Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = Al0.5CoCrFeNi HEA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 14631 KB  
Article
Influences of (Al, Si) Equi-Molar Co-Addition on Microstructure, Mechanical Properties and Corrosion Resistance of Co-Free Fe-Rich High Entropy Alloys
by Shufeng Xie, Ziming Chen, Chuanming Qiao, Wanwan Sun, Yanzhe Wang, Junyang Zheng, Xiaoyu Wu, Lingjie Chen, Bin Kong, Chen Chen, Kangwei Xu and Jiajia Tian
Metals 2026, 16(1), 92; https://doi.org/10.3390/met16010092 - 14 Jan 2026
Viewed by 241
Abstract
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs [...] Read more.
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs on microstructure, mechanical properties, and corrosion resistance were systematically investigated. It is found that equi-molar (Al, Si) co-addition could cause the phase formation from FCC to FCC + BCC, while the morphologies of the phases change from dendrite-type to sideplate-type. Moreover, trade-off between strength and plasticity occurs with the increase in (Al, Si) co-addition, and the production of ultimate tensile strength and plasticity reaches the highest value when x = 0.12, while there exists a narrow region for x values to realize excellent comprehensive mechanical properties. In addition, similar corrosion resistance in 3.5 wt.% NaCl solution higher than 316L stainless steel could be realized in the HEAs with x = 0.12 and 0.14, while the latter one is slightly lower in pitting corrosion and the width of passive region, which is possibly caused by the increase in the density of phase boundaries. This work provides a novel insight on designing high-performance cost-effective Fe-rich and (Al, Si)-containing (Fe-Cr-Ni)-based HEAs combining high mechanical properties and corrosion resistance. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

14 pages, 2886 KB  
Article
First-Principle Study of AlCoCrFeNi High-Entropy Alloys
by Andi Huang, Yilong Liu, Jinghao Huang, Jingang Liu and Shiping Yang
Nanomaterials 2026, 16(1), 20; https://doi.org/10.3390/nano16010020 - 23 Dec 2025
Viewed by 498
Abstract
AlCoCrFeNi high-entropy alloys (HEAs) are promising materials due to their exceptional mechanical properties and thermal stability. This study employs first-principles calculations based on density functional theory (DFT) to investigate the phase stability and electronic properties of AlCoCrFeNi HEA. The atomic size difference ( [...] Read more.
AlCoCrFeNi high-entropy alloys (HEAs) are promising materials due to their exceptional mechanical properties and thermal stability. This study employs first-principles calculations based on density functional theory (DFT) to investigate the phase stability and electronic properties of AlCoCrFeNi HEA. The atomic size difference (δ) was determined to be 5.44%, while the mixing enthalpy (ΔHmix) was found to be −14.24 kJ/mol, and the valence electron concentration (VEC) was measured at 7.2, indicating a dual-phase structure consisting of the BCC and B2 phases. The formation energies indicated that the BCC phase exhibits the highest stability under typical conditions. The elastic properties were assessed, revealing Young’s modulus of 250 GPa, a shear modulus of 100 GPa, and a bulk modulus of 169 GPa, which suggest high stiffness. The alloy demonstrated a Poisson’s ratio of 0.25 and a G/B ratio of 0.59, indicating relatively brittle behavior. Microhardness simulations predicted a value of 604 HV0.2, which closely aligns with experimental measurements of 602 HV0.2 at 1300 W laser power, 532 HV0.2 at 1450 W, and 544 HV0.2 at 1600 W. The electronic structure analysis revealed metallic behavior, with the d-orbitals of Co, Fe, and Ni contributing significantly to the electronic states near the Fermi level. These findings offer valuable insights into the phase behavior and mechanical properties of AlCoCrFeNi HEA, which are crucial for the design of high-performance materials suitable for extreme engineering applications. Full article
(This article belongs to the Special Issue Nano-Based Advanced Thermoelectric Design: 2nd Edition)
Show Figures

Figure 1

16 pages, 10448 KB  
Article
Combined Centrifugal Casting–Self-Propagating High-Temperature Synthesis Process of High-Entropy Alloys FeCoNiCu(Me)Al (Me = Cr, Cr + Mn, Cr + La, and Cr + Ce) as Precursors for Preparation of Deep Oxidation Catalysts
by Elena Pugacheva, Denis Ikornikov, Alina Sivakova, Ksenia Romazeva, Dmitrii Andreev, Olga Golosova, Vyacheslav Borshch and Vladimir Sanin
Metals 2025, 15(12), 1381; https://doi.org/10.3390/met15121381 - 16 Dec 2025
Viewed by 417
Abstract
FeCoNiCu(Cr, Mn, La, Ce)-Al high-entropy alloys (HEAs) were prepared via a combined centrifugal casting–self-propagating high-temperature synthesis process to serve as multifunctional catalyst precursors. The findings indicated that even with aluminum content reaching 50 wt %, the typical bcc structure inherent to HEAs was [...] Read more.
FeCoNiCu(Cr, Mn, La, Ce)-Al high-entropy alloys (HEAs) were prepared via a combined centrifugal casting–self-propagating high-temperature synthesis process to serve as multifunctional catalyst precursors. The findings indicated that even with aluminum content reaching 50 wt %, the typical bcc structure inherent to HEAs was preserved. Doping additions (Cr, Mn, La, and Ce) led to pronounced microstructural changes, including alterations in morphology, porosity, and elemental distribution, while the primary phase constituents of the FeCoNiCuAl-based alloys remained consistent. It was found that La and Ce exhibited poor bulk incorporation into the HEAs, evidenced by a low surface content. Aluminum leaching and hydrogen peroxide stabilization converted these precursors into catalysts. These catalysts demonstrated high activity in the deep oxidation of propane and CO. The FeCoNiCu catalyst achieved the best results for CO oxidation, reaching 100% CO conversion at 250 °C. For propane oxidation, the FeCoNiCuCrMn catalyst was the most active, yielding 100% CO conversion at 300 °C and 97% propane conversion at 400 °C. Full article
Show Figures

Figure 1

55 pages, 3943 KB  
Review
Latest Advancements and Mechanistic Insights into High-Entropy Alloys: Design, Properties and Applications
by Anthoula Poulia and Alexander E. Karantzalis
Materials 2025, 18(24), 5616; https://doi.org/10.3390/ma18245616 - 14 Dec 2025
Cited by 1 | Viewed by 1452
Abstract
High-entropy alloys (HEAs) are a class of multi-principal element materials composed of five or more elements in near-equimolar ratios. This unique compositional design generates high configurational entropy, which stabilizes simple solid solution phases and reduces the tendency for intermetallic compound formation. Unlike conventional [...] Read more.
High-entropy alloys (HEAs) are a class of multi-principal element materials composed of five or more elements in near-equimolar ratios. This unique compositional design generates high configurational entropy, which stabilizes simple solid solution phases and reduces the tendency for intermetallic compound formation. Unlike conventional alloys, HEAs exhibit a combination of properties that are often mutually exclusive, such as high strength and ductility, excellent thermal stability, superior corrosion and oxidation resistance. The exceptional mechanical performance of HEAs is attributed to mechanisms including lattice distortion strengthening, sluggish diffusion, and multiple active deformation pathways such as dislocation slip, twinning, and phase transformation. Advanced characterization techniques such as transmission electron microscopy (TEM), atom probe tomography (APT), and in situ mechanical testing have revealed the complex interplay between microstructure and properties. Computational approaches, including CALPHAD modeling, density functional theory (DFT), and machine learning, have significantly accelerated HEA design, allowing prediction of phase stability, mechanical behavior, and environmental resistance. Representative examples include the FCC-structured CoCrFeMnNi alloy, known for its exceptional cryogenic toughness, Al-containing dual-phase HEAs, such as AlCoCrFeNi, which exhibit high hardness and moderate ductility and refractory HEAs, such as NbMoTaW, which maintain ultra-high strength at temperatures above 1200 °C. Despite these advances, challenges remain in controlling microstructural homogeneity, understanding long-term environmental stability, and developing cost-effective manufacturing routes. This review provides a comprehensive and analytical study of recent progress in HEA research (focusing on literature from 2022–2025), covering thermodynamic fundamentals, design strategies, processing techniques, mechanical and chemical properties, and emerging applications, through highlighting opportunities and directions for future research. In summary, the review’s unique contribution lies in offering an up-to-date, mechanistically grounded, and computationally informed study on the HEAs research-linking composition, processing, structure, and properties to guide the next phase of alloy design and application. Full article
(This article belongs to the Special Issue New Advances in High Entropy Alloys)
Show Figures

Graphical abstract

21 pages, 6204 KB  
Article
Numerical Simulation of Temperature Field, Velocity Field and Solidification Microstructure Evolution of Laser Cladding AlCoCrFeNi High Entropy Alloy Coatings
by Andi Huang, Yilong Liu, Xin Li, Jingang Liu and Shiping Yang
Lubricants 2025, 13(12), 541; https://doi.org/10.3390/lubricants13120541 - 12 Dec 2025
Viewed by 686
Abstract
In this study, a multiphysics coupling numerical model was developed to investigate the thermal-fluid dynamics and microstructure evolution during the laser metal deposition of AlCoCrFeNi high-entropy alloy (HEA) coatings on 430 stainless steel substrates. The model integrated laser-powder interactions, temperature-dependent material properties, and [...] Read more.
In this study, a multiphysics coupling numerical model was developed to investigate the thermal-fluid dynamics and microstructure evolution during the laser metal deposition of AlCoCrFeNi high-entropy alloy (HEA) coatings on 430 stainless steel substrates. The model integrated laser-powder interactions, temperature-dependent material properties, and the coupled effects of buoyancy and Marangoni convection on melt pool dynamics. The simulation results were compared with experimental data to validate the model’s effectiveness. The simulations revealed a strong bidirectional coupling between temperature and flow fields in the molten pool: the temperature distribution governed surface tension gradients that drove Marangoni convection patterns, while the resulting fluid motion dominated heat redistribution and pool morphology. Initially, the Peclet number (PeT) remained below 5, indicating conduction-controlled heat transfer with a hemispherical melt pool. As the process progressed, PeT exceeded 50 at maximum flow velocities of 2.31 mm/s, transitioning the pool from a circular to an elliptical geometry with peak temperatures reaching 2850 K, where Marangoni convection became the primary heat transfer mechanism. Solidification parameter distributions (G and R) were computed and quantitatively correlated with scanning electron microscopy (SEM)-observed microstructures to elucidate the columnar-to-equiaxed transition (CET). X-ray diffraction (XRD) analysis identified body-centered cubic (BCC), face-centered cubic (FCC), and ordered B2 phases within the coating. The resulting hierarchical microstructure, transitioning from fine equiaxed surface grains to coarse columnar interfacial grains, synergistically enhanced surface properties and established robust metallurgical bonding with the substrate. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology, 2nd Edition)
Show Figures

Figure 1

14 pages, 3384 KB  
Article
Sequential Spinodal Decompositions and Ordering Reactions in an As-Quenched Cr39Co18Fe18Ni18Al7 High-Entropy Alloy
by Rosemary Chemeli Korir, Gurumayum Robert Kenedy, Wei-Chun Cheng and Shih-Hsun Chen
Materials 2025, 18(23), 5364; https://doi.org/10.3390/ma18235364 - 28 Nov 2025
Viewed by 352
Abstract
Constituent phases and their corresponding phase transformations are important in developing alloys. This study investigates the phase transformations of a Cr39Co18Fe18Ni18Al7 HEA after annealing at and quenching from 1100 °C, 1200 °C and 1300 [...] Read more.
Constituent phases and their corresponding phase transformations are important in developing alloys. This study investigates the phase transformations of a Cr39Co18Fe18Ni18Al7 HEA after annealing at and quenching from 1100 °C, 1200 °C and 1300 °C. The as-quenched alloy exhibits major body-centered cubic (BCC) and minor face-centered cubic (FCC) structures. The volume fraction of the BCC phase progressively increases as the annealing temperature is elevated. Upon cooling, the occurrence of spinodal decomposition in the high-temperature BCC phase leads to the formation of two distinct disordered BCC phases, BCC1 and BCC2, at a high temperature regime. The BCC1 phase acts as the matrix and is lean in Ni and Al concentrations, while the BCC2 phase presents as fine particles and is enriched in Ni and Al. As the temperature decreases, sequential spinodal decompositions occur in both BCC phases, giving rise to other product BCC phases. Upon further cooling, the Ni–Al-enriched BCC phases undergo ordering reactions, transforming into B2 phases. Consequently, the major phases in the matrix and fine particles are BCC and B2, respectively. In addition, the BCC matrix and B2 fine particles also contain B2 and BCC nanoparticles, respectively. The co-clustering and ordering effects of Ni and Al participate in the phase transformations of the as-quenched HEA. Correspondingly, the hardness increases with annealing temperature, which is attributed to the higher BCC phase fraction and the increasing number density of ordered B2 precipitates that collectively strengthen the matrix by impeding dislocation motion. Full article
(This article belongs to the Special Issue High-Entropy Materials: From Principles to Applications)
Show Figures

Figure 1

20 pages, 6848 KB  
Article
Microstructure and Tribological Properties of Fe40Mn19Cr20Ni20Mo1 High-Entropy Alloy Composite-Infiltrated by Aluminum–Nitrogen
by Zelin Huang, Xiangrong Zhang, Huijun Yang, Xi Jin, Min Zhang and Junwei Qiao
Lubricants 2025, 13(12), 509; https://doi.org/10.3390/lubricants13120509 - 21 Nov 2025
Viewed by 536
Abstract
In the manufacturing sector, energy loss often stems mainly from wear. By improving the surface characteristics of alloys, we can substantially cut down on this kind of loss, which in turn boosts the efficiency of energy use. In this study, Fe40Mn [...] Read more.
In the manufacturing sector, energy loss often stems mainly from wear. By improving the surface characteristics of alloys, we can substantially cut down on this kind of loss, which in turn boosts the efficiency of energy use. In this study, Fe40Mn19Cr20Ni20Mo1 high-entropy alloy (HEA) with a face-centered cubic (FCC) structure was subjected to aluminum–nitrogen co-infiltration treatment via pack aluminizing and plasma nitriding, forming an aluminum–nitrogen co-infiltrated layer with a thickness of approximately 17 μm. An analysis was carried out on the microstructure, growth dynamics, and tribological behavior of the Al-N co-infiltrated layer across a broad temperature spectrum. The results showed that the surface hardness of the samples treated by aluminizing and Al-N co-infiltration reached 592 HV and 993 HV, respectively, which were significantly higher than that of the hot-rolled alloy (178 HV). The Al-N co-infiltrated HEA exhibited a low and stable friction coefficient as well as wear rate over a wide temperature range (20–500 °C), which was attributed to the formation of the Al-N co-infiltrated layer composed of AlN, CrN, and FeN phases. This study demonstrates that Al-N co-infiltration treatment is an effective surface modification technique, which can significantly enhance the hardness and tribological properties of high-entropy alloys over a wide temperature range. Full article
Show Figures

Figure 1

22 pages, 20191 KB  
Article
Effect of Tungsten Content on the Microstructure, Mechanical and Tribological Properties of AlCoCrFeNi High-Entropy Alloys
by Ersin Bahceci, Ali Oktay Gul, Oykum Basgoz Orhan, Levent Cenk Kumruoglu and Omer Guler
Crystals 2025, 15(11), 972; https://doi.org/10.3390/cryst15110972 - 12 Nov 2025
Viewed by 689
Abstract
High-entropy alloys (HEAs) have recently attracted considerable attention due to their unique combination of high strength, hardness, and corrosion and wear resistance, making them promising candidates for advanced structural and functional applications. Among these, AlCoCrFeNi-based HEAs are well known for their high hardness [...] Read more.
High-entropy alloys (HEAs) have recently attracted considerable attention due to their unique combination of high strength, hardness, and corrosion and wear resistance, making them promising candidates for advanced structural and functional applications. Among these, AlCoCrFeNi-based HEAs are well known for their high hardness and good wear resistance; however, their limited tribological stability under operational conditions restricts their broader application. To address this limitation, tungsten (W) was incorporated into the AlCoCrFeNi system to enhance its mechanical and tribological performance. In this study, the microstructural, mechanical, and tribological properties of AlCoCrFeNiWx (x = 0, 0.1, 0.25, 0.5 and 1 mol) HEAs were systematically investigated. The alloys were fabricated using the vacuum arc melting method and characterized by XRD, SEM-EDS, elemental mapping, microhardness, and wear tests. The addition of W caused a shift in the 2θ ≈ 44° (110) peak toward lower angles. While the W-free alloy exhibited Body-Centered Cubic (BCC) + B2 phases, W addition led to the formation of a new W-rich phase, and at higher W contents, a pure W phase appeared. The hardness increased from 507.11 HV1 to 651.81 HV1 with increasing W content. Furthermore, wear resistance improved and the coefficient of friction decreased with higher W addition. When comparing the W-free alloy to the alloy with the highest W content, the wear rate decreased by approximately 1.85 times under a 2 N load and 1.89 times under a 5 N load. These results demonstrate that W addition significantly enhances the wear resistance of AlCoCrFeNi-based HEAs by nearly twofold. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

20 pages, 9797 KB  
Article
The Laser Welding Research of Dissimilar Materials Between AlCoCrFeNi2.1 Eutectic High-Entropy Alloy and GH3030 Nickel-Based Alloy
by Anmin Liu, Ze An, Bin Wang, Hailin Qiao, Keming Chang and Yu Fan
Materials 2025, 18(21), 4970; https://doi.org/10.3390/ma18214970 - 31 Oct 2025
Viewed by 658
Abstract
Dissimilar material welding enables the integration of the superior properties of different materials, thereby achieving optimal structural performance and economic efficiency while meeting specific service requirements. The presence of solid-solution strengthening elements such as Ti, Co, and Al, and trace elements such as [...] Read more.
Dissimilar material welding enables the integration of the superior properties of different materials, thereby achieving optimal structural performance and economic efficiency while meeting specific service requirements. The presence of solid-solution strengthening elements such as Ti, Co, and Al, and trace elements such as P and S, in GH3030 nickel-based superalloy leads to their segregation and the formation of intermetallic compounds in the welded joint, resulting in deterioration of joint performance. High-entropy alloys (HEAs), with their high-entropy effect and delayed diffusion effect working synergistically, can effectively suppress compositional segregation caused by uneven elemental diffusion and the formation of intermetallic compounds at interfaces, thereby improving the quality of welded joints and demonstrating great potential for dissimilar material joining. Therefore, in this study, fiber laser welding was used to effectively join AlCoCrFeNi2.1 eutectic high-entropy alloy and GH3030 nickel-based superalloy, with the expectation to improve welded joint element segregation, suppressing the formation of intermetallic compounds, and enhance the welded joint quality and its performance. The AlCoCrFeNi2.1/GH3030 joint exhibits an average yield strength of 1.31 GPa, which is significantly higher than that of the GH3030/GH3030 joint (1.07 GPa). In addition, the AlCoCrFeNi2.1/GH3030 joint shows a higher average work-hardening exponent of 0.337 compared with 0.30 for the GH3030/GH3030 joint, indicating improved plasticity. The results showed that under appropriate welding process parameters, the hardness of the weld zone, transitioning from the nickel-based superalloy to the eutectic high-entropy alloy, exhibited a stable increasing trend, and the joint exhibits good plasticity, with brittle fracture being unlikely. Full article
Show Figures

Figure 1

17 pages, 14379 KB  
Article
Effect of AlCoCrFeNi2.1 High-Entropy Alloy Reinforcement on the Densification, Microstructure, and Hot-Cracking Behavior of LPBF-Processed AA7075
by Shixi Gan, Qiongqi Xu, Yi Zhang and Baljit Singh Bhathal Singh
Metals 2025, 15(11), 1193; https://doi.org/10.3390/met15111193 - 27 Oct 2025
Viewed by 753
Abstract
The application of laser powder bed fusion (LPBF) to 7xxx-series aluminum alloys is fundamentally limited by hot cracking and porosity. This study demonstrates that adding 5 wt.% AlCoCrFeNi2.1 high-entropy alloy (HEA) particles to 7075 aluminum alloy (AA7075) powder can effectively mitigate these [...] Read more.
The application of laser powder bed fusion (LPBF) to 7xxx-series aluminum alloys is fundamentally limited by hot cracking and porosity. This study demonstrates that adding 5 wt.% AlCoCrFeNi2.1 high-entropy alloy (HEA) particles to 7075 aluminum alloy (AA7075) powder can effectively mitigate these issues. Microstructural characterization revealed that the HEA particles remained largely intact and formed a strong metallurgical bond with the α-Al matrix. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed that this bonding is facilitated via the in situ formation of new intermetallic phases at the particle/matrix interface. X-ray diffraction (XRD) identified these phases as primarily Al5Co2 and Fe3Ni2. A key consequence of this reinforced interface is a significant change in cracking behavior; optical microscopy (OM) showed that long, continuous cracks typical of AA7075 were replaced by shorter, deflected cracks in the composite. While porosity was not eliminated, the addition of HEA stabilized the process, yielding a consistent density improvement of 0.5–1.5% across the processing window. This microstructural modification resulted in a substantial ~64% increase in average microhardness, which increased from 96.41 ± 9.81 HV0.5 to 158.46 ± 11.33 HV0.5. These results indicate that HEA reinforcement is a promising route for engineering the microstructure and improving the LPBF processability of high-strength aluminum alloys. Full article
Show Figures

Figure 1

11 pages, 1301 KB  
Article
Artificial Neural Network Approach for Hardness Prediction in High-Entropy Alloys
by Makachi Nchekwube, A. K. Maurya, Dukhyun Chung, Seongmin Chang and Youngsang Na
Materials 2025, 18(20), 4655; https://doi.org/10.3390/ma18204655 - 10 Oct 2025
Viewed by 859
Abstract
High-entropy alloys (HEAs) are highly concentrated, multicomponent alloys that have received significant attention due to their superior properties compared to conventional alloys. The mechanical properties and hardness are interrelated, and it is widely known that the hardness of HEAs depends on the principal [...] Read more.
High-entropy alloys (HEAs) are highly concentrated, multicomponent alloys that have received significant attention due to their superior properties compared to conventional alloys. The mechanical properties and hardness are interrelated, and it is widely known that the hardness of HEAs depends on the principal alloying elements and their composition. Therefore, the desired hardness prediction to develop new HEAs is more interesting. However, the relationship of these compositions with the HEA hardness is very complex and nonlinear. In this study, we develop an artificial neural network (ANN) model using experimental data sets (535). The compositional elements—Al, Co, Cr, Cu, Mn, Ni, Fe, W, Mo, and Ti—are considered input parameters, and hardness is considered as an output parameter. The developed model shows excellent correlation coefficients (Adj R2) of 99.84% and 99.3% for training and testing data sets, respectively. We developed a user-friendly graphical interface for the model. The developed model was used to understand the effect of alloying elements on hardness. It was identified that the Al, Cr, and Mn were found to significantly enhance hardness by promoting the formation and stabilization of BCC and B2 phases, which are inherently harder due to limited active slip systems. In contrast, elements such as Co, Cu, Fe, and Ni led to a reduction in hardness, primarily due to their role in stabilizing the ductile FCC phase. The addition of W markedly increased the hardness by inducing severe lattice distortion and promoting the formation of hard intermetallic compounds. Full article
(This article belongs to the Special Issue Machine Learning for Materials Design)
Show Figures

Figure 1

22 pages, 5445 KB  
Article
Effect of Adding Molybdenum on Microstructure, Hardness, and Corrosion Resistance of an AlCoCrFeNiMo0.25 High-Entropy Alloy
by Mariusz Walczak, Wojciech J. Nowak, Wojciech Okuniewski and Dariusz Chocyk
Materials 2025, 18(19), 4566; https://doi.org/10.3390/ma18194566 - 30 Sep 2025
Cited by 1 | Viewed by 827
Abstract
Recent literature reports have shown that individual HEAs, especially those of the AlCoCrFeNi composition system alloyed with appropriately selected elements, exhibit excellent mechanical properties and corrosion resistance, making them promising candidates for replacing conventional materials such as austenitic steels in corrosive environments. Therefore, [...] Read more.
Recent literature reports have shown that individual HEAs, especially those of the AlCoCrFeNi composition system alloyed with appropriately selected elements, exhibit excellent mechanical properties and corrosion resistance, making them promising candidates for replacing conventional materials such as austenitic steels in corrosive environments. Therefore, in the present study, the high-entropy alloy AlCoCrFeNiMo0.25 was examined and compared with AISI 304L steel and the reference alloy AlCoCrFeNi. The HEA was produced by arc melting in vacuum. The effect of molybdenum addition (5% at.) on the structure, mechanical properties, and corrosion resistance was evaluated. Potentiodynamic polarization and electrochemical impedance spectroscopy tests were carried out in a 3.5% NaCl solution in a three-electrode electrochemical system. The addition of molybdenum to AlCoCrFeNiMox alloy additionally caused, along with the BCC phase, the formation of σ phase and FCC phase (less than 1%), as well as changes in the microstructure, leading to the fragmentation of grains and the formation of a mosaic structure. On the basis of nanoindentation tests, it was established that the addition of Mo increases hardness and elastic modulus and improves nanoindentation coefficients H/E and H3/E2, as well as an increase in the elastic recovery index while decreasing plasticity index (vs. the reference equiatomic HEA). This indicates the improvement of anti-wear properties with impact loading resistance. In turn, electrochemical tests have shown that the addition of Mo improves corrosion resistance. Corrosion pitting develops in Al- and Ni-rich areas of HEA alloys, as a result of galvanic microcorrosion related to Cr chemical segregation. In general, the addition of 5% Mo results in a fine-grained mosaic structure, which primarily translates into favorable nanoindentation and corrosion properties of the AlCoCrFeNiMo0.25 alloy. Full article
Show Figures

Figure 1

22 pages, 19738 KB  
Article
Optimization of Process Parameters for Laser Cladding of AlCoCrFeNi High-Entropy Alloy Coating Based on the Taguchi-Grey Relational Analysis
by Andi Huang, Yilong Liu, Jingang Liu, Shiping Yang and Jinghao Huang
Materials 2025, 18(19), 4463; https://doi.org/10.3390/ma18194463 - 25 Sep 2025
Viewed by 3432
Abstract
Aircraft engine turbine discs operate under extreme conditions that limit their service life. Laser cladding of AlCoCrFeNi HEA coatings presents a viable solution to enhance their durability. This study optimizes the laser cladding process parameters—specifically, laser power, scanning speed, and powder feed rate—using [...] Read more.
Aircraft engine turbine discs operate under extreme conditions that limit their service life. Laser cladding of AlCoCrFeNi HEA coatings presents a viable solution to enhance their durability. This study optimizes the laser cladding process parameters—specifically, laser power, scanning speed, and powder feed rate—using the Taguchi method in conjunction with grey relational analysis. The optimal parameter set (1450 W, 480 mm/min, 4 r/min) resulted in a coating with a width of 2.93 mm, a height of 1.20 mm, a dilution rate of 22.6%, and a hardness of 532 HV. The optimized process significantly improved hardness by approximately 15% while reducing dilution and elemental segregation in comparison to the initial parameters. This research illustrates the effectiveness of multi-objective optimization in enhancing coating performance, providing a practical approach for the surface strengthening of critical components, such as turbine discs in aircraft engines, under extreme conditions. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 3857 KB  
Article
Growth Behavior of Multi-Element Compound Layers During Reactive Diffusion Between Solid CoCrFeMnNi Alloy and Liquid Al
by Longtu Yang, Yufeng Yang, Zeqiang Yao, Shichao Liu and Yong Dong
Materials 2025, 18(17), 4158; https://doi.org/10.3390/ma18174158 - 4 Sep 2025
Viewed by 894
Abstract
In the present study, the diffusion couple of solid CoCrFeMnNi HEA and liquid pure Al was prepared. The microstructure evolution and relevant interdiffusion behavior of CoCrFeMnNi HEA/Al solid–liquid diffusion couple processed by different parameters were characterized and investigated. Results demonstrated that the interfacial [...] Read more.
In the present study, the diffusion couple of solid CoCrFeMnNi HEA and liquid pure Al was prepared. The microstructure evolution and relevant interdiffusion behavior of CoCrFeMnNi HEA/Al solid–liquid diffusion couple processed by different parameters were characterized and investigated. Results demonstrated that the interfacial compounds in the order of Al(Co, Cr, Fe, Mn, Ni), Al13(Co, Cr, Fe, Mn, Ni)4 and Al4(Co, Cr, Fe, Mn, Ni) were determined in the interdiffusion area along the direction from CoCrFeMnNi HEA to Al, and the precipitated Al4(Cr, Mn) and Al9(Co, Fe, Ni) phases were formed in the center of Al couple. In addition, the diffusion mechanism and activation energy of growth for each diffusion layer were revealed and determined. More importantly, the growth mechanism of each diffusion layer was also investigated and uncovered in detail. Meanwhile, the activation energy of each intermetallic layer was obtained by the Arrhenius equation and the linear regression method. It is anticipated that this present study would provide a fundamental understanding and theoretical basis for the high-entropy alloy CoCrFeMnNi HEA, potentially applied as the cast mold material for cast aluminum alloy. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

27 pages, 9202 KB  
Article
Enhancement in Corrosion and Wear Resistance of FeCoNiCrAl High-Entropy Alloy Coating Through Dual Heat Treatment with 3:1 N2/H2 Atmosphere
by Miqi Wang, Buxiang Li, Chi He, Jing Sun, Liyuan Li, Aihui Liu and Fang Shi
Coatings 2025, 15(9), 986; https://doi.org/10.3390/coatings15090986 - 23 Aug 2025
Viewed by 985
Abstract
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The [...] Read more.
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The heat treatment method was conducted in a vacuum tube furnace under 0.1 MPa total pressure, with gas flow rates set to 300 sccm N2 and 100 sccm H2. The XRD results indicated that the as-deposited coating exhibited α-Fe (BBC) and Al0.9Ni4.22 (FCC) phases, with an Fe0.64N0.36 nitride phase generated after 800 °C annealing. The electrochemical measurements suggested that an exceptional corrosion performance with higher thicknesses of passive film and double-layer capacitance can be detected based on the point defect model (PDM) and effective capacitance model. Wear tests revealed that the friction coefficient at 800 °C decreased by 3.84% compared to that in the as-sprayed state due to the formation of a dense nitride layer. Molecular orbital theory pointed out that the formation of bonding molecular orbitals, resulting from the overlap of valence electron orbitals of different atomic species in the HEA coating system, stabilized the structure by promoting atomic interactions. The wear mechanism associated with stress redistribution and energy balance from compositional synergy is proposed in this work. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

Back to TopTop