Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = Anser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1897 KiB  
Article
Molecular Detection of Encephalitozoon cuniculi in Migratory Waterfowl of the Genus Anser (Anseriformes: Anatidae) in Poland
by Piotr Solarczyk, Agnieszka Perec-Matysiak, Agnieszka Wojtkowiak-Giera and Mike Heddergott
Pathogens 2025, 14(5), 489; https://doi.org/10.3390/pathogens14050489 - 16 May 2025
Viewed by 524
Abstract
Microsporidiosis is a zoonotic disease that derives from disparate sources. Most of the microsporidial agents are host-specific but some are capable of interspecies transmission, causing disease in various animals including humans. Human microsporidiosis may be caused by 17 species, with Encephalitozoon cuniculi, [...] Read more.
Microsporidiosis is a zoonotic disease that derives from disparate sources. Most of the microsporidial agents are host-specific but some are capable of interspecies transmission, causing disease in various animals including humans. Human microsporidiosis may be caused by 17 species, with Encephalitozoon cuniculi, E. intestinalis and E. hellem mostly being responsible for human infections worldwide. Wildlife and migratory waterfowl can serve as reservoirs of these human-infectious agents and play a significant role in disseminating these pathogens into the environment. The aim of the study was to detect E. cuniculi, E. intestinalis and E. hellem in wild, migratory greater white-fronted geese (Anser albifrons) and other Anatidae members in feacal samples obtained in north-western Poland, using a molecular method. We collected 189 fecal droppings from Anatidae species (75 samples from greater white-fronted geese and 114 from other Anser spp.) during autumn migration. New species specific primers for PCR amplification were used to amplify a fragment of the small subunit ribosomal (SSU) rRNA of E. cuniculi, E. intestinalis and E. hellem. All fecal droppings were negative for E. intestinalis and E. hellem whereas E cuniculi was detected in 6 of 189 fecal samples (3.2%; 95% CI: 1.3–6.3%). In total, 1 of 75 tested fecal samples of greater white-fronted geese was positive (1.3%; 95% CI: 0.08–5.7%) while 5 of 114 (4.4%; 95% CI: 1.6–9.1%) tested fecal samples without exact species affiliation (only Anser sp.) were also positive. The phylogenetic analysis placed the sequences obtained from the birds’ droppings in the clade E. cuniculi from various rodents, wild carnivores and humans. Our results provide the first description of the occurrence and genotyping of the microsporidian E. cuniculi in greater white-fronted geese and in other members of the Anserinae Subfamily. Our findings support the results of other authors that E. cuniculi may originate from diverse sources, including common waterfowl. Our results are important in a One Health context, as wild migrating waterfowl may disseminate this zoonotic agent in remote regions through their migratory behaviour. These species should be considered significant sources of zoonotic pathogens, potentially hazardous to domestic and farmed animals as well as humans. Full article
Show Figures

Figure 1

13 pages, 3346 KiB  
Article
Integrative Transcriptomic and Metabolomic Analysis of Muscle and Liver Reveals Key Molecular Pathways Influencing Growth Traits in Zhedong White Geese
by Kai Shi, Xiao Zhou, Jiuli Dai, Yuefeng Gao, Linna Gao, Yangyang Shen and Shufang Chen
Animals 2025, 15(9), 1341; https://doi.org/10.3390/ani15091341 - 6 May 2025
Viewed by 635
Abstract
Geese (Anser cygnoides) are popular worldwide with consumers for their unique meat quality, egg production, foie gras, and goose down; however, the key genes that influence geese growth remain elusive. To explore the mechanism of geese growth, a total of 500 [...] Read more.
Geese (Anser cygnoides) are popular worldwide with consumers for their unique meat quality, egg production, foie gras, and goose down; however, the key genes that influence geese growth remain elusive. To explore the mechanism of geese growth, a total of 500 Zhedong White geese were raised; four high-weight (HW) and four low-weight (LW) male geese were selected to collect carcass traits and for further transcriptomic and metabolomic analysis. The body weight and average daily gain of HW geese were significantly higher than those of the LW geese (p-value < 0.05), and the yields of the liver, gizzard, glandular stomach, and pancreas showed no significant difference between the HW and the LW group (p-value > 0.05). Compared with the LW geese, 19 differentially expressed genes (DEGs) (i.e., COL11A2, COL22A1, and TF) were detected in the breast muscle from the HW geese, which were involved in the PPAR signaling pathway, adipocytokine signaling pathway, fatty acid biosynthesis, and ferroptosis. A total of 59 differential accumulation metabolites (DAMs), which influence the pathways of glutathione metabolism and vitamin B6 metabolism, were detected in the breast muscle between the HW and LW geese. In the liver, 106 DEGs (i.e., THSD4, CREB3L3, and CNST) and 202 DAMs were found in the livers of the HW and LW groups, respectively. DEGs regulated the pathways of the TGF-beta signaling pathway, pyruvate metabolism, and adipocytokine signaling pathway; DAMs were involved in pyrimidine metabolism, nitrogen metabolism, and phenylalanine metabolism. Correlation analysis between the top DEGs and DAMs revealed that in the breast muscle, the expression levels of COL11A2 and COL22A1 were positively correlated with the content of S-(2-Hydroxy-3-buten-1-yl)glutathione. In the liver, the expression of THSD4 was positively correlated with the content of 2-Hydroxyhexadecanoic acid. In addition, one DEG (LOC106049048) and four DAMs (mogrol, brassidic acid, flabelline, and L-Leucyl-L-alanine) were shared in the breast muscle and liver. These important results contribute to improving the knowledge of goose growth and exploring the effective molecular markers that could be adopted for Zhedong White goose breeding. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

11 pages, 5927 KiB  
Case Report
Osteoma in a Domestic Goose: Radiological and Histopathological Evaluation
by Michał Gesek, Adrianna Michniewicz and Ewa Łukaszuk
Animals 2025, 15(7), 942; https://doi.org/10.3390/ani15070942 - 25 Mar 2025
Viewed by 350
Abstract
The aim of this work was a detailed radiological and histopathological evaluation of a solid tumour that was diagnosed in a 2-year-old goose (Anser domesticus). The radiograph examination showed an osseous change involving the cervical vertebrae. The tumour measuring 15 cm [...] Read more.
The aim of this work was a detailed radiological and histopathological evaluation of a solid tumour that was diagnosed in a 2-year-old goose (Anser domesticus). The radiograph examination showed an osseous change involving the cervical vertebrae. The tumour measuring 15 cm × 10 cm × 9 cm was dense and had well-defined borders, suggesting the presence of calcified bone tissue. Histopathology revealed a well-defined benign neoplasm derived from bone that consisted largely of irregular, disorganized bone trabeculae surrounded by a layer of osteoblasts. The tumour has been classified as an osteoma, which originates from the body of the vertebrae. Osteoma is a benign, well-differentiated tumour with a structure that resembles bone tissue. It presents as a well-demarcated, hard, single tumour that can grow to a considerable size. The aetiology of osteomas in birds remains unclear because of the small number of cases described. Therefore, the influence of factors such as age, breed or sex, trauma, embryonic malformation, infection, developmental disorders, and genetic factors on the development of this type of tumour has not been established. Trauma seems to be the most obvious cause of growth in this case. This work provides valuable information about osteomas in birds, which is important for understanding such neoplasms. Full article
Show Figures

Figure 1

9 pages, 1078 KiB  
Brief Report
Genomic Characterization and Phylogenetic Analysis of Five Avian Influenza H5N1 Subtypes from Wild Anser indicus in Yunnan, China
by Lingsi Yang, Rui Wang, Qi Liu, Taif Shah, Jiuxuan Zhou, Wenhua Zhao, Yixuan Wang, Lulu Deng and Binghui Wang
Vet. Sci. 2025, 12(3), 280; https://doi.org/10.3390/vetsci12030280 - 17 Mar 2025
Viewed by 924
Abstract
Highly pathogenic avian influenza (HPAI) H5 viruses have been found to have a substantial geographic distribution since they were first reported in Guangdong Province, China. The emergence of new genotypes threatens the poultry industry and human health worldwide. Here, we report five HPAI [...] Read more.
Highly pathogenic avian influenza (HPAI) H5 viruses have been found to have a substantial geographic distribution since they were first reported in Guangdong Province, China. The emergence of new genotypes threatens the poultry industry and human health worldwide. Here, we report five HPAI H5N1 variants isolated from Anser indicus in Yunnan Province, China. A phylogenetic analysis of the hemagglutinin (HA) gene showed that all isolates belong to the highly pathogenic H5 clade 2.3.4.4b and formed two distinct genetic clusters. Bayesian phylogenetic analysis also revealed that the viruses were initially disseminated from wild birds to Anser indicus, implying that infected birds most likely contributed to viral transmission in the region. Genomic sequence analysis revealed several amino acid substitutions, also implying that the infected birds contributed to the spread of the virus throughout the region. Substitutions in the HA glycoprotein increased the virus’s binding affinity to human α-2,6 sialic acid residues. Substitutions in the PB1, PA, and PB2 motifs increased viral polymerase activity and replication in hosts, whereas substitutions in the NP, M1, and NS motifs increased viral pathogenicity in chickens and mice. Full article
Show Figures

Figure 1

24 pages, 13230 KiB  
Article
Design, Development, and Qualification of a Broadband Compact S-Band Antenna for a CubeSat Constellation
by Saray Sánchez-Sevilleja, David Poyatos, José Luis Masa-Campos, Víctor Miguel Aragón, José Antonio Rodríguez and Amaia Santiago
Sensors 2025, 25(4), 1237; https://doi.org/10.3390/s25041237 - 18 Feb 2025
Cited by 2 | Viewed by 1083
Abstract
An S-band antenna has been designed, developed, measured, space-qualified, and integrated into the INTA ANSER satellite constellation and the future ANSER-AT mission. This antenna will be part of the space-to-ground communication link for the constellation, which consists of one Leader and two Followers. [...] Read more.
An S-band antenna has been designed, developed, measured, space-qualified, and integrated into the INTA ANSER satellite constellation and the future ANSER-AT mission. This antenna will be part of the space-to-ground communication link for the constellation, which consists of one Leader and two Followers. The novel antenna, mounted on the Leader, has been designed and manufactured with materials and processes specifically tested for space. It features dual circular polarization over a wide band without requiring a phase-shifting network, making it very compact and straightforward. Additionally, its gain patterns are highly stable within the desired band, improving its link capacity compared to the UHF monopole alternative used in the previous Leader. Currently, the antenna has been qualified and installed on INTA’s Leader-S, set to launch in January 2025, as well as on the future ANSER-AT mission. Full article
(This article belongs to the Special Issue Applications of Antenna Technology in Sensors: 2nd Edition)
Show Figures

Figure 1

20 pages, 2314 KiB  
Article
Perpetuation of Avian Influenza from Molt to Fall Migration in Wild Swan Geese (Anser cygnoides): An Agent-Based Modeling Approach
by John Y. Takekawa, Chang-Yong Choi, Diann J. Prosser, Jeffery D. Sullivan, Nyambayar Batbayar and Xiangming Xiao
Viruses 2025, 17(2), 196; https://doi.org/10.3390/v17020196 - 30 Jan 2025
Viewed by 1751
Abstract
Wild waterfowl are considered to be the reservoir of avian influenza, but their distinct annual life cycle stages and their contribution to disease dynamics are not well understood. Studies of the highly pathogenic avian influenza (HPAI) virus have primarily focused on wintering grounds, [...] Read more.
Wild waterfowl are considered to be the reservoir of avian influenza, but their distinct annual life cycle stages and their contribution to disease dynamics are not well understood. Studies of the highly pathogenic avian influenza (HPAI) virus have primarily focused on wintering grounds, where human and poultry densities are high year-round, compared with breeding grounds, where migratory waterfowl are more isolated. Few if any studies of avian influenza have focused on the molting stage where wild waterfowl congregate in a few selected wetlands and undergo the simultaneous molt of wing and tail feathers during a vulnerable flightless period. The molting stage may be one of the most important periods for the perpetuation of the disease in waterfowl, since during this stage, immunologically naïve young birds and adults freely intermix prior to the fall migration. Our study incorporated empirical data from virological field samplings and markings of Swan Geese (Anser cygnoides) on their breeding grounds in Mongolia in an integrated agent-based model (ABM) that included susceptible–exposed–infectious–recovered (SEIR) states. Our ABM results provided unique insights and indicated that individual movements between different molting wetlands and the transmission rate were the key predictors of HPAI perpetuation. While wetland extent was not a significant predictor of HPAI perpetuation, it had a large effect on the number of infections and associated death toll. Our results indicate that conserving undisturbed habitats for wild waterfowl during the molting stage of the breeding season could reduce the risk of HPAI transmission. Full article
Show Figures

Figure 1

10 pages, 876 KiB  
Communication
Application of Minimally Invasive Oral Swab Samples for qPCR-Based Sexing in Neognathae Birds
by Maria-Carmen Turcu, Anamaria Ioana Paștiu, Lucia-Victoria Bel, Anca-Alexandra Doboși and Dana Liana Pusta
Vet. Sci. 2025, 12(1), 73; https://doi.org/10.3390/vetsci12010073 - 20 Jan 2025
Viewed by 1433
Abstract
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial [...] Read more.
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial for their breeders, especially considering that most companion birds do not display clear sexual characteristics. Molecular genetic sexing has been demonstrated to be the most reliable method for determining the sexes of monomorphic birds. The objective of the present study was to demonstrate rapid, effective, and precise identification of sex in birds through quantitative real-time PCR (qPCR) using samples obtained via a minimally invasive technique (oral swabs). This qPCR method assesses variations in gene copy numbers within conserved Z-specific genes such as CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B, which are absent from the W chromosome. A total of 34 samples were included in this study from the following 17 bird species: domestic pigeon (Columba livia domestica), domestic chicken (Gallus gallus domesticus), domestic goose (Anser anser f domesticus), domestic duck (Anas platyrhynchos domesticus), Mute swan (Cygnus olor), Budgerigar (Melopsittacus undulatus), Lovebird (Agapornis roseicollis), Cockatiel (Nymphicus hollandicus), Red-rumped parrot (Psephotus haematonotus), Rose-ringed parakeet (Psittacula krameri), African grey parrot (Psittacus erithacus), domestic Canary (Serinus canaria forma domestica), Goldfinch (Carduelis carduelis major), Gouldian Finch (Chloebia gouldiae), Red Siskin (Carduelis cucullata), Australian Zebra Finch (Taeniopygia castanotis), and Common buzzard (Buteo buteo). The results proved that the CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B genes can reveal the sexes in the Neognath birds tested. Full article
Show Figures

Figure 1

17 pages, 5286 KiB  
Article
Synthesis, Urease Inhibition, Molecular Docking, and Optical Analysis of a Symmetrical Schiff Base and Its Selected Metal Complexes
by Samuel Bonne, Muhammad Saleem, Muhammad Hanif, Joseph Najjar, Salahuddin Khan, Muhammad Zeeshan, Tehreem Tahir, Anser Ali, Changrui Lu and Ting Chen
Molecules 2024, 29(20), 4899; https://doi.org/10.3390/molecules29204899 - 16 Oct 2024
Cited by 3 | Viewed by 2158
Abstract
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking [...] Read more.
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking infections in intracellular and in vivo systems, which requires drug molecules with emissive potential, specifically in the low-energy region. This study comprises the synthesis of a Schiff base ligand and its selected transition metals to evaluate their UV/fluorescence properties, inhibitory activity against urease, and molecular docking. Screening of the symmetrical cage-like ligand and its metal complexes with various eco-friendly transition metals revealed significant urease inhibition potential. The IC50 value of the ligand for urease inhibition was 21.80 ± 1.88 µM, comparable to that of thiourea. Notably, upon coordination with transition metals, the ligand–nickel and ligand–copper complexes exhibited even greater potency than the reference compound, with IC50 values of 11.8 ± 1.14 and 9.31 ± 1.31 µM, respectively. The ligand–cobalt complex exhibited an enzyme inhibitory potential comparable with thiourea, while the zinc and iron complexes demonstrated the least activity, which might be due to weaker interactions with the investigated protein. Meanwhile, all the metal complexes demonstrated a pronounced optical response, which could be utilized for fluorescence-guided targeted drug delivery applications in the future. Molecular docking analysis and IC50 values from in vitro urease inhibition screening showed a trend of increasing activity from compounds 7d to 7c to 7b. Enzyme kinetics studies using the Lineweaver–Burk plot indicated mixed-type inhibition against 7c and non-competitive inhibition against 7d. Full article
Show Figures

Figure 1

13 pages, 25707 KiB  
Article
Distortion-Free Magnetic Tracking of Metal Instruments in Image-Guided Interventions
by Eoin Higgins, Daragh Crowley, Christian van den Bosch and Pádraig Cantillon-Murphy
Sensors 2024, 24(16), 5364; https://doi.org/10.3390/s24165364 - 20 Aug 2024
Viewed by 1365
Abstract
Electromagnetic tracking (EMT) can benefit image-guided interventions in cases where line of sight is unavailable. However, EMT can suffer from electromagnetic distortion in the presence of metal instruments. Metal instruments are widely used in laparoscopic surgery, ENT surgery, arthroscopy and many other clinical [...] Read more.
Electromagnetic tracking (EMT) can benefit image-guided interventions in cases where line of sight is unavailable. However, EMT can suffer from electromagnetic distortion in the presence of metal instruments. Metal instruments are widely used in laparoscopic surgery, ENT surgery, arthroscopy and many other clinical applications. In this work, we investigate the feasibility of tracking such metal instruments by placing the inductive sensor within the instrument shaft. We propose a magnetostatic model of the field within the instrument, and verify the results experimentally for frequencies from 6 kHz to 60 kHz. The impact of the instrument’s dimensions, conductivity and transmitting field frequency is quantified for ranges representative of typical metal instruments used in image-guided interventions. We then performed tracking using the open-source Anser EMT system and quantify the error caused by the presence of the rod as a function of the frequency of the eight emitting coils for the system. The work clearly demonstrates why smaller tool diameters (less than 8 mm) are less susceptible to distortion, as well as identifying optimal frequencies (1 kHz to 2 kHz) for transmitter design to minimise for distortion in larger instruments. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

15 pages, 5819 KiB  
Article
Integrated Lipidomics and Transcriptomics Analyses Reveal Key Regulators of Fat Deposition in Different Adipose Tissues of Geese (Anser cygnoides)
by Maodou Xu, Yaoyao Zhang, Yang Zhang, Qi Xu, Yu Zhang and Guohong Chen
Animals 2024, 14(13), 1990; https://doi.org/10.3390/ani14131990 - 5 Jul 2024
Cited by 4 | Viewed by 1437
Abstract
The fat deposition of different adipose tissues is widely recognized as correlated, with distinct effects on meat quality traits and reproductive performance in poultry. In this study, we utilized lipidomics and transcriptomics analyses to investigate the heterogeneity and regulators of intramuscular fat (IMF), [...] Read more.
The fat deposition of different adipose tissues is widely recognized as correlated, with distinct effects on meat quality traits and reproductive performance in poultry. In this study, we utilized lipidomics and transcriptomics analyses to investigate the heterogeneity and regulators of intramuscular fat (IMF), abdominal fat (AF), and subcutaneous fat (SF) in geese. Lipidomic profiling revealed 165, 129, and 77 differential lipid molecules (DLMs) between AF vs. IMF, SF vs. IMF, and SF vs. AF, respectively, with 47 common DLMs identified between AF vs. IMF and SF vs. IMF. Transcriptomic analysis identified 3369, 5758, and 131 differentially expressed genes (DEGs) between AF vs. IMF, SF vs. IMF, and SF vs. AF, respectively, with 2510 common DEGs identified between AF vs. IMF and SF vs. IMF. The KEGG results indicate that DLMs were predominantly enriched in glycerophospholipid and glycerolipid metabolism pathways, while DEGs were primarily enriched in metabolic pathways. Pearson correlation analysis identified FABP4, LPL, PLCB1, DSE, and PDE5A as potential factors influencing fat deposition. This study elucidates the heterogeneity and regulatory factors of different adipose tissues in geese, offering new insights for targeted improvements in goose meat quality and production efficiency. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

14 pages, 2788 KiB  
Article
Identification of Differentially Expressed Genes and microRNAs in the Gray and White Feather Follicles of Shitou Geese
by Pengyun Guo, Junpeng Chen, Lei Luo, Xumeng Zhang, Xiujin Li, Yunmao Huang, Zhongping Wu and Yunbo Tian
Animals 2024, 14(10), 1508; https://doi.org/10.3390/ani14101508 - 20 May 2024
Cited by 4 | Viewed by 1876
Abstract
The Shitou goose, a highly recognized indigenous breed with gray plumage originating from Chaozhou Raoping in Guangdong Province, China, is renowned for being the largest goose species in the country. Notably, during the pure breeding process of Shitou geese, approximately 2% of the [...] Read more.
The Shitou goose, a highly recognized indigenous breed with gray plumage originating from Chaozhou Raoping in Guangdong Province, China, is renowned for being the largest goose species in the country. Notably, during the pure breeding process of Shitou geese, approximately 2% of the offspring in each generation unexpectedly exhibited white plumage. To better understand the mechanisms underlying white plumage color formation in Shitou geese, we conducted a comparative transcriptome analysis between white and gray feather follicles, aiming to identify key genes and microRNAs that potentially regulate white plumage coloration in this unique goose breed. Our results revealed a number of pigmentation genes, encompassing TYR, TYRP1, EDNRB2, MLANA, SOX10, SLC45A2, GPR143, TRPM1, OCA2, ASIP, KIT, and SLC24A5, which were significantly down-regulated in the white feather follicles of Shitou geese. Among these genes, EDNRB2 and KIT emerged as the most promising candidate genes for white plumage coloration in Shitou geese. Additionally, our analysis also uncovered 46 differentially expressed miRNAs. Of these, miR-144-y may play crucial roles in the regulation of feather pigmentation. Furthermore, the expression of novel-m0086-5p, miR-489-y, miR-223-x, miR-7565-z, and miR-3535-z exhibits a significant negative correlation with the expression of pigmentation genes including TYRP1, EDNRB2, MLANA, SOX10, TRPM1, and KIT, suggesting these miRNAs may indirectly regulate the expression of these genes, thereby influencing feather color. Our findings provide valuable insights into the genetic mechanisms underlying white plumage coloration in Shitou geese and contribute to the broader understanding of avian genetics and coloration research. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
Show Figures

Figure 1

18 pages, 4404 KiB  
Article
Analysis of Genetic Diversity and Population Structure of Endemic Endangered Goose (Anser cygnoides) Breeds Based on Mitochondrial CYTB
by Shangzong Qi, Suyu Fan, Haoyu Li, Yufan He, Yang Zhang, Wenming Zhao, Qi Xu and Guohong Chen
Animals 2024, 14(10), 1480; https://doi.org/10.3390/ani14101480 - 16 May 2024
Cited by 2 | Viewed by 1499
Abstract
The analysis of the genetic diversity and historical dynamics of endemic endangered goose breeds structure has attracted great interest. Although various aspects of the goose breed structure have been elucidated, there is still insufficient research on the genetic basis of endemic endangered Chinese [...] Read more.
The analysis of the genetic diversity and historical dynamics of endemic endangered goose breeds structure has attracted great interest. Although various aspects of the goose breed structure have been elucidated, there is still insufficient research on the genetic basis of endemic endangered Chinese goose breeds. In this study, we collected blood samples from Lingxiang White (LX), Yan (YE), Yangjiang (YJ), Wuzong (WZ), Xupu (XP), and Baizi (BZ) geese (Anser cygnoides) and used Sanger sequencing to determine the partial sequence of the cytochrome b (CYTB) gene in a total of 180 geese. A total of 117 polymorphic sites were detected in the 707 bp sequence of the mtDNA CYTB gene after shearing and correction, accounting for approximately 16.55% of the entire sequence. The AT content (51.03%) of the processed sequence was slightly higher than the GC content (48.97%), indicating a preference for purine bases. The YJ, YE, and WZ breeds had the highest population genetic diversity, with a haplotype diversity greater than 0.9 (Hd > 0.9) and average population nucleotide difference of 8.01 (K > 8.01). A total of 81 haplotypes were detected and divided into six major branches. Among the six goose breeds, there were frequent genetic exchanges among LX, YJ, YE, and WZ geese (Nm > 15.00). We analyzed the distribution of base-mismatch differences in goose breeds and tested their historical dynamics for neutrality in Tajima’s D and Fu’s Fs. For YJ and WZ geese, Tajima’s D > 0, but the difference was not significant (p > 0.05). The actual values for the two breeds exhibited multimodal Poisson distributions. The population patterns of the WZ and YJ geese are purportedly relatively stable, and the breeds have not experienced population expansions or bottleneck effects, which is consistent with the neutrality test results. This study provides new insights into the diverse genetic origins and historical dynamics that sustain endemic endangered goose breeds. Full article
Show Figures

Figure 1

16 pages, 12078 KiB  
Article
Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob
by Xinlei Xu, Suyu Fan, Wangyang Ji, Shangzong Qi, Linyu Liu, Zhi Cao, Qiang Bao, Yang Zhang, Qi Xu and Guohong Chen
Int. J. Mol. Sci. 2024, 25(8), 4166; https://doi.org/10.3390/ijms25084166 - 10 Apr 2024
Viewed by 2090
Abstract
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, [...] Read more.
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, health status, social signaling, and body temperature regulation. However, the genetic mechanisms influencing the growth and development of goose knobs remain completely unclear. In this study, histomorphological and transcriptomic analyses of goose knobs in D70, D120, and D300 Yangzhou geese revealed differential changes in tissue morphology during the growth and development of goose knobs and the key core genes that regulate goose knob traits. Observation of tissue sections revealed that as age increased, the thickness of the knob epidermis, cuticle, and spinous cells gradually decreased. Additionally, fat cells in the dermis and subcutaneous connective tissue transitioned from loose to dense. Transcriptome sequencing results, analyzed through differential expression, Weighted Gene Co-expression Network Analysis (WGCNA), and pattern expression analysis methods, showed D70-vs.-D120 (up-regulated: 192; down-regulated: 423), D70-vs.-D300 (up-regulated: 1394; down-regulated: 1893), and D120-vs.-D300 (up-regulated: 1017; down-regulated: 1324). A total of 6243 differentially expressed genes (DEGs) were identified, indicating varied expression levels across the three groups in the knob tissues of D70, D120, and D300 Yangzhou geese. These DEGs are significantly enriched in biological processes (BP) such as skin morphogenesis, the regulation of keratinocyte proliferation, and epidermal cell differentiation. Furthermore, they demonstrate enrichment in pathways related to goose knob development, including ECM–receptor interaction, NF-kappa B, and PPAR signaling. Through pattern expression analysis, three gene expression clusters related to goose knob traits were identified. The joint analysis of candidate genes associated with goose knob development and WGCNA led to the identification of key core genes influencing goose knob development. These core genes comprise WNT4, WNT10A, TCF7L2, GATA3, ADRA2A, CASP3, SFN, KDF1, ERRFI1, SPRY1, and EVPL. In summary, this study provides a reference for understanding the molecular mechanisms of goose knob growth and development and provides effective ideas and methods for the genetic improvement of goose knob traits. Full article
Show Figures

Figure 1

14 pages, 5802 KiB  
Article
Analysis of Chicken IFITM3 Gene Expression and Its Effect on Avian Reovirus Replication
by Hongyu Ren, Sheng Wang, Zhixun Xie, Lijun Wan, Liji Xie, Sisi Luo, Meng Li, Zhiqin Xie, Qing Fan, Tingting Zeng, Yanfang Zhang, Minxiu Zhang, Jiaoling Huang and You Wei
Viruses 2024, 16(3), 330; https://doi.org/10.3390/v16030330 - 21 Feb 2024
Cited by 2 | Viewed by 2218
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) is an antiviral factor that plays an important role in the host innate immune response against viruses. Previous studies have shown that IFITM3 is upregulated in various tissues and organs after avian reovirus (ARV) infection, which suggests that [...] Read more.
Interferon-inducible transmembrane protein 3 (IFITM3) is an antiviral factor that plays an important role in the host innate immune response against viruses. Previous studies have shown that IFITM3 is upregulated in various tissues and organs after avian reovirus (ARV) infection, which suggests that IFITM3 may be involved in the antiviral response after ARV infection. In this study, the chicken IFITM3 gene was cloned and analyzed bioinformatically. Then, the role of chicken IFITM3 in ARV infection was further explored. The results showed that the molecular weight of the chicken IFITM3 protein was approximately 13 kDa. This protein was found to be localized mainly in the cytoplasm, and its protein structure contained the CD225 domain. The homology analysis and phylogenetic tree analysis showed that the IFITM3 genes of different species exhibited great variation during genetic evolution, and chicken IFITM3 shared the highest homology with that of Anas platyrhynchos and displayed relatively low homology with those of birds such as Anser cygnoides and Serinus canaria. An analysis of the distribution of chicken IFITM3 in tissues and organs revealed that the IFITM3 gene was expressed at its highest level in the intestine and in large quantities in immune organs, such as the bursa of Fabricius, thymus and spleen. Further studies showed that the overexpression of IFITM3 in chicken embryo fibroblasts (DF-1) could inhibit the replication of ARV, whereas the inhibition of IFITM3 expression in DF-1 cells promoted ARV replication. In addition, chicken IFITM3 may exert negative feedback regulatory effects on the expression of TBK1, IFN-γ and IRF1 during ARV infection, and it is speculated that IFITM3 may participate in the innate immune response after ARV infection by negatively regulating the expression of TBK1, IFN-γ and IRF1. The results of this study further enrich the understanding of the role and function of chicken IFITM3 in ARV infection and provide a theoretical basis for an in-depth understanding of the antiviral mechanism of host resistance to ARV infection. Full article
(This article belongs to the Special Issue Recent Advances of Avian Viruses Research)
Show Figures

Figure 1

12 pages, 3558 KiB  
Case Report
Poisoning by Nerium oleander L. in Franconia Geese
by Nicola Pugliese, Antonella Tinelli, Giuseppe Crescenzo, Maria Nieddu, Elena Baralla, Antonella Schiavone, Nicola Zizzo, Rossella Samarelli, Filomena Dessì, Elena Circella, Claudia Zizzadoro, Medhat S. Saleh and Antonio Camarda
Animals 2024, 14(4), 612; https://doi.org/10.3390/ani14040612 - 14 Feb 2024
Viewed by 2344
Abstract
This study describes the acute poisoning of four 3-month-old Franconia geese (Anser anser) by oleander plants (Nerium oleander). After the accidental ingestion of oleander clippings, the geese exhibited a rapid onset of severe symptoms, leading to mortality within 15–90 [...] Read more.
This study describes the acute poisoning of four 3-month-old Franconia geese (Anser anser) by oleander plants (Nerium oleander). After the accidental ingestion of oleander clippings, the geese exhibited a rapid onset of severe symptoms, leading to mortality within 15–90 min. Necropsy revealed cardiac and renal lesions. Specifically, interstitial edema, red blood cell infiltration, and myofibril loss were observed in the cardiac muscle, and tubular epithelial degeneration, interstitial edema, and hemorrhages were evident in the kidneys. Oleandrin, a glycoside with cardiac effects, was detected in the liver, kidneys, heart, brain, and muscles. The clinical implications underscore the urgency of veterinary intervention upon oleander ingestion, and the specific findings contribute valuable insights into the pathological effects of acute oleander poisoning in geese, aiding veterinarians in prompt diagnosis and treatment. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

Back to TopTop