Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = AlLi phases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 570 KiB  
Review
Healthcare Complexities in Neurodegenerative Proteinopathies: A Narrative Review
by Seyed-Mohammad Fereshtehnejad and Johan Lökk
Healthcare 2025, 13(15), 1873; https://doi.org/10.3390/healthcare13151873 - 31 Jul 2025
Viewed by 237
Abstract
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences [...] Read more.
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences for patients, caregivers, and healthcare systems. This review aims to synthesize evidence on the healthcare complexities of major neurodegenerative proteinopathies to highlight current knowledge gaps, and to inform future care models, policies, and research directions. Methods: We conducted a comprehensive literature search in PubMed/MEDLINE using combinations of MeSH terms and keywords related to neurodegenerative diseases, proteinopathies, diagnosis, sex, management, treatment, caregiver burden, and healthcare delivery. Studies were included if they addressed the clinical, pathophysiological, economic, or care-related complexities of aging-related neurodegenerative proteinopathies. Results: Key themes identified include the following: (1) multifactorial and unclear etiologies with frequent co-pathologies; (2) long prodromal phases with emerging biomarkers; (3) lack of effective disease-modifying therapies; (4) progressive nature requiring ongoing and individualized care; (5) high caregiver burden; (6) escalating healthcare and societal costs; and (7) the critical role of multidisciplinary and multi-domain care models involving specialists, primary care, and allied health professionals. Conclusions: The complexity and cost of neurodegenerative proteinopathies highlight the urgent need for prevention-focused strategies, innovative care models, early interventions, and integrated policies that support patients and caregivers. Prevention through the early identification of risk factors and prodromal signs is critical. Investing in research to develop effective disease-modifying therapies and improve early detection will be essential to reducing the long-term burden of these disorders. Full article
Show Figures

Figure 1

20 pages, 310 KiB  
Article
Risk of SARS-CoV-2 Reinfections Among Healthcare Workers of Four Large University Hospitals in Northern Italy: Results of an Online Survey Within the ORCHESTRA Project
by Filippo Liviero, Anna Volpin, Patrizia Furlan, Silvia Cocchio, Vincenzo Baldo, Sofia Pavanello, Angelo Moretto, Fabriziomaria Gobba, Alberto Modenese, Marcella Mauro, Francesca Larese Filon, Angela Carta, Maria Grazia Lourdes Monaco, Gianluca Spiteri, Stefano Porru and Maria Luisa Scapellato
Vaccines 2025, 13(8), 815; https://doi.org/10.3390/vaccines13080815 (registering DOI) - 31 Jul 2025
Viewed by 172
Abstract
Background/Objectives: This retrospective multicenter study, conducted within the ORCHESTRA Project, investigated SARS-CoV-2 reinfections among 5777 healthcare workers (HCWs) from four University Hospitals (Modena, Verona, Padova and Trieste) in northern Italy, aiming to assess the risk of reinfection and its determinants, comparing the clinical [...] Read more.
Background/Objectives: This retrospective multicenter study, conducted within the ORCHESTRA Project, investigated SARS-CoV-2 reinfections among 5777 healthcare workers (HCWs) from four University Hospitals (Modena, Verona, Padova and Trieste) in northern Italy, aiming to assess the risk of reinfection and its determinants, comparing the clinical characteristics of reinfections with those of first infections, and examining the impact of preventive measures and vaccination strategies. Methods: HCWs completed an online questionnaire between June and August 2022. The survey collected demographic, occupational, and clinical data, including information on first infections and reinfections. Statistical analyses were performed using SPSS 28.0, through bivariate and multivariate approaches. Results: Response rates were 41.8% for Modena, 39.5% for Verona, 17.9% for Padova, and 17.4% for Trieste. Among the respondents, 4.8% (n = 276) experienced 2 infections and 0.5% (n = 27) reported 3 infections, out of a total of 330 reinfection cases. Additionally, 43.0% (n = 2787) reported only one infection, while 51.5% were never infected. Reinfection rates increased across five study phases (based on the epidemiological context), likely due to the emergence of new SARS-CoV-2 variants. A booster vaccine dose significantly reduced reinfection risk. Higher reinfection risk was found among HCWs aged ≤30 years, those with chronic respiratory diseases, and those working in COVID-19 wards, particularly nurses and allied health professionals. Reinfections were associated with a lower frequency of symptoms both during the period of swab positivity and after a negative swab, as well as with a shorter duration of swab positivity. No significant differences in symptom duration were found between first infections and reinfections. Conclusions: Despite its limitations, the online questionnaire proved a useful tool. Natural infection and vaccination reduced both reinfection risk and symptom severity. Prior infections should be considered in planning vaccination schedules and prioritizing HCWs. Full article
(This article belongs to the Special Issue Vaccination and Public Health in the 21st Century)
23 pages, 9108 KiB  
Article
COx-Free Hydrogen Production via CH4 Decomposition on Alkali-Incorporated (Mg, La, Ca, Li) Ni-Al Catalysts
by Morgana Rosset, Yan Resing Dias, Liliana Amaral Féris and Oscar William Perez-Lopez
Nanoenergy Adv. 2025, 5(3), 10; https://doi.org/10.3390/nanoenergyadv5030010 - 30 Jul 2025
Viewed by 160
Abstract
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation [...] Read more.
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation during catalytic methane decomposition (CMD). The catalysts were evaluated by two activation methods: H2 reduction and direct heating with CH4. The MgNA-R catalyst achieved the highest CH4 conversion (65%) at 600 °C when reduced with H2, attributed to a stronger Ni-Al interaction. Under CH4 activation, LaNA-C achieved a 55% conversion at the same temperature, associated with a smaller crystallite size and higher reducibility due to La incorporation. Although all catalysts deactivated due to carbon deposition and/or sintering, LaNA-C was the only sample that could resist deactivation for a longer period, as La appears to have a protective effect on the active phase. Post-reaction characterizations revealed the formation of graphitic and filamentous carbon. Raman spectroscopy exhibited a higher degree of graphitization and structural order in LaNA-C, whereas SEM showed a more uniform distribution of carbon filaments. TEM confirmed the presence of multi-walled carbon nanotubes with encapsulated Ni particles in La-promoted samples. These results demonstrate that La addition improves the catalytic performance under CH4 activation and carbon structure. This finding offers a practical advantage for CMD processes, as it reduces or eliminates the need to use hydrogen during catalyst activation. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Graphical abstract

16 pages, 5933 KiB  
Article
Chemical Peculiarities of Quartz from Peralkaline Granitoids
by Karel Breiter, Jindřich Kynický, Michaela Vašinová Galiová and Michaela Hložková
Minerals 2025, 15(8), 790; https://doi.org/10.3390/min15080790 - 28 Jul 2025
Viewed by 236
Abstract
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends [...] Read more.
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends in their evolution and to compare this content with published data from granitoids of other geochemical types. The evaluation of about 1100 analyses found the studied trace elements mostly in ranges <0.01–18 ppm Li (median 2.41 ppm), 1.2–77 ppm Ti (median 8.2 ppm), 8.3–163 ppm Al (median 42 ppm) and 0.05–5.7 ppm Ge (median 0.98 ppm) (in all cases 5% of the lowest and 5% of the highest values were omitted). Quartz from geochemically less evolved riebeckite-bearing granite plutons shows no Ti/Ge fractionation and displays either a positive Ti–Al correlation or no Ti–Al correlation. More fractionated and potentially mineralized peralkaline magmatic systems were formed within two distinct magmatic episodes: quartz from the older phases is relatively Ti-rich and evolved via Ti decrease with no possible Ge enrichment, while quartz from younger phases is Ti-poor from the beginning and has the ability of enrichment in Al and Ge. Relative enrichment in Al and increase in Ge/Ti value of quartz can serve as a supporting method for the identification of potentially ore-bearing magmatic systems. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

35 pages, 638 KiB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Viewed by 534
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

11 pages, 2553 KiB  
Article
Effect of Ni2+ Doping on the Crystal Structure and Properties of LiAl5O8 Low-Permittivity Microwave Dielectric Ceramics
by Xuekai Lan, Huatao Tang, Bairui Chen and Bin Tian
Ceramics 2025, 8(3), 85; https://doi.org/10.3390/ceramics8030085 - 4 Jul 2025
Viewed by 187
Abstract
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized [...] Read more.
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized via a solid-state reaction method to investigate the effects of Ni2+ substitution on crystal structure, microstructure, and dielectric properties. X-ray diffraction and Rietveld refinement reveal a phase transition from the P4332 to the Fd3m spinel structure at x ≈ 0.3, accompanied by a systematic increase in the lattice parameter (7.909–7.975 Å), attributed to the larger ionic radius of Ni2+ compared to Al3+. SEM analysis confirms dense microstructures with relative densities exceeding 95% and grain size increases from less than 1 μm at x = 0.1 to approximately 2 μm at x = 0.5. Dielectric measurements show a decrease in permittivity (εr) from 8.24 to 7.77 and in quality factor (Q × f) from 34,605 GHz to 20,529 GHz with increasing Ni content, while the temperature coefficient of the resonant frequency (τf) shifts negatively from −44.8 to −69.1 ppm/°C. Impedance spectroscopy indicates increased conduction losses and reduced activation energy with higher Ni2+ concentrations. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

117 pages, 10736 KiB  
Review
Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries
by Alain Mauger and Christian M. Julien
Batteries 2025, 11(7), 254; https://doi.org/10.3390/batteries11070254 - 4 Jul 2025
Viewed by 903
Abstract
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x [...] Read more.
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x ≥ 0.6, have emerged as key cathode materials in lithium-ion batteries due to their high operating voltage and superior energy density. These materials, characterized by low cobalt content, offer a promising path toward sustainable and cost-effective energy storage solutions. However, their electrochemical performance remains below theoretical expectations, primarily due to challenges related to structural instability, limited thermal safety, and suboptimal cycle life. Intensive research efforts have been devoted to addressing these issues, resulting in substantial performance improvements and enabling the development of next-generation lithium-ion batteries with higher nickel content and reduced cobalt dependency. In this review, we present recent advances in material design and engineering strategies to overcome the problems limiting their electrochemical performance (cation mixing, phase stability, oxygen release, microcracks during cycling). These strategies include synthesis methods to optimize the morphology (size of the particles, core–shell and gradient structures), surface modifications of the Ni-rich particles, and doping. A detailed comparison between these strategies and the synergetic effects of their combination is presented. We also highlight the synergistic role of compatible lithium salts and electrolytes in achieving state-of-the-art nickel-rich lithium-ion batteries. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

18 pages, 419 KiB  
Article
SUPPORT MY WAY: Supporting Young People After Treatment for Cancer: What Is Needed, When This Is Needed and How This Can Be Best Delivered
by Nicole Collaço, Charlotte Ralph, Peter Dawes, Anne-Sophie Darlington, Andrew Davies, Ramya Ramanujachar, Louise Hooker and Samantha Sodergren
Curr. Oncol. 2025, 32(6), 361; https://doi.org/10.3390/curroncol32060361 - 19 Jun 2025
Viewed by 348
Abstract
As survival rates for teenagers and young adults (TYAs) with cancer exceed 80%, they are living longer post treatment, yet often experience prolonged health and quality of life concerns. Many TYAs also experience unmet support needs. This study aimed to identify TYAs support [...] Read more.
As survival rates for teenagers and young adults (TYAs) with cancer exceed 80%, they are living longer post treatment, yet often experience prolonged health and quality of life concerns. Many TYAs also experience unmet support needs. This study aimed to identify TYAs support needs following treatment at a UK hospital and explore how and when TYAs prefer to receive support. This study involved two phases: Phase 1 involved semi-structured interviews with 16 TYAs, 1–6 years post-treatment, aged 16–25 years at time of treatment completion and examined their experiences of support services, and preferences for future care. Phase 2 consisted of co-design workshops with eight TYAs and feedback from five healthcare/allied professionals (HCAPs) to refine and develop recommendations. Phase 1 findings revealed six key themes: (1) survivorship as disrupted continuity; (2) negotiating legitimacy and relational safety in help seeking; (3) support offered vs. support sought: pathways of referral and self-initiation; (4) emotional readiness as context dependent and non-linear; (5) support as an ecosystem, not a moment; and (6) personalised autonomy in support engagement. Phase 2 findings informed recommendations that emphasise the importance of flexible, personalised, and accessible post-treatment support, with pathways of care/support that can adapt to TYAs changing needs and preferences over time. Full article
(This article belongs to the Special Issue Quality of Life and Follow-Up Care Among AYA Cancer Survivors)
Show Figures

Figure 1

21 pages, 6028 KiB  
Article
A Comprehensive Framework for the Development of a Compact, Cost-Effective, and Robust Hyperspectral Camera Using COTS Components and a VPH Grism
by Sukrit Thongrom, Panuwat Pengphorm, Surachet Wongarrayapanich, Apirat Prasit, Chanisa Kanjanasakul, Wiphu Rujopakarn, Saran Poshyachinda, Chalongrat Daengngam and Nawapong Unsuree
Sensors 2025, 25(12), 3631; https://doi.org/10.3390/s25123631 - 10 Jun 2025
Viewed by 664
Abstract
Hyperspectral imaging (HSI) is an effective technique for material identification and classification, utilizing spectral signatures with applications in remote sensing, environmental monitoring, and allied disciplines. Despite its potential, the broader adoption of HSI technology is hindered by challenges related to compactness, affordability, and [...] Read more.
Hyperspectral imaging (HSI) is an effective technique for material identification and classification, utilizing spectral signatures with applications in remote sensing, environmental monitoring, and allied disciplines. Despite its potential, the broader adoption of HSI technology is hindered by challenges related to compactness, affordability, and durability, exacerbated by the absence of standardized protocols for developing practical hyperspectral cameras. This study introduces a comprehensive framework for developing a compact, cost-effective, and robust hyperspectral camera, employing commercial off-the-shelf (COTS) components and a volume phase holographic (VPH) grism. The use of COTS components reduces development time and manufacturing costs while maintaining adequate performance, thereby improving accessibility for researchers and engineers. The incorporation of a VPH grism enables an on-axis optical design, enhancing compactness, reducing alignment sensitivity, and improving system robustness. The proposed framework encompasses spectrograph design, including optical simulations and tolerance analysis conducted in ZEMAX OpticStudio, alongside assembly procedures, performance assessment, and hyperspectral image acquisition via a pushbroom scanning approach, all integrated into a structured, step-by-step workflow. The resulting prototype, housed in an aluminum enclosure, operates within the 420–830 nm wavelength range, achieving a spectral resolution of 2 nm across 205 spectral bands. It effectively differentiates vegetation, water, and built structures, resolves atmospheric absorption features, and demonstrates the ability to distinguish materials in low-light conditions, providing a scalable and practical advancement in HSI technology. Full article
(This article belongs to the Topic Hyperspectral Imaging and Signal Processing)
Show Figures

Figure 1

17 pages, 3255 KiB  
Article
Novel Aerogel Structure of β-Eucryptite: Featuring Low Density, High Specific Surface Area, and Negative Thermal Expansion Coefficient
by Haoren Ma, Sijia Liu, Jinyi Ren, Xiaochan Liu, Weiyi Zhang, Ying Zhu, Zhipeng Yuan, Jinxu Zhu and Xibin Yi
Gels 2025, 11(6), 440; https://doi.org/10.3390/gels11060440 - 9 Jun 2025
Viewed by 905
Abstract
Traditional β-eucryptite (LiAlSiO4) is renowned for its unique characteristics of low thermal expansion and high temperature thermal stability, making it an ideal material for precision instruments and aerospace applications. In this study, β-eucryptite was fabricated into an aerogel structure through the [...] Read more.
Traditional β-eucryptite (LiAlSiO4) is renowned for its unique characteristics of low thermal expansion and high temperature thermal stability, making it an ideal material for precision instruments and aerospace applications. In this study, β-eucryptite was fabricated into an aerogel structure through the sol–gel process and supercritical drying method and using alumina sol as a cost-effective precursor. The synthesized β-eucryptite aerogel demonstrated unique properties including a negative thermal expansion coefficient (−7.85 × 10−6 K−1), low density (0.60 g/cm3), and high specific surface area (18.1 m2/g). X-ray diffraction (XRD) and transmission electron microscopy (TEM) mutually corroborated the crystalline structure of β-eucryptite, with XRD confirming the phase purity and TEM imaging revealing well-defined crystal lattice characteristics. Combined nitrogen adsorption–desorption analysis and scanning electron microscopy observations supported the hierarchical porous microstructure, with SEM visualizing interconnected nanoporous networks and nitrogen sorption data verifying the porosity. The negative thermal expansion behavior was directly linked to the β-eucryptite crystal structure, as collectively validated by thermal expansion measurements. Additionally, Fourier transform infrared spectroscopy (FTIR) independently confirmed the aluminosilicate framework structure through characteristic vibrational modes. This research shows the innovation in the synthesis of β-eucryptite aerogel, especially its application potential in precision instruments and building materials that need low thermal expansion and high stability, and the use of aluminum sol as an aluminum source has simplified the preparation steps and reduced production costs. Full article
Show Figures

Figure 1

14 pages, 4608 KiB  
Article
Comparative Analysis on Carbon Mitigation by High-Temperature Lithium Adsorption Systems
by Hong Du, Jiaqi Ruan, Yunlin Li and Changlei Qin
Energies 2025, 18(11), 2817; https://doi.org/10.3390/en18112817 - 28 May 2025
Viewed by 307
Abstract
High-temperature adsorption is a promising technology for carbon mitigation, and it can be applied in direct carbon capture and the integration with utilization. Lithium-based adsorbents, known for their high CO2 uptake and rapid kinetics, have garnered significant interest. However, adsorption performance, cycling [...] Read more.
High-temperature adsorption is a promising technology for carbon mitigation, and it can be applied in direct carbon capture and the integration with utilization. Lithium-based adsorbents, known for their high CO2 uptake and rapid kinetics, have garnered significant interest. However, adsorption performance, cycling stability, and degradation behavior of this type of adsorbent are rarely reported and compared under comparable conditions. In this work, nine lithium-based adsorbents were synthesized and characterized for their physicochemical properties. Dynamic and isothermal thermogravimetric analysis were conducted to determine adsorption/desorption equilibrium temperatures, evaluate CO2 adsorption characteristics under varying thermal conditions, and assess cycling stability over 20 adsorption–desorption cycles. The results reveal exceptional initial CO2 capacities for α-Li5AlO4, Li5GaO4, Li5FeO4, and Li6ZnO4; however, these values decline to 30.2 wt.%, 24.3 wt.%, 41.6 wt.%, and 44.2 wt.% after cycling. In contrast, Li2CuO2 and Li4SiO4 exhibit lower initial capacities but possess superior cycling stability with final values of 21 wt.% and 21.6 wt.%. Phase composition and microstructural analysis identify lithium carbonate and metal oxides as primary products, and microstructural sintering was observed during cycling. This study could provide insights into the trade-offs between the initial capacity and cycling stability of lithium-based adsorbents, offering guidelines for adsorbent optimization through doping or pore engineering to advance high-temperature CO2 capture technologies. Full article
(This article belongs to the Special Issue Materials for CO2 Capture and Conversion)
Show Figures

Figure 1

20 pages, 6287 KiB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Cited by 1 | Viewed by 473
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

17 pages, 3655 KiB  
Article
Potential Function-Based Molecular Dynamics Simulation of Al-Cu-Li Alloys and Comparison with Experiments
by Fei Chen, Han Wang, Yu Liu, Liangtao Qi and Quanqing Zeng
Materials 2025, 18(11), 2420; https://doi.org/10.3390/ma18112420 - 22 May 2025
Viewed by 446
Abstract
Due to their excellent specific strength and lightweight characteristics, Al-Cu-Li alloys are widely used in aerospace applications. The newly developed three-stage creep aging (CA) process ensures both the formability and high performance of the Al alloy. However, research at the atomic scale investigating [...] Read more.
Due to their excellent specific strength and lightweight characteristics, Al-Cu-Li alloys are widely used in aerospace applications. The newly developed three-stage creep aging (CA) process ensures both the formability and high performance of the Al alloy. However, research at the atomic scale investigating the relationship between the microstructure and performance of ternary alloys under intricate heat treatment conditions remains scarce. This study investigates the microstructural evolution of Al-Cu-Li alloys during multi-stage low-high-low temperature CA experiments, combined with molecular dynamics (MD) simulations based on the neuroevolutionary machine learning potential (NEP) function. The simulation results indicate that the segregation state of lithium atoms at low temperatures is unstable and cannot persist at elevated temperatures. As the aging temperature in the second stage increases, the segregation of lithium atoms gradually diminishes. However, the low-temperature aging in the third stage facilitates continued atomic segregation, although the recovery is somewhat limited. Additionally, it was observed that high-temperature aging in the second stage reduces the material’s performance, while the low-temperature aging in the third stage contributes to the recovery of its properties. The experimental results indicate that the degree of precipitation phase enrichment decreases with the increase in temperature during the second stage but slightly increases with the low-temperature aging in the third stage. The excellent agreement between the experimental and simulation results validates the reliability of the MD simulations, providing a valuable reference for the performance enhancement and microstructural optimization of Al-Cu-Li alloys. Full article
Show Figures

Figure 1

20 pages, 20484 KiB  
Article
Effect of Cu/Li Ratio on Mechanical Properties and Corrosion Behavior of Sc-Containing Al-Cu-Li Alloys
by Changlin Li, Xiwu Li, Yongan Zhang, Kai Wen, Lizhen Yan, Ying Li, Yanan Li, Mingyang Yu, Guanjun Gao, Hongwei Yan, Zhihui Li and Baiqing Xiong
Materials 2025, 18(10), 2254; https://doi.org/10.3390/ma18102254 - 13 May 2025
Cited by 1 | Viewed by 352
Abstract
In this work, the effects of the Cu/Li ratio on the mechanical properties and corrosion behavior of Sc-containing Al-Cu-Li alloys were systematically investigated by utilizing age-hardening behavior, tensile property, corrosion behavior, and electrochemical behavior, complemented by microstructural characterization through EBSD and TEM. The [...] Read more.
In this work, the effects of the Cu/Li ratio on the mechanical properties and corrosion behavior of Sc-containing Al-Cu-Li alloys were systematically investigated by utilizing age-hardening behavior, tensile property, corrosion behavior, and electrochemical behavior, complemented by microstructural characterization through EBSD and TEM. The results show that the peak aging strength of the alloys remained relatively consistent but slightly decreased with the decrease in Cu/Li ratio, and the yield strengths were 585 MPa, 578 MPa, and 573 MPa, respectively. The changes in the Cu/Li ratio caused different matching patterns of precipitates in the peak aging alloys. The cumulative precipitation strengthening by T1, θ′, δ′, and S′ phases are equal within the alloys with different Cu/Li ratios. However, the strength contribution of the T1 phase decreases from 81% to 66% with the decrease in the Cu/Li ratio. Concurrently, the precipitates of LAGBs gradually increase in number and are continuously distributed, and the precipitates of HAGBs become larger in size with lower Cu content as the Cu/Li ratio decreases, all of which leads to a weakening of the intergranular corrosion (IGC) resistance within the low Cu/Li ratio alloy. Full article
Show Figures

Graphical abstract

17 pages, 7302 KiB  
Article
Influence of Cu Content on Precipitation Behavior and Mechanical Properties Under Aging Treatment of Al-Cu-Li Alloys
by Pengcheng Chen, Xiwu Li, Haitao Lin, Kai Wen, Ying Li, Shuyan Wang, Chenyang Xun, Changlin Li, Lizhen Yan, Yongan Zhang and Baiqing Xiong
Materials 2025, 18(10), 2172; https://doi.org/10.3390/ma18102172 - 8 May 2025
Viewed by 544
Abstract
The influence of Cu content (3.10, 3.50, and 3.80 wt.%) on the precipitation behavior and mechanical properties of Al-Cu-Li alloys under two aging conditions (direct aging at 175 °C vs. 3.5% pre-stretching followed by aging at 155 °C) was systematically investigated. The alloys [...] Read more.
The influence of Cu content (3.10, 3.50, and 3.80 wt.%) on the precipitation behavior and mechanical properties of Al-Cu-Li alloys under two aging conditions (direct aging at 175 °C vs. 3.5% pre-stretching followed by aging at 155 °C) was systematically investigated. The alloys were characterized using hardness testing, tensile property evaluation, and transmission electron microscopy (TEM) to correlate microstructural evolution with performance. The results revealed that increased Cu content accelerated early-stage hardening kinetics and elevated peak hardness and strength. Aging at 175 °C/36 h produced T1 phase-dominated microstructures with θ′ phases. With the increase of Cu content, the enhancement effect on the precipitation of T1 and θ′ phases becomes more pronounced, gradually overshadowing the initial promotion effect on precipitate growth. Pre-deformation prior to 155 °C/36 h aging induced significant T1 phase refinement and proliferation, with increasing Cu content continuously reducing T1 phase sizes while moderately enlarging θ′ precipitates. Precipitation-strengthening analysis revealed a transition in T1 strengthening from bypass to shearing dominance under 155 °C/36 h aging after pre-deformation, enhanced by Cu-promoted T1 refinement, which collectively drove superior strength in high-Cu alloys. These findings provide valuable insights for the composition design and mechanical property optimization of Al-Cu-Li alloys. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop