLT-PT |
ICG | indocyanine green clearance test |
PLT | platelet count |
PT | prothrombin time |
ALB | albumin |
TB | total bilirubin |
References
- Yen, Y.H.; Kuo, F.Y.; Eng, H.L.; Liu, Y.W.; Yong, C.C.; Wang, C.C.; Li, W.F.; Lin, C.Y. Patients undergoing liver resection for non-alcoholic fatty liver disease-related hepatocellular carcinoma and those for viral hepatitis-related hepatocellular carcinoma have similar survival outcomes. Updates Surg. 2024, 76, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Asahi, Y.; Kakisaka, T.; Kamiyama, T.; Orimo, T.; Shimada, S.; Nagatsu, A.; Aiyama, T.; Sakamoto, Y.; Wakizaka, K.; Shichi, S.; et al. Improved survival outcome of curative liver resection for Barcelona Clinic Liver Cancer stage C hepatocellular carcinoma in the era of tyrosine kinase inhibitors. Hepatol. Res. 2024, 55, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Ratti, F.; Ferrero, A.; Guglielmi, A.; Cillo, U.; Giuliante, F.; Mazzaferro, V.; De Carlis, L.; Ettorre, G.M.; Gruttadauria, S.; Di Benedetto, F.; et al. Ten years of Italian mini-invasiveness: The I Go MILS registry as a tool of dissemination, characterization and networking. Updates Surg. 2023, 75, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Aldrighetti, L.; Boggi, U.; Falconi, M.; Giuliante, F.; Cipriani, F.; Ratti, F.; Torzilli, G.; Italian Association of HepatoBilioPancreatic Surgeons-AICEP. Perspectives from Italy during the COVID-19 pandemic: Nationwide survey-based focus on minimally invasive HPB surgery. Updates Surg. 2020, 72, 241–247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rocca, A.; Calise, F.; Marino, G.; Montagnani, S.; Cinelli, M.; Amato, B.; Guerra, G. Primary giant hepatic neuroendocrine carcinoma: A case report. Int. J. Surg. 2014, 12 (Suppl. S1), S218–S221. [Google Scholar] [CrossRef] [PubMed]
- Reginelli, A.; Pignatiello, M.; Urraro, F.; Belfiore, M.P.; Toni, G.; Vacca, G.; Cappabianca, S. Langerhans Cell Histiocytosis with Uncommon Liver Involvement: A Case Report. Am. J. Case Rep. 2020, 21, e923505. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bridgewater, J.; Galle, P.R.; Khan, S.A.; Llovet, J.M.; Park, J.W.; Patel, T.; Pawlik, T.M.; Gores, G.J. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J. Hepatol. 2014, 60, 1268–1289. [Google Scholar] [CrossRef]
- Hu, Y.F.; Hu, H.J.; Ma, W.J.; Jin, Y.W.; Li, F.Y. Laparoscopic versus open liver resection for intrahepatic cholangiocarcinoma: A systematic review of propensity score-matched studies. Updates Surg. 2023, 75, 2049–2061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheng, R.; Yang, C.; Zhang, Y.; Wang, H.; Zheng, B.; Han, J.; Sun, W.; Zeng, M. The significance of the predominant component in combined hepatocellular-cholangiocarcinoma: MRI manifestation and prognostic value. Radiol. Med. 2023, 128, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Avella, P.; Vaschetti, R.; Cappuccio, M.; Gambale, F.; De Meis, L.; Rafanelli, F.; Brunese, M.C.; Guerra, G.; Scacchi, A.; Rocca, A. The role of liver surgery in simultaneous synchronous colorectal liver metastases and colorectal cancer resections: A literature review of 1730 patients underwent open and minimally invasive surgery. Minerva Surg. 2022, 77, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Viganò, L.; Ammirabile, A.; Zwanenburg, A. Radiomics in liver surgery: Defining the path toward clinical application. Updates Surg. 2023, 75, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Reginelli, A.; Clemente, A.; Cardone, C.; Urraro, F.; Izzo, A.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Brunese, L.; Cappabianca, S. Computed tomography densitometric study of anti-angiogenic effect of regorafenib in colorectal cancer liver metastasis. Future Oncol. 2018, 14, 2905–2913. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.; Kamagata, K.; Hirata, K.; Ito, R.; Nakaura, T.; Ueda, D.; Fujita, S.; Fushimi, Y.; Fujima, N.; Matsui, Y.; et al. Clinical applications of artificial intelligence in liver imaging. Radiol. Med. 2023, 128, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Haberman, D.M.; Andriani, O.C.; Segaran, N.L.; Volpacchio, M.M.; Micheli, M.L.; Russi, R.H.; Pérez Fernández, I.A. Role of CT in Two-Stage Liver Surgery. Radiographics 2022, 42, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Brunese, M.C.; Fantozzi, M.R.; Fusco, R.; De Muzio, F.; Gabelloni, M.; Danti, G.; Borgheresi, A.; Palumbo, P.; Bruno, F.; Gandolfo, N.; et al. Update on the Applications of Radiomics in Diagnosis, Staging, and Recurrence of Intrahepatic Cholangiocarcinoma. Diagnostics 2023, 13, 1488. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef]
- Omata, M.; Cheng, A.L.; Kokudo, N.; Kudo, M.; Lee, J.M.; Jia, J.; Tateishi, R.; Han, K.H.; Chawla, Y.K.; Shiina, S.; et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: A 2017 update. Hepatol. Int. 2017, 11, 317–370. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Kang, C.M.; Ku, H.J.; Moon, H.H.; Kim, S.-E.; Jo, J.H.; Choi, Y.I.; Shin, D.H. Predicting Safe Liver Resection Volume for Major Hepatectomy Using Artificial Intelligence. J. Clin. Med. 2024, 13, 381. [Google Scholar] [CrossRef]
- Dello, S.A.; Stoot, J.H.; van Stiphout, R.S.; Bloemen, J.G.; Wigmore, S.J.; Dejong, C.H.; van Dam, R.M. Prospective volumetric assessment of the liver on a personal computer by nonradiologists prior to partial hepatectomy. World J. Surg. 2011, 35, 386–392. [Google Scholar] [CrossRef]
- Allard, M.A.; Adam, R.; Bucur, P.O.; Termos, S.; Cunha, A.S.; Bismuth, H.; Castaing, D.; Vibert, E. Posthepatectomy portal vein pressure predicts liver failure and mortality after major liver resection on noncirrhotic liver. Ann. Surg. 2013, 258, 822–830. [Google Scholar] [CrossRef]
- Yamashita, Y.; Taketomi, A.; Shirabe, K.; Aishima, S.; Tsuijita, E.; Morita, K.; Kayashima, H.; Maehara, Y. Outcomes of hepatic resection for huge hepatocellular carcinoma (≥10 cm in diameter). J. Surg. Oncol. 2011, 104, 292–298. [Google Scholar] [CrossRef]
- Xiang, F.; Liang, X.; Yang, L.; Liu, X.; Yan, S. CT radiomics nomogram for the preoperative prediction of severe post-hepatectomy liver failure in patients with huge (≥10 cm) hepatocellular carcinoma. World J. Surg. Oncol. 2021, 19, 344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Zheng, T.; Liao, Y.; Geng, S.; Li, J.; Zhang, Z.; Shang, D.; Liu, C.; Yu, P.; Huang, Y.; et al. Machine learning prediction model for post- hepatectomy liver failure in hepatocellular carcinoma: A multicenter study. Front. Oncol. 2022, 12, 986867. [Google Scholar] [CrossRef] [PubMed]
- Mai, R.-Y.; Lu, H.-Z.; Bai, T.; Liang, R.; Lin, Y.; Ma, L.; Xiang, B.-D.; Wu, G.-B.; Li, L.-Q.; Ye, J.-Z. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma. Surgery 2020, 168, 643–652. [Google Scholar] [CrossRef]
- Honmyo, N.; Kobayashi, T.; Kuroda, S.; Oshita, A.; Onoe, T.; Kohashi, T.; Fukuda, S.; Ohmori, I.; Abe, T.; Imaoka, Y.; et al. A novel model for predicting posthepatectomy liver failure based on liver function and degree of liver resection in patients with hepatocellular carcinoma. Off. J. Int. Hepato Pancreato Biliary Assoc. 2021, 23, 134–143. [Google Scholar] [CrossRef]
- Morandi, A.; Risaliti, M.; Montori, M.; Buccianti, S.; Bartolini, I.; Moraldi, L. Predicting Post-Hepatectomy Liver Failure in HCC Patients: A Review of Liver Function Assessment Based on Laboratory Tests Scores. Medicina 2023, 59, 1099. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, F.; Giglio, M.C.; De Simone, G.; Montalti, R.; Troisi, R.I. Hepatic function assessment to predict post-hepatectomy liver failure: What can we trust? A systematic review. Updates Surg. 2020, 72, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Fode, M.M.; Petersen, J.B.; Holt, M.I.; Høyer, M. Effect of stereotactic body radiotherapy on regional metabolic liver function investigated in patients by dynamic [18F]FDGal PET/CT. Radiat. Oncol. 2021, 16, 192. [Google Scholar] [CrossRef]
- Brunese, L.; Greco, B.; Setola, F.R.; Lassandro, F.; Guarracino, M.R.; De Rimini, M.; Piccolo, S.; De Rosa, N.; Muto, R.; Bianco, A.; et al. Non-small cell lung cancer evaluated with quantitative contrast-enhanced CT and PET-CT: Net enhancement and standardized uptake values are related to tumour size and histology. Med. Sci. Monit. 2013, 19, 95–101. [Google Scholar] [CrossRef]
- Luciani, C.; Scacchi, A.; Vaschetti, R.; Di Marzo, G.; Fatica, I.; Cappuccio, M.; Guerra, G.; Ceccarelli, G.; Avella, P.; Rocca, A. The uniportal VATS in the treatment of stage II pleural empyema: A safe and effective approach for adults and elderly patients-a single-center experience and literature review. World J. Emerg. Surg. 2022, 17, 46. [Google Scholar] [CrossRef]
- Lu, Z.; Polan, D.F.; Wei, L.; Aryal, M.P.; Fitzpatrick, K.; Wang, C.; Cuneo, K.C.; Evans, J.R.; Roseland, M.E.; Gemmete, J.J.; et al. PET/CT-Based Absorbed Dose Maps in 90Y Selective Internal Radiation Therapy Correlate with Spatial Changes in Liver Function Derived from Dynamic MRI. J. Nucl. Med. 2024, 65, 1224–1230. [Google Scholar] [CrossRef]
- De Lombaerde, S.; Devisscher, L.; Verhoeven, J.; Neyt, S.; Van Vlierberghe, H.; Vanhove, C.; De Vos, F. Validation of hepatobiliary transport PET imaging in liver function assessment: Evaluation of 3β-[18F]FCA in mouse models of liver disease. Nucl. Med. Biol. 2019, 68–69, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Rocca, A.; Porfidia, C.; Russo, R.; Tamburrino, A.; Avella, P.; Vaschetti, R.; Bianco, P.; Calise, F. Neuraxial anesthesia in hepato-pancreatic-bilio surgery: A first western pilot study of 46 patients. Updates Surg. 2023, 75, 481–491. [Google Scholar] [CrossRef]
- Gotra, A.; Sivakumaran, L.; Chartrand, G.; Vu, K.N.; Vandenbroucke-Menu, F.; Kauffmann, C.; Kadoury, S.; Gallix, B.; de Guise, J.A.; Tang, A. Liver segmentation: Indications, techniques and future directions. Insights Imaging 2017, 8, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Yokoyama, Y.; Inoue, T.; Nagaya, M.; Mizuno, Y.; Kadono, I.; Nishiwaki, K.; Nishida, Y.; Nagino, M. Clinical Benefit of Preoperative Exercise and Nutritional Therapy for Patients Undergoing Hepato-Pancreato-Biliary Surgeries for Malignancy. Ann. Surg. Oncol. 2019, 26, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Sena, G.; Picciariello, A.; Marino, F.; Goglia, M.; Rocca, A.; Meniconi, R.L.; Gallo, G. One-Stage Total Laparoscopic Treatment for Colorectal Cancer with Synchronous Metastasis. Is It Safe and Feasible? Front. Surg. 2021, 8, 752135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cassese, G.; CGiglio, M.; Vitale, A.; Lauterio, A.; Serenari, M.; Cipriani, F.; Ardito, F.; Perri, P.; Nicolini, D.; Di Gioia, G.; et al. Minimally invasive versus open liver resection for nonmetastatic hepatocellular carcinoma staged BCLC—B and—C: An Italian multicentric analysis. Off. J. Int. Hepato Pancreato Biliary Assoc. 2025, 27, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Rocca, A.; Brunese, M.C.; Cappuccio, M.; Scacchi, A.; Martucci, G.; Buondonno, A.; Perrotta, F.M.; Quarto, G.; Avella, P.; Amato, B. Impact of Physical Activity on Disability Risk in Elderly Patients Hospitalized for Mild Acute Diverticulitis and Diverticular Bleeding Undergone Conservative Management. Medicina 2021, 57, 360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lodewick, T.M.; Arnoldussen, C.W.; Lahaye, M.J.; van Mierlo, K.M.; Neumann, U.P.; Beets-Tan, R.G.; Dejong, C.H.; van Dam, R.M. Fast and accurate liver volumetry prior to hepatectomy. Off. J. Int. Hepato Pancreato Biliary Assoc. 2016, 18, 764–772. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Wei, Y.; Yao, S.; Yuan, Y.; Deng, L.; Wu, D.; Nie, L.; Wei, X.; Tang, H.; et al. Preoperative evaluation of liver regeneration following hepatectomy in hepatocellular carcinoma using magnetic resonance elastography. Quant. Imaging Med. Surg. 2022, 12, 5433–5451. [Google Scholar] [CrossRef]
- Pacella, G.; Brunese, M.C.; D’Imperio, E.; Rotondo, M.; Scacchi, A.; Carbone, M.; Guerra, G. Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis. J. Clin. Med. 2023, 12, 7380. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, T.; Ban, D.; Nara, S.; Mizui, T.; Nagashima, D.; Esaki, M.; Shimada, K. Automated Three-Dimensional Liver Reconstruction with Artificial Intelligence for Virtual Hepatectomy. J. Gastrointest. Surg. 2022, 26, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Cassinotti, E.; Boni, L.; Baldari, L. Application of indocyanine green (ICG)-guided surgery in clinical practice: Lesson to learn from other organs-an overview on clinical applications and future perspectives. Updates Surg. 2023, 75, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Strigalev, M.; Tzedakis, S.; Nassar, A.; Dhote, A.; Gavignet, C.; Gaillard, M.; Marchese, U.; Fuks, D. Intra-operative indocyanine green fluorescence imaging in hepatobiliary surgery: A narrative review of the literature as a useful guide for the surgeon. Updates Surg. 2023, 75, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Gu, X.T.; Huang, X.L.; Wei, Y.C.; Chen, L.; Luo, N.B.; Lin, H.S.; Jin-Yuan, L. Nomogram based on clinical and preoperative CT features for predicting the early recurrence of combined hepatocellular-cholangiocarcinoma: A multicenter study. Radiol. Med. 2023, 128, 1460–1471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martinelli, E.; Ciardiello, D.; Martini, G.; Napolitano, S.; Del Tufo, S.; D’Ambrosio, L.; De Chiara, M.; Famiglietti, V.; Nacca, V.; Cardone, C.; et al. Radiomic Parameters for the Evaluation of Response to Treatment in Metastatic Colorectal Cancer Patients with Liver Metastasis: Findings from the CAVE-GOIM mCRC Phase 2 Trial. Clin. Drug Investig. 2024, 44, 541–548. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; De Muzio, F.; Brunese, M.C.; Setola, S.V.; Ottaiano, A.; Cardone, C.; Avallone, A.; Patrone, R.; Pradella, S.; et al. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. Radiol. Med. 2023, 128, 1310–1332. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qian, X.; Wang, Q.; Zhang, Y.; Zong, R.; Zhang, J.; Qian, B.; Yang, C.; Lu, X.; Shi, Y. Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma. Radiol. Med. 2023, 128, 1296–1309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Robertis, R.; Spoto, F.; Autelitano, D.; Guagenti, D.; Olivieri, A.; Zanutto, P.; Incarbone, G.; D’Onofrio, M. Ultrasound-derived fat fraction for detection of hepatic steatosis and quantification of liver fat content. Radiol. Med. 2023, 128, 1174–1180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laino, M.E.; Fiz, F.; Morandini, P.; Costa, G.; Maffia, F.; Giuffrida, M.; Pecorella, I.; Gionso, M.; Wheeler, D.R.; Cambiaghi, M.; et al. A virtual biopsy of liver parenchyma to predict the outcome of liver resection. Updates Surg. 2023, 75, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Rocca, A.; Komici, K.; Brunese, M.C.; Pacella, G.; Avella, P.; Di Benedetto, C.; Caiazzo, C.; Zappia, M.; Brunese, L.; Vallone, G. Quantitative ultrasound (QUS) in the evaluation of liver steatosis: Data reliability in different respiratory phases and body positions. Radiol. Med. 2024, 129, 549–557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Messaoudi, H.; Abbas, M.; Badic, B.; Ben Salem, D.; Belaid, A.; Conze, P.H. Automatic future remnant segmentation in liver resection planning. Int. J. Comput. Assist. Radiol. Surg. 2025, 20, 837–845. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Kim, K.W.; Kim, B.; Kim, S.Y.; Lee, C.S.; Lee, J.; Song, G.W.; Lee, S.G. Resection plane-dependent error in computed tomography volumetry of the right hepatic lobe in living liver donors. Clin. Mol. Hepatol. 2018, 24, 54–60. [Google Scholar] [CrossRef] [PubMed]
- De Muzio, F.; Cutolo, C.; Granata, V.; Fusco, R.; Ravo, L.; Maggialetti, N.; Brunese, M.C.; Grassi, R.; Grassi, F.; Bruno, F.; et al. CT study protocol optimization in acute non-traumatic abdominal settings. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 860–878. [Google Scholar] [CrossRef]
- Ingallinella, S.; Aldrighetti, L.; Marino, R.; Ratti, F. Indocyanine green (ICG)-guided robotic resection for liver adenoma: Combined technologies for precision surgery. Updates Surg. 2024, 76, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Cafarchio, A.; Iasiello, M.; Brunese, M.C.; Francica, G.; Rocca, A.; Andreozzi, A. Emprint Microwave Thermoablation System: Bridging Thermal Ablation Efficacy between Human Patients and Porcine Models through Mathematical Correlation. Bioengineering 2023, 10, 1057. [Google Scholar] [CrossRef] [PubMed]
- Summers, R.M. Progress in fully automated abdominal CT inter- pretation. AJR Am. J. Roentgenol. 2016, 207, 67–79. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, J.; Lee, H.; Jeong, W.K.; Won, H.J.; Shin, Y.M.; Jung, D.H.; Park, J.I.; Song, G.W.; Ha, T.Y.; et al. Right lobe estimated blood-free weight for living donor liver transplantation: Accuracy of automated blood-free CT volumetry--preliminary results. Radiology 2010, 256, 433–440. [Google Scholar] [CrossRef]
- Ciecholewski, M.; Kassjański, M. Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review. Sensors 2021, 21, 2027. [Google Scholar] [CrossRef]
- Hung, K.C.; Wang, H.P.; Li, W.F.; Lin, Y.C.; Wang, C.C. Single center experience with ALPPS and timing with stage 2 in patients with fibrotic/cirrhotic liver. Updates Surg. 2024, 76, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Tong, K.; Lin, H.; Wang, D.; Guo, W.; Li, S.; Zhang, Z. Ablative Treatments and Surgery for Early-Stage Hepatocellular Carcinoma: A Network Meta-Analysis. J. Surg. Res. 2024, 303, 587–599. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, K.H.; Na, B.G.; Kim, S.M.; Oh, R.K. Primary treatments for solitary hepatocellular carcinoma ≤ 3 cm: A systematic review and network meta-analysis. Ann. Hepato-Biliary-Pancreat. Surg. 2024, 28, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Grassi, R.; Fusco, R.; Setola, S.V.; Palaia, R.; Belli, A.; Miele, V.; Brunese, L.; Grassi, R.; Petrillo, A.; et al. Assessment of Ablation Therapy in Pancreatic Cancer: The Radiologist’s Challenge. Front. Oncol. 2020, 10, 560952. [Google Scholar] [CrossRef]
- Belfiore, M.P.; De Chiara, M.; Reginelli, A.; Clemente, A.; Urraro, F.; Grassi, R.; Belfiore, G.; Cappabianca, S. An overview of the irreversible electroporation for the treatment of liver metastases: When to use it. Front. Oncol. 2022, 12, 943176. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; Brunese, M.C.; Di Mauro, A.; Avallone, A.; Ottaiano, A.; Izzo, F.; Normanno, N.; Petrillo, A. Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging. La Radiol. Medica 2024, 129, 420–428. [Google Scholar] [CrossRef]
- Nga, W.H.; Machado, C.; Rooney, A.; Jones, R.; Reesa, J.; Pathak, S. Ablative techniques in colorectal liver metastases: A systematic review, descriptive summary of practice, and recommendations for optimal data reporting. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2025, 51, 109487. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Li, J.; Dou, J.; Li, Z.; Li, L.; Li, K.; Chen, Q.; An, C.; Zhou, Z.; He, G.; et al. Microwave ablation versus liver resection for primary intrahepatic cholangiocarcinoma within Milan criteria: A long-term multicenter cohort study. EClinicalMedicine 2024, 67, 102336. [Google Scholar] [CrossRef]
- Rocca, A.; Avella, P.; Scacchi, A.; Brunese, M.C.; Cappuccio, M.; De Rosa, M.; Bartoli, A.; Guerra, G.; Calise, F.; Ceccarelli, G. Robotic versus open resection for colorectal liver metastases in a “referral centre Hub&Spoke learning program”. A multicenter propensity score matching analysis of perioperative outcomes. Heliyon 2024, 10, e24800. [Google Scholar] [CrossRef]
- Reginelli, A.; Del Canto, M.; Clemente, A.; Gragnano, E.; Cioce, F.; Urraro, F.; Martinelli, E.; Cappabianca, S. The Role of Dual-Energy CT for the Assessment of Liver Metastasis Response to Treatment: Above the RECIST 1.1 Criteria. J. Clin. Med. 2023, 12, 879. [Google Scholar] [CrossRef]
- Belfiore, G.; Belfiore, M.P.; Reginelli, A.; Capasso, R.; Romano, F.; Ianniello, G.P.; Cappabianca, S.; Brunese, L. Concurrent chemotherapy alone versus irreversible electroporation followed by chemotherapy on survival in patients with locally advanced pancreatic cancer. Med. Oncol. 2017, 34, 38. [Google Scholar] [CrossRef] [PubMed]
- Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: From qualitative to quantitative imaging. Br. J. Radiol. 2020, 93, 20190948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. Neural Networks for Lung Cancer Detection through Radiomic Features. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Zerunian, M.; Pucciarelli, F.; Caruso, D.; Polici, M.; Masci, B.; Guido, G.; De Santis, D.; Polverari, D.; Principessa, D.; Benvenga, A.; et al. Artificial intelligence based image quality enhancement in liver MRI: A quantitative and qualitative evaluation. Radiol. Med. 2022, 127, 1098–1105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reginelli, A.; Vacca, G.; Zanaletti, N.; Troiani, T.; Natella, R.; Maggialetti, N.; Palumbo, P.; Giovagnoni, A.; Ciardiello, F.; Cappabianca, S. Diagnostic value/performance of radiological liver imaging during chemoterapy for gastrointestinal malignancy: A critical review. Acta Bio-Medica Atenei Parm. 2019, 90, 51–61. [Google Scholar] [CrossRef]
- Wei, J.; Jiang, H.; Gu, D.; Niu, M.; Fu, F.; Han, Y.; Song, B.; Tian, J. Radiomics in liver diseases: Current progress and future opportunities. Liver Int. 2020, 40, 2050–2063. [Google Scholar] [CrossRef]
- Chen, C.; Chen, C.; Ma, M.; Ma, X.; Lv, X.; Dong, X.; Yan, Z.; Zhu, M.; Chen, J. Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanism. BMC Med. Inform. Decis. Mak. 2022, 22, 176. [Google Scholar] [CrossRef]
- Avella, P.; Cappuccio, M.; Cappuccio, T.; Rotondo, M.; Fumarulo, D.; Guerra, G.; Sciaudone, G.; Santone, A.; Cammilleri, F.; Bianco, P.; et al. Artificial Intelligence to Early Predict Liver Metastases in Patients with Colorectal Cancer: Current Status and Future Prospectives. Life 2023, 13, 2027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruan, S.M.; Huang, H.; Cheng, M.Q.; Lin, M.X.; Hu, H.T.; Huang, Y.; Li, M.D.; Lu, M.D.; Wang, W. Shear-wave elastography combined with contrast-enhanced ultrasound algorithm for noninvasive characterization of focal liver lesions. Radiol. Med. 2023, 128, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Fusco, R.; Setola, S.V.; Galdiero, R.; Maggialetti, N.; Silvestro, L.; De Bellis, M.; Di Girolamo, E.; Grazzini, G.; Chiti, G.; et al. Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence. Cancers 2023, 15, 351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers. Magn. Reson. Imaging 2020, 66, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Yeo, M.H.X.; Burdio, F.; Sanchez-Velazquez, P.; Perez-Xaus, M.; Pelegrina, A.; Koh, Y.X.; Di Martino, M.; Goh, B.K.P.; Tan, E.K.; et al. Factors affecting overall survival and disease-free survival after surgery for hepatocellular carcinoma: A nomogram-based prognostic model-a Western European multicenter study. Updates Surg. 2024, 76, 57–69. [Google Scholar] [CrossRef]
- Giuliani, A.; Avella, P.; Segreto, A.L.; Izzo, M.L.; Buondonno, A.; Coluzzi, M.; Cappuccio, M.; Brunese, M.C.; Vaschetti, R.; Scacchi, A.; et al. Postoperative Outcomes Analysis After Pancreatic Duct Occlusion: A Safe Option to Treat the Pancreatic Stump After Pancreaticoduodenectomy in Low-Volume Centers. Front. Surg. 2021, 8, 804675. [Google Scholar] [CrossRef] [PubMed]
- Buondonno, A.; Avella, P.; Cappuccio, M.; Scacchi, A.; Vaschetti, R.; Di Marzo, G.; Maida, P.; Luciani, C.; Amato, B.; Brunese, M.C.; et al. A Hub and Spoke Learning Program in Bariatric Surgery in a Small Region of Italy. Front. Surg. 2022, 9, 855527. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, F.; Chen, X.; Dong, Q.; Xia, N.; Chen, J.; Li, Z.; Zhu, C. Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image. BMC Med. Imaging 2023, 23, 94. [Google Scholar] [CrossRef]
- Xie, T.; Li, Y.; Lin, Z.; Liu, X.; Zhang, X.; Zhang, Y.; Zhang, D.; Cheng, G.; Wang, X. Deep learning for fully automated segmentation and volumetry of Couinaud liver segments and future liver remnants shown with CT before major hepatectomy: A validation study of a predictive model. Quant. Imaging Med. Surg. 2023, 13, 3088–3103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, T.; Zhou, J.; Zhang, X.; Zhang, Y.; Wang, X.; Li, Y.; Cheng, G. Fully automated assessment of the future liver remnant in a blood-free setting via CT before major hepatectomy via deep learning. Insights Imaging 2024, 15, 164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, X.; Xing, Z.; Xu, Z.; Tong, Y.; Wang, S.; Liu, X.; Ren, Y.; Liang, X.; Yu, Y.; Ying, H. A deep learning model for prediction of post hepatectomy liver failure after hemihepatectomy using preoperative contrast-enhanced computed tomography: A retrospective study. Front. Med. 2023, 10, 1154314. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; He, B.; Hu, M.; Zhang, W.; Xiao, D.; Yu, H.; Song, Q.; Xiang, N.; Yang, J.; He, S.; et al. A radiomics-based nomo- gram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma. Surg. Oncol. 2019, 28, 78–85. [Google Scholar] [CrossRef]
- Soreide, J.A.; Deshpande, R. Post hepatectomy liver failure (PHLF)—Recent advances in prevention and clinical management. Eur. J. Surg. Oncol. 2021, 47, 216–224. [Google Scholar] [CrossRef]
- Poon, R.T.; Fan, S.T.; Lo, C.M.; Liu, C.L.; Lam, C.M.; Yuen, W.K.; Yeung, C.; Wong, J. Improving perioperative outcome expands the role of hepatectomy in management of benign and malignant hepatobiliary diseases: Analysis of 1222 consecutive patients from a prospective database. Ann. Surg. 2004, 240, 698–710. [Google Scholar] [CrossRef]
- Quaresima, S.; Mennini, G.; Manzia, T.M.; Avolio, A.W.; Angelico, R.; Spoletini, G.; Lai, Q. The liver transplant surgeon Mondays blues: An Italian perspective. Updates Surg. 2023, 75, 531–539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsujita, Y.; Sofue, K.; Komatsu, S.; Yamaguchi, T.; Ueshima, E.; Ueno, Y.; Kanda, T.; Okada, T.; Nogami, M.; Yamaguchi, M.; et al. Prediction of post-hepatectomy liver failure using gadoxetic acid-enhanced magnetic resonance imaging for hepatocellular carcinoma with portal vein invasion. Eur. J. Radiol. 2020, 130, 109189. [Google Scholar] [CrossRef]
- Shehta, A.; Farouk, A.; Fouad, A.; Aboelenin, A.; Elghawalby, A.N.; Said, R.; Elshobary, M.; El Nakeeb, A. Post-hepatectomy liver failure after hepatic resection for hepatocellular carcinoma: A single center experience. Langenbeck’s Arch. Surg. 2020, 406, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Neri, I.; Pascale, M.M.; Bianco, G.; Frongillo, F.; Agnes, S.; Giovinazzo, F. Age and liver graft: A systematic review with meta-regression. Updates Surg. 2023, 75, 2075–2083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, Q.; Mennini, G.; Ginanni Corradini, S.; Ferri, F.; Fonte, S.; Pugliese, F.; Merli, M.; Rossi, M. Adult 10-year survivors after liver transplantation: A single-institution experience over 40 years. Updates Surg. 2023, 75, 1961–1970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Treider, M.A.; Romandini, E.; Alavi, D.T.; Aghayan, D.; Rasmussen, M.K.; Marchegiani, G.; Lauritzen, P.M.; Pelanis, E.; Edwin, B.; Blomhoff, R.; et al. Postoperative changes in body composition after laparoscopic and open resection of colorectal liver metastases: Data from the randomized OSLO-COMET trial. Surg. Endosc. 2025, 39, 2450–2457. [Google Scholar] [CrossRef]
- Heo, S.; Jeong, B.; Lee, S.S.; Kim, M.; Jang, H.J.; Choi, S.J.; Kim, K.M.; Ha, T.Y.; Jung, D.H. CT-based detection of clinically significant portal hypertension predicts post-hepatectomy outcomes in hepatocellular carcinoma. Eur. Radiol. 2025, 35, 4980–4992. [Google Scholar] [CrossRef]
- López-López, V.; Martínez-Serrano, M.Á.; Ruiz-Manzanera, J.J.; Eshmuminov, D.; Ramirez, P. Minimally invasive surgery and liver transplantation: Is it a safe, feasible, and effective approach? Updates Surg. 2023, 75, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Pind, M.L.; Møller, S.; Faqir, N.; Bendtsen, F. Predictive value of indocyanine green retention test and indocyanine green clearance in child-Pugh class a patients. Hepatology 2015, 61, 2112–2113. [Google Scholar] [CrossRef]
- Rahbari, N.N.; Reissfelder, C.; Koch, M.; Elbers, H.; Striebel, F.; Büchler, M.W.; Weitz, J. The predictive value of postoperative clinical risk scores for outcome after hepatic resection: A validation analysis in 807 patients. Ann. Surg. Oncol. 2011, 18, 3640–3649. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Valla, D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J. Hepatol. 2005, 42, S100–S107. [Google Scholar] [CrossRef]
- Kudo, M.; Gotohda, N.; Sugimoto, M.; Kobayashi, S.; Kobayashi, T. Predicting post-hepatectomy liver failure based on future remnant liver function combined with future remnant liver volume using magnetic resonance imaging. Langenbecks Arch Surg. 2025, 410, 177. [Google Scholar] [CrossRef]
- Simpson, A.L.; Geller, D.A.; Hemming, A.W.; Jarnagin, W.R.; Clements, L.W.; D’Angelica, M.I.; Dumpuri, P.; Gönen, M.; Zendejas, I.; Miga, M.I.; et al. Liver planning software accurately predicts postoperative liver volume and measures early regeneration. J. Am. Coll. Surg. 2014, 219, 199–207. [Google Scholar] [CrossRef]
- Balzan, S.; Belghiti, J.; Farges, O.; Ogata, S.; Sauvanet, A.; Delefosse, D.; Durand, F. The “50-50 criteria” on postoperative day 5: An accurate predictor of liver failure and death after hepatectomy. Ann. Surg. 2005, 242, 824. [Google Scholar] [CrossRef]
- Chen, X.; Kuang, M.; Hu, Z.-H.; Peng, Y.-H.; Wang, N.; Luo, H.; Yang, P. Prediction of post-hepatectomy liver failure and long-term prognosis after curative resection of hepatocellular carcinoma using liver stiffness measurement. Arab J. Gastroenterol. 2022, 23, 82–88. [Google Scholar] [CrossRef]
- Reginelli, A.; Pezzullo, M.G.; Scaglione, M.; Scialpi, M.; Brunese, L.; Grassi, R. Gastrointestinal disorders in elderly patients. Radiol. Clin. N. Am. 2008, 46, 755–771. [Google Scholar] [CrossRef] [PubMed]
- Melandro, F.; Lai, Q.; Ghinolfi, D.; Manzia, T.M.; Spoletini, G.; Rossi, M.; Agnes, S.; Tisone, G.; De Simone, P. Outcome of liver transplantation in elderly patients: An Italian multicenter case-control study. Updates Surg. 2023, 75, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Emenena, I.; Emenena, B.; Kweki, A.G.; OAiwuyo, H.; OOsarenkhoe, J.; Iloeje, U.N.; Ilerhunmwuwa, N.; Torere, B.E.; Akinti, O.; Akere, A.; et al. Model for end stage liver disease (MELD) Score: A tool for prognosis and prediction of mortality in patients with decompensated liver cirrhosis. Cureus 2023, 15, e39267. [Google Scholar] [CrossRef]
- Gruttadauria, S.; Pagano, D.; di Francesco, F. Living donor liver transplantation: An Italian single-center reappraisal. Updates Surg. 2023, 75, 1043–1044. [Google Scholar] [CrossRef] [PubMed]
- Marcellinaro, R.; Grieco, M.; Spoletini, D.; Troiano, R.; Avella, P.; Brachini, G.; Mingoli, A.; Carlini, M. How to reduce the colorectal anastomotic leakage? The MIRACLe protocol experience in a cohort in a single high-volume centre. Updates Surg. 2023, 75, 1559–1567. [Google Scholar] [CrossRef]
- Ferrari, R.; Trinci, M.; Casinelli, A.; Treballi, F.; Leone, E.; Caruso, D.; Polici, M.; Faggioni, L.; Neri, E.; Galluzzo, M. Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact. La Radiol. Medica 2024, 129, 1751–1765. [Google Scholar] [CrossRef]
- Whitfield, J.B.; Masson, S.; Liangpunsakul, S.; Hyman, J.; Mueller, S.; Aithal, G.; Eyer, F.; Gleeson, D.; Thompson, A.; Stickel, F.; et al. Evaluation of laboratory tests for cirrhosis and for alcohol use, in the context of alcoholic cirrhosis. Alcohol 2018, 66, 1–7. [Google Scholar] [CrossRef]
- Toniutto, P.; Fabris, C.; Bitetto, D.; Falleti, E.; Avellini, C.; Rossi, E.; Smirne, C.; Minisini, R.; Pirisi, M. Role of AST to platelet ratio index in the detection of liver fibrosis in patients with recurrent hepatitis C after liver transplantation. J. Gastroenterol. Hepatol. 2007, 22, 1904–1908. [Google Scholar] [CrossRef]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet. Program. Evolvable Mach. 2018, 19, 305–307. [Google Scholar] [CrossRef]
- De Carlis, R.; Lauterio, A.; Centonze, L.; Buscemi, V.; Schlegel, A.; Muiesan, P.; De Carlis, L.; Italian DCD Collaborator Group. Current practice of normothermic regional perfusion and machine perfusion in donation after circulatory death liver transplants in Italy. Updates Surg. 2022, 74, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Lindenlaub, F.; Asenbaum, U.; Schwarz, C.; Makolli, J.; Mittlböck, M.; Stremitzer, S.; Kaczirek, K. Total Metastases Volume and Relative Volume Reduction After Neoadjuvant Therapy Predict Outcome After Liver Resection of Colorectal Liver Metastases. Ann. Surg. Oncol. 2025, 32, 5667–5674. [Google Scholar] [CrossRef] [PubMed]
- Ierardi, A.M.; Floridi, C.; Fontana, F.; Duka, E.; Pinto, A.; Petrillo, M.; Kehagias, E.; Tsetis, D.; Brunese, L.; Carrafiello, G. Transcatheter embolisation of iatrogenic renal vascular injuries. La Radiol. Medica 2014, 119, 261–268. [Google Scholar] [CrossRef] [PubMed]
- De Bernardi, I.C.; Floridi, C.; Muollo, A.; Giacchero, R.; Dionigi, G.L.; Reginelli, A.; Gatta, G.; Cantisani, V.; Grassi, R.; Brunese, L.; et al. Vascular and interventional radiology radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: Literature review. La Radiol. Medica 2014, 119, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Goh, B.K.; Kam, J.H.; Lee, S.Y.; Chan, C.Y.; Allen, J.C.; Jeyaraj, P.; Cheow, P.C.; Chow, P.K.; Ooi, L.L.; Chung, A.Y. Significance of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and prognostic nutrition index as preoperative predictors of early mortality after liver resection for huge (≥10 cm) hepatocellular carcinoma. J. Surg. Oncol. 2016, 113, 621–627. [Google Scholar] [CrossRef]
- Viganò, L.; Torzilli, G.; Aldrighetti, L.; Ferrero, A.; Troisi, R.; Figueras, J.; Cherqui, D.; Adam, R.; Kokudo, N.; Hasegawa, K.; et al. Stratification of Major Hepatectomies According to Their Outcome: Analysis of 2212 Consecutive Open Resections in Patients Without Cirrhosis. Ann. Surg. 2020, 272, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Pak, L.M.; Chakraborty, J.; Gonen, M.; Chapman, W.C.; Do, R.K.G.; Groot Koerkamp, B.; Verhoef, K.; Lee, S.Y.; Massani, M.; van der Stok, E.P.; et al. Quantitative Imaging Features and Postoperative Hepatic Insufficiency: A Multi-Institutional Expanded Cohort. J. Am. Coll. Surg. 2018, 226, 835–843. [Google Scholar] [CrossRef]
- Gu, M.; Zou, W.; Chen, H.; He, R.; Zhao, X.; Jia, N.; Liu, W.; Wang, P. Multilayer perceptron deep learning radiomics model based on Gd-BOPTA MRI to identify vessels encapsulating tumor clusters in hepatocellular carcinoma: A multi-center study. Cancer Imaging 2025, 25, 87. [Google Scholar] [CrossRef]
- Felli, E.; Santoro, M.; Stolfa, S. Artificial intelligence in surgery. Surg. Technol. Int. 2019, 35, 49–54. [Google Scholar]
- Amato, B.; Compagna, R.; Rocca, A.; Bianco, T.; Milone, M.; Sivero, L.; Vigliotti, G.; Amato, M.; Danzi, M.; Aprea, G.; et al. Fondaparinux vs warfarin for the treatment of unsuspected pulmonary embolism in cancer patients. Drug Des. Dev. Ther. 2016, 10, 2041–2046. [Google Scholar] [CrossRef]
- Li, B.; Qin, Y.; Qiu, Z.; Ji, J.; Jiang, X. A cohort study of hepatectomy-related complications and prediction model for postoperative liver failure after major liver resection in 1441 patients without obstructive jaundice. Ann. Transl. Med. 2021, 9, 305. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Shimada, R.; Sato, Y.; Hori, M.; Yokota, K.; Nakamoto, M.; Chen, Y.W.; Nakamura, H.; Tamura, S. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007; Springer: Berlin/Heidelberg, Germany, 2007; Volume 10, pp. 86–93. [Google Scholar] [CrossRef]
- Greco, E.; Nanji, S.; Bromberg, I.L.; Shah, S.; Wei, A.C.; Moulton, C.A.; Greig, P.D.; Gallinger, S.; Cleary, S.P. Predictors of peri-opertative morbidity and liver dysfunction after hepatic resection in patients with chronic liver disease. HPB 2011, 13, 559–565. [Google Scholar] [CrossRef]
- Makuuchi, M.; Kosuge, T.; Takayama, T.; Yamazaki, S.; Kakazu, T.; Miyagawa, S.; Kawasaki, S. Surgery for small liver cancers. Semin. Surg. Oncol. 1993, 9, 298–304. [Google Scholar] [CrossRef]
- De Gasperi, A.; Mazza, E.; Prosperi, M. Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery? World J. Hepatol. 2016, 8, 355–367. [Google Scholar] [CrossRef]
- Shimada, S.; Kamiyama, T.; Kakisaka, T.; Orimo, T.; Nagatsu, A.; Asahi, Y.; Sakamoto, Y.; Kamachi, H.; Kudo, Y.; Nishida, M.; et al. The impact of elastography with virtual touch quantification of future remnant liver before major hepatectomy. Quant. Imaging Med. Surg. 2021, 11, 2572–2585. [Google Scholar] [CrossRef]
- Jang, H.J.; Go, J.H.; Kim, Y.; Lee, S.H. Deep Learning for the Pathologic Diagnosis of Hepatocellular Carcinoma, Cholangiocarcinoma, and Metastatic Colorectal Cancer. Cancers 2023, 15, 5389. [Google Scholar] [CrossRef] [PubMed]
- Geisel, D.; Lüdemann, L.; Hamm, B.; Denecke, T. Imaging-Based Liver Function Tests--Past, Present and Future. RoFo Fortschritte Auf Dem Geb. Der Rontgenstrahlen Und Der Nukl. 2015, 187, 863–871. [Google Scholar] [CrossRef]
- Cook, T.S. The importance of Imaging Informatics and Informaticists in the implementation of AI. Acad. Radiol. 2020, 27, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Mamidipalli, A.; Retson, T.; Bahrami, N.; Hasenstab, K.; Blansit, K.; Bass, E.; Delgado, T.; Cunha, G.; Middleton, M.S.; et al. Automated CT and MRI Liver Segmentation and Biometry Using a Generalized Convolutional Neural Network. Radiol. Artif. Intell. 2019, 1, 180022. [Google Scholar] [CrossRef] [PubMed]
- Primavesi, F.; Maglione, M.; Cipriani, F.; Denecke, T.; Oberkofler, C.E.; Starlinger, P.; Dasari, B.V.M.; Heil, J.; Sgarbura, O.; Søreide, K.; et al. E-AHPBA-ESSO-ESSR Innsbruck consensus guidelines for preoperative liver function assessment before hepatectomy. Br. J. Surg. 2023, 110, 1331–1347. [Google Scholar] [CrossRef]
- Dixon, M.E.B.; Pappas, S.G. Utilization of Multiorgan Radiomics to Predict Future Liver Remnant Hypertrophy After Portal Vein Embolization: Another Tool for the Toolbox? Ann. Surg. Oncol. 2024, 31, 705–708. [Google Scholar] [CrossRef]
- Kalshabay, Y.; Zholdybay, Z.; Di Martino, M.; Medeubekov, U.; Baiguissova, D.; Ainakulova, A.; Doskhanov, M.; Baimakhanov, B. CT volume analysis in living donor liver transplantation: Accuracy of three different approaches. Insights Imaging 2023, 14, 82. [Google Scholar] [CrossRef]
- Tong, G.; Jiang, H.; Shi, T.; Han, X.H.; Yao, Y.D. A lightweight network for contextual and morphological awareness for hepatic vein segmentation. IEEE J. Biomed. Health Inform. 2023, 27, 4878–4889. [Google Scholar] [CrossRef]
- Hanafy, A.S. Prediction and prevention of post-hepatectomy liver failure: Where do we stand. J. Clin. Transl. Hepatol. 2021, 9, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Massimo, I.; Eleonora, A.; Lorenzo, C.; Mariangela, B.; Barbara, A.; Maria, I.A.; Angelo, S.; Giuseppe, C.; Annalisa, D.S.; Lucio, C.; et al. The impact of BCLC recommendations on survival for patients with hepatocellular carcinoma. Hepatol. Commun. 2025, 9, e0750. [Google Scholar] [CrossRef]
- Brunese, M.C.; Avella, P.; Cappuccio, M.; Spiezia, S.; Pacella, G.; Bianco, P.; Greco, S.; Ricciardelli, L.; Lucarelli, N.M.; Caiazzo, C.; et al. Future Perspectives on Radiomics in Acute Liver Injury and Liver Trauma. J. Pers. Med. 2024, 14, 572. [Google Scholar] [CrossRef]
- Fodor, M.; Primavesi, F.; Braunwarth, E.; Cardini, B.; Resch, T.; Bale, R.; Putzer, D.; Henninger, B.; Oberhuber, R.; Maglione, M.; et al. Indications for liver surgery in benign tumours. Eur. Surg. 2018, 50, 125–131. [Google Scholar] [CrossRef]
- Calderon Novoa, F.; Ardiles, V.; de Santibañes, E.; Pekolj, J.; Goransky, J.; Mazza, O.; Sánchez Claria, R.; de Santibañes, M. Pushing the Limits of Surgical Resection in Colorectal Liver Metastasis: How Far Can We Go? Cancers 2023, 15, 2113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Granata, V.; Grassi, R.; Fusco, R.; Setola, S.V.; Belli, A.; Piccirillo, M.; Pradella, S.; Giordano, M.; Cappabianca, S.; Brunese, L.; et al. Abbreviated MRI Protocol for the Assessment of Ablated Area in HCC Patients. Int. J. Environ. Res. Public Health 2021, 18, 3598. [Google Scholar] [CrossRef]
- Orcutt, S.T.; Anaya, D.A. Liver Resection and Surgical Strategies for Management of Primary Liver Cancer. Cancer Control 2018, 25, 1073274817744621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.C.; Yang, F.; Fu, D.L. Clinical significance of variant hepatic artery in pancreatic resection: A comprehensive review. World J. Gastroenterol. 2022, 28, 2057–2075. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barile, A.; Bruno, F.; Mariani, S.; Arrigoni, F.; Reginelli, A.; De Filippo, M.; Zappia, M.; Splendiani, A.; Di Cesare, E.; Masciocchi, C. What can be seen after rotator cuff repair: A brief review of diagnostic imaging findings. Musculoskelet. Surg. 2017, 101 (Suppl. S1), 3–14. [Google Scholar] [CrossRef] [PubMed]
- Nurzynska, D.; Di Meglio, F.; Castaldo, C.; Latino, F.; Romano, V.; Miraglia, R.; Guerra, G.; Brunese, L.; Montagnani, S. Flatfoot in children: Anatomy of decision making. Ital. J. Anat. Embryol. 2012, 117, 98–106. [Google Scholar]
- Reginelli, A.; Mandato, Y.; Cavaliere, C.; Pizza, N.L.; Russo, A.; Cappabianca, S.; Brunese, L.; Rotondo, A.; Grassi, R. Three-dimensional anal endosonography in depicting anal-canal anatomy. La Radiologia Medica 2012, 117, 759–771. [Google Scholar] [CrossRef]
- Zappia, M.; Reginelli, A.; Russo, A.; D’Agosto, G.F.; Di Pietto, F.; Genovese, E.A.; Coppolino, F.; Brunese, L. Long head of the biceps tendon and rotator interval. Musculoskelet. Surg. 2013, 97 (Suppl. S2), S99–S108. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, F.; Barile, A.; Zugaro, L.; Splendiani, A.; Di Cesare, E.; Caranci, F.; Ierardi, A.M.; Floridi, C.; Angileri, A.S.; Reginelli, A.; et al. Intra-articular benign bone lesions treated with Magnetic Resonance-guided Focused Ultrasound (MRgFUS): Imaging follow-up and clinical results. Med. Oncol. 2017, 34, 55. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, P.M.; Capuñay, C.M.; Sisco, P.; Perrone, N.; Ulla, M.; Martin López, E.; Pagliarino, G.; Carrascosa, J. Evaluación hepática con TC multidetector. Angiotomografía, determinación volumétrica y hepatectomia virtual [Liver evaluation with multidetector CT. Angiotomography, volume determination and virtual hepatectomy]. Acta Gastroenterol. Latinoam. 2006, 36, 131–138. (In Spanish) [Google Scholar] [PubMed]
- Arm, R.; Shahidi, A.; Clarke, C.; Alabraba, E. Synthesis and characterisation of a cancerous liver for presurgical planning and training applications. BMJ Open Gastroenterol. 2022, 9, e000909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milana, F.; Famularo, S.; Diana, M.; Mishima, K.; Reitano, E.; Cho, H.-D.; Kim, K.-H.; Marescaux, J.; Donadon, M.; Torzilli, G. How Much Is Enough? A Surgical Perspective on Imaging Modalities to Estimate Function and Volume of the Future Liver Remnant before Hepatic Resection. Diagnostics 2023, 13, 2726. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, G.; Li, T.; Guo, C.; Han, Y.; Zhou, X. Development and validation of a prognostic nomogram for early hepatocellular carcinoma treated with microwave ablation. Front. Oncol. 2025, 15, 1486149. [Google Scholar] [CrossRef] [PubMed]
- Kalil, J.A.; Deschenes, M.; Perrier, H.; Zlotnik, O.; Metrakos, P. Navigating Complex Challenges: Preoperative Assessment and Surgical Strategies for Liver Resection in Patients with Fibrosis or Cirrhosis. Biomedicines 2024, 12, 1264. [Google Scholar] [CrossRef]
- Renzulli, M.; Clemente, A.; Spinelli, D.; Ierardi, A.M.; Marasco, G.; Farina, D.; Brocchi, S.; Ravaioli, M.; Pettinari, I.; Cescon, M.; et al. Gastric Cancer Staging: Is It Time for Magnetic Resonance Imaging? Cancers 2020, 12, 1402. [Google Scholar] [CrossRef]
- Reginelli, A.; Mandato, Y.; Solazzo, A.; Berritto, D.; Iacobellis, F.; Grassi, R. Errors in the radiological evaluation of the alimentary tract: Part II. Semin. Ultrasound CT MR 2012, 33, 308–317. [Google Scholar] [CrossRef]
- Conticchio, M.; Maggialetti, N.; Rescigno, M.; Brunese, M.C.; Vaschetti, R.; Inchingolo, R.; Calbi, R.; Ferraro, V.; Tedeschi, M.; Fantozzi, M.R.; et al. Hepatocellular Carcinoma with Bile Duct Tumor Thrombus: A Case Report and Literature Review of 890 Patients Affected by Uncommon Primary Liver Tumor Presentation. J. Clin. Med. 2023, 12, 423. [Google Scholar] [CrossRef]
- Peng, Y.; Shen, H.; Tang, H.; Huang, Y.; Lan, X.; Luo, X.; Zhang, X.; Zhang, J. Nomogram based on CT-derived extracellular volume for the prediction of post-hepatectomy liver failure in patients with resectable hepatocellular carcinoma. Eur. Radiol. 2022, 32, 8529–8539. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, S.; Ma, L.; Zhang, C.; Guan, Z.; Zhang, Y.; Yin, S.; Lian, S.; Xie, C. Prediction of microvascular invasion in hepatocellular carcinoma patients with MRI radiomics based on susceptibility weighted imaging and T2-weighted imaging. La Radiologia Medica 2024, 129, 1130–1142. [Google Scholar] [CrossRef]
- Reginelli, A.; Vacca, G.; Segreto, T.; Picascia, R.; Clemente, A.; Urraro, F.; Serra, N.; Vanzulli, A.; Cappabianca, S. Can microvascular invasion in hepatocellular carcinoma be predicted by diagnostic imaging? A critical review. Future Oncol. 2018, 14, 2985–2994. [Google Scholar] [CrossRef]
- He, X.; Li, K.; Wei, R.; Zuo, M.; Yao, W.; Zheng, Z.; He, X.; Fu, Y.; Li, C.; An, C.; et al. A multitask deep learning radiomics model for predicting the macrotrabecular-massive subtype and prognosis of hepatocellular carcinoma after hepatic arterial infusion chemotherapy. Radiol. Med. 2023, 128, 1508–1520, Erratum in Radiol. Med. 2024, 129, 350–351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scialpi, M.; Palumbo, B.; Pierotti, L.; Gravante, S.; Piunno, A.; Rebonato, A.; D’Andrea, A.; Reginelli, A.; Piscioli, I.; Brunese, L.; et al. Detection and characterization of focal liver lesions by split-bolus multidetector-row CT: Diagnostic accuracy and radiation dose in oncologic patients. Anticancer. Res. 2014, 34, 4335–4344. [Google Scholar]
- Mo, Z.Y.; Chen, P.Y.; Lin, J.; Liao, J.Y. Pre-operative MRI features predict early post-operative recurrence of hepatocellular carcinoma with different degrees of pathological differentiation. Radiol. Med. 2023, 128, 261–273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reginelli, A.; Vanzulli, A.; Sgrazzutti, C.; Caschera, L.; Serra, N.; Raucci, A.; Urraro, F.; Cappabianca, S. Vascular microinvasion from hepatocellular carcinoma: CT findings and pathologic correlation for the best therapeutic strategies. Med. Oncol. 2017, 34, 93. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.M.; Lee, Y.Y.; Kim, S.K.; Jeong, Y.Y.; Heo, S.H.; Shin, S.S. Four-dimensional flow MR imaging for evaluating treatment response after transcatheter arterial chemoembolization in cirrhotic patients with hepatocellular carcinoma. Radiol. Med. 2023, 128, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.; Chapados, N. Ai in diagnosis of liver diseases. Gastroenterology 2019, 156, 1140–1149. [Google Scholar]
- Reginelli, A.; Nardone, V.; Giacobbe, G.; Belfiore, M.P.; Grassi, R.; Schettino, F.; Del Canto, M.; Grassi, R.; Cappabianca, S. Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics 2021, 11, 1796. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S. Machine learning algorithms predict postoperative liver failure. World J. Gastroenterol. 2020, 26, 3032–3044. [Google Scholar]
- Gruttadauria, S.; Pagano, D. Decision trees in hepatic surgery. Transplant. Proc. 2012, 44, 1920–1924. [Google Scholar]
- Veerankutty, F.H.; Jayan, G.; Yadav, M.K.; Manoj, K.S.; Yadav, A.; Nair, S.R.S.; Shabeerali, T.U.; Yeldho, V.; Sasidharan, M.; Rather, S.A. Artificial Intelligence in hepatology, liver surgery and transplantation: Emerging applications and frontiers of research. World J. Hepatol. 2021, 13, 1977–1990. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Baessler, B.; Bakas, S.; Cuocolo, R.; Fedorov, A.; Maier-Hein, L.; Mercaldo, N.; Müller, H.; Orlhac, F.; Pinto Dos Santos, D.; et al. CheckList for EvaluAtion of Radiomics research (CLEAR): A step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 2023, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, M.X.; Wang, J.F.; Liu, P.; Zhang, L.Y.; Zhou, Y.; Lin, X.X.; Du, Y.D.; He, K.L. Multivariable prognostic models for post-hepatectomy liver failure: An updated systematic review. World J. Hepatol. 2025, 17, 103330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mian, A.; Kamnitsas, K.; Gordon-Weeks, A. Radiomics for Treatment Planning in Liver Cancers. JAMA Surg. 2025, 160, 708–709. [Google Scholar] [CrossRef]
- Maino, C.; Vernuccio, F.; Cannella, R.; Franco, P.N.; Giannini, V.; Dezio, M.; Pisani, A.R.; Blandino, A.A.; Faletti, R.; De Bernardi, E.; et al. Radiomics and liver: Where we are and where we are headed? Eur. J. Radiol. 2024, 171, 111297. [Google Scholar] [CrossRef] [PubMed]
Study | Prediction Target | Model Type | Sample Size | Validation | Key CLEAR Aspects Considered |
---|---|---|---|---|---|
Zhu et al. (2023) [86] | FLR function (ICG-R15) | ML, Radiomics | 190 | Internal | Segmentation clearly reported; internal validation; no external test set; reproducibility not addressed. |
Xie et al. (2023) [87] | FLR% volumetry (blood-free) | DL (3D U-Net) | 170 | External | Well-described segmentation: external test set included metrics reported; lack of data/model sharing. |
Xie et al. (2024) [88] | FLR (blood-filled vs. blood-free) | DL (3D U-Net) | 178 | External | Clear comparison between automated and manual FLR; reproducibility analyzed; performance robust. |
Xu et al. (2023) [89] | PHLF | DL | 265 | Not defined | DL architecture described; lack of validation strategy reduces generalizability; input imaging well defined. |
Cai et al. (2019) [90] | PHLF | Radiomics Nomogram | 112 (+13 prospective) | Internal + pilot external | Integrated Rad score + MELD + PS; training/test split reported; clinical applicability discussed. |
Kang et al. (2024) [20] | PHLF | ML | 52 | Not defined | Custom loss function: performance evaluated but external validation missing; segmentation unclear. |
Xiang et al. (2021) [24] | PHLF (large HCC) | Radiomics Nomogram | 186 (131 train/55 test) | internal | Training/test division; model performance reported; segmentation not standardized; reproducibility not assessed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urraro, F.; Pacella, G.; Giordano, N.; Spiezia, S.; Balestrucci, G.; Caiazzo, C.; Russo, C.; Cappabianca, S.; Costa, G. Radiomics Beyond Radiology: Literature Review on Prediction of Future Liver Remnant Volume and Function Before Hepatic Surgery. J. Clin. Med. 2025, 14, 5326. https://doi.org/10.3390/jcm14155326
Urraro F, Pacella G, Giordano N, Spiezia S, Balestrucci G, Caiazzo C, Russo C, Cappabianca S, Costa G. Radiomics Beyond Radiology: Literature Review on Prediction of Future Liver Remnant Volume and Function Before Hepatic Surgery. Journal of Clinical Medicine. 2025; 14(15):5326. https://doi.org/10.3390/jcm14155326
Chicago/Turabian StyleUrraro, Fabrizio, Giulia Pacella, Nicoletta Giordano, Salvatore Spiezia, Giovanni Balestrucci, Corrado Caiazzo, Claudio Russo, Salvatore Cappabianca, and Gianluca Costa. 2025. "Radiomics Beyond Radiology: Literature Review on Prediction of Future Liver Remnant Volume and Function Before Hepatic Surgery" Journal of Clinical Medicine 14, no. 15: 5326. https://doi.org/10.3390/jcm14155326
APA StyleUrraro, F., Pacella, G., Giordano, N., Spiezia, S., Balestrucci, G., Caiazzo, C., Russo, C., Cappabianca, S., & Costa, G. (2025). Radiomics Beyond Radiology: Literature Review on Prediction of Future Liver Remnant Volume and Function Before Hepatic Surgery. Journal of Clinical Medicine, 14(15), 5326. https://doi.org/10.3390/jcm14155326