The Laser Welding Research of Dissimilar Materials Between AlCoCrFeNi2.1 Eutectic High-Entropy Alloy and GH3030 Nickel-Based Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of High-Entropy Alloys and Nickel-Based Superalloys
2.2. Laser Welding Process and Method
2.3. Welded Joint Morphology and Microstructure Analysis
2.4. Phase Analysis
2.5. Microhardness Testing
2.6. Nanoindentation Testing
3. Results and Discussion
3.1. Effect of Process Parameters on Welded Joint Morphology of Eutectic High-Entropy Alloy and GH3030 Nickel-Based High-Temperature Alloy
3.2. Microstructural Analysis of AlCoCrFeNi2.1/GH3030 Joints
3.3. Microhardness Analysis of AlCoCrFeNi2.1/GH3030 Welded Joint
3.4. Analysis of Welded Joint Performance Based on Indentation Method
3.4.1. Calculation Method for Stress–Strain Curve of Welded Joint Using Nanoindentation
- (1)
- Determination of Yield Strength σy
- (2)
- Calculation of the Work Hardening Index n
3.4.2. Stress–Strain Curve Calculation and Analysis of the Welded Joint
4. Conclusions
- (1)
- Microstructural analysis of the AlCoCrFeNi2.1/GH3030 joint under welding conditions of 1350 W power and 1.2 m/min welding speed shows that there is no significant heat-affected zone (HAZ) near the AlCoCrFeNi2.1 side. The fusion zone consists of a large number of equiaxed and columnar grains, with a random distribution. On the GH3030 nickel-based superalloy side, a distinct, larger block-like structure in the HAZ is observed. The fusion zone grains are finer compared to the base material and consist of both columnar and equiaxed grains. The grain growth direction near the GH3030 nickel-based superalloy side is more uniform and perpendicular to the fusion line. No elemental segregation or impurity phases are found at the center of the weld, and the element distribution is relatively uniform.
- (2)
- The hardness values of the AlCoCrFeNi2.1/GH3030 joint weld zone under three welding parameters do not show significant differences. The hardness distribution follows a consistent trend, with an average hardness of 210.48 ± 4.42 HV in the heat-affected zone (HAZ). In the weld zone, the hardness increases gradually from the GH3030 nickel-based superalloy side towards the AlCoCrFeNi2.1 eutectic high-entropy alloy side, with only slight fluctuations. The average hardness of the weld zone is 253.56 ± 2.53 HV. The dissimilar joint weld hardness is higher compared to the GH3030 nickel-based superalloy joint.
- (3)
- The AlCoCrFeNi2.1 eutectic high-entropy alloy joint exhibits the smallest maximum load displacement (hmax), indicating a stronger resistance to deformation and the highest yield strength of 1.566 GPa. The GH3030 joint exhibits the largest maximum load displacement (hmax), indicating weaker resistance to deformation and the lowest yield strength of 1.07 GPa. The AlCoCrFeNi2.1/GH3030 joint outperforms both the GH3030 nickel-based superalloy base material and the GH3030 nickel-based superalloy joint in terms of mechanical properties, with a yield strength of 1.31 GPa. The AlCoCrFeNi2.1/GH3030 joint exhibits a maximum work-hardening exponent of 0.371, which is significantly higher than those of the AlCoCrFeNi2.1/AlCoCrFeNi2.1 and GH3030/GH3030 joints. This indicates that the superior performance of the AlCoCrFeNi2.1/GH3030 joint is primarily manifested in the plastic deformation stage, where it retains considerable ductility after yielding and is less prone to brittle fracture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, Y.; Guo, C.; Jiang, F.; Li, Y.; Sun, X.; Sun, Q.; Zhang, H.; Dong, T.; Konovalov, S. Effect of heat treatment on microstructure and properties of Al0·5CoCrFeNi high entropy alloy fabricated by selective laser melting. Mater. Sci. Eng. A 2023, 882, 145466. [Google Scholar] [CrossRef]
- Chen, M.; Yang, X.; Zhao, X.; Wen, C.; Huang, H. Effect of Al Content and Local Chemical Order on the Stacking Fault Energy in Ti–V–Zr–Nb–Al High-Entropy Alloys Based on First Principles. Materials 2025, 18, 2053. [Google Scholar] [CrossRef] [PubMed]
- Geambazu, L.E.; Manea, C.A.; Mateș, I.M.; Pătroi, D.; Sbârcea, G.B.; Manta, E.; Semenescu, A. Effect of Co and Al Content on CrFeNiMo-System High Entropy Alloys Produced by Mechanical Alloying. Materials 2025, 18, 1936. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Zhang, L.; Wang, X.; Lu, Y. Enhanced strength and ductility in a brittle hypoeutectic high-entropy alloy via spheroidizing annealing. Mater. Lett. 2024, 371, 136935. [Google Scholar] [CrossRef]
- Jiao, W.; Li, T.; Yin, G.; He, T.; Li, T.; Lu, Y. Hot deformation characteristics and microstructure evolution of Al20Co36Cr4Fe4Ni36 eutectic high entropy alloy. Mater. Charact. 2023, 204, 113180. [Google Scholar] [CrossRef]
- Gangireddy, S.; Gwalani, B.; Soni, V.; Banerjee, R.; Mishra, R.S. Contrasting mechanical behavior in precipitation hardenable AlxCoCrFeNi high entropy alloy microstructures: Single phase FCC vs. dual phase FCC-BCC. Mater. Sci. Eng. A 2019, 739, 158–166. [Google Scholar] [CrossRef]
- Qi, L.; Chrzan, D.C. Tuning Ideal Tensile Strengths and Intrinsic Ductility of bcc Refractory Alloys. Phys. Rev. Lett. 2014, 112, 115503. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, A.M.; Chen, Z.; Li, P.Z.; Zhang, C.H. Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy. J. Mater. Eng. Perform. 2018, 27, 1784–1791. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.; Wang, T.; Wen, B.; Wang, Z.; Jie, J.; Cao, Z.; et al. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef]
- Fan, Y.; Li, P.; Chen, K.; Fu, L.; Shan, A.; Chen, Z. Effect of fiber laser welding on solute segregation and proprieties of CoCrCuFeNi high entropy alloy. J. Laser Appl. 2020, 32, 022005. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Fan, Y.; Shi, J.; Liu, Y.; Shi, X.; Xu, J. Thermal stability of the multicomponent nanocrystalline Ni–ZrNbMoTa alloy. J. Alloys Compd. 2021, 862, 158326. [Google Scholar] [CrossRef]
- Badea, T.-A.; Dombrovschi, M. The Influence of Alloying Elements on the Hot Corrosion Behavior of Nickel-Based Superalloys. Materials 2025, 18, 1996. [Google Scholar] [CrossRef]
- Long, A.; Liu, X.; Cheng, J.; Xiong, J.; Feng, G.; Guo, J.; Liu, R. Anisotropy in Creep Behavior of a Directionally Solidified Ni-Based Superalloy at 980 °C and 1070 °C. Materials 2025, 18, 1998. [Google Scholar] [CrossRef]
- Thellaputta, G.R.; Bose, P.S.C.; Rao, C.S.P. Machinability of Nickel Based Superalloys: A Review. Mater. Today Proc. 2017, 4, 3712–3721. [Google Scholar] [CrossRef]
- Dupin, N.; Ansara, I. Thermodynamic assessment of the Cr-Ta system. J. Phase Equilib. 1993, 14, 451–456. [Google Scholar] [CrossRef]
- Fan, Y.; Tian, W.; Guo, Y.; Sun, Z.; Xu, J. Relationships among the Microstructure, Mechanical Properties, and Fatigue Behavior in Thin Ti6Al4V. Adv. Mater. Sci. Eng. 2016, 2016, 7278267. [Google Scholar] [CrossRef]
- Song, J.L.; Lin, S.B.; Yang, C.L.; Fan, C.L. Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint. J. Alloys Compd. 2009, 488, 217–222. [Google Scholar] [CrossRef]
- Meshram, S.D.; Madhusudhan Reddy, G. Friction welding of AA6061 to AISI 4340 using silver interlayer. Def. Technol. 2015, 11, 292–298. [Google Scholar] [CrossRef]
- Sonar, T.; Ivanov, M.; Shcherbakov, I.; Okulov, A.; Shaburova, N.; Liu, K.; Khasanova, E.; Samoilovskikh, P. Effect of activated flux GTAW with AlCoCrFeNi2.1 eutectic high entropy alloy interlayer on microstructure and mechanical properties of dissimilar P91/304 L steel joints. J. Mater. Process. Technol 2025, 340, 118873. [Google Scholar] [CrossRef]
- Afonso, D.; Lopes, J.G.; Choi, Y.T.; Kim, R.E.; Schell, N.; Zhou, N.; Kim, H.S.; Oliveira, J.P. Dissimilar laser welding of an as-rolled CoCrFeMnNi high entropy alloy to Inconel 718 superalloy. Opt. Laser Technol. 2025, 180, 111427. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, J.; Zheng, H.; Li, H.; Liu, S.; Cheng, G.J. A review on microstructures and properties of high entropy alloys manufactured by selective laser melting. Int. J. Extreme Manuf. 2020, 2, 032003. [Google Scholar] [CrossRef]
- Fan, Y.; Cao, J.; Zhang, J.; Zhao, Y.; Fang, R.; Wang, Y.; Chen, Z. Stable production of dissimilar steel joints in construction machinery by narrow gap oscillating laser welding. J. Mater. Res. Technol. 2024, 30, 1403–1413. [Google Scholar] [CrossRef]
- Mahto, R.P.; Pal, S.K. Friction Stir Welding of Dissimilar Materials: An Investigation of Microstructure and Nano-Indentation Study. J. Manuf. Process. 2020, 55, 103–118. [Google Scholar] [CrossRef]
- Ma, M.; Wei, W.; Zhang, H.; Yao, Z.; Sun, Y.; Chen, M.; Wu, F. On the investigation of the microstructure and mechanical properties of the AlCoCrFeNi2.1/304 heterogeneous gas tungsten arc welded joint. Intermetallics 2025, 182, 108765. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, C.; Liu, J.; Lu, Y.; Li, T. Interfacial microstructure evolution and mechanical properties of AlCoCrFeNi2.1 alloy by multilayer additive hot compression bonding. Intermetallics 2023, 156, 107867. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, X.; Yu, Y.; Cao, J.; Liu, X.; Zhang, S. Effects of Heat Reflux on Two-Phase Flow Characteristics in a Capillary of the ADN-Based Thruster. Micromachines 2022, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Shi, C.; Gao, L.; Lin, S.; Li, W. Thermal physical properties of high entropy alloy Al0.3CoCrFeNi at elevated temperatures. J. Alloys Compd. 2022, 901, 163554. [Google Scholar] [CrossRef]
- Takaki, T.; Sakane, S.; Ohno, M.; Shibuta, Y.; Aoki, T.; Gandin, C.-A. Competitive grain growth during directional solidification of a polycrystalline binary alloy: Three-dimensional large-scale phase-field study. Materialia 2018, 1, 104–113. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, C.; Zhang, J.; Wang, H. Abnormal thermal expansion behaviour and phase transition of laser powder bed fusion maraging steel with different thermal histories during continuous heating. Addit. Manuf. 2022, 53, 102712. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Cao, S.; Chen, C.; Xie, R. Effect of CMT Welding Heat Input on Microstructure and Properties of 2A14 Aluminum Alloy Joint. Metals 2022, 12, 2100. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Y.; Amar, A.; Wu, C.; Liu, X.; Le, G.; Wang, X.; Wu, J.; Li, K.; Jiang, C.; et al. Microstructure evolution and mechanical properties of Al CoCrFeNi high-entropy alloys by laser melting deposition. Vacuum 2021, 183, 109875. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2011, 19, 3–20. [Google Scholar] [CrossRef]
- Mahto, R.P.; Gupta, C.; Kinjawadekar, M.; Meena, A.; Pal, S.K. Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding. J. Manuf. Process. 2019, 38, 370–386. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Rodriguez, R.; Gutierrez, I. Correlation between nanoindentation and tensile properties Influence of the indentation size effect. Mater. Sci. Eng. A 2003, 361, 377–384. [Google Scholar] [CrossRef]
- Dao, M.; Chollacoop, N.V.; Van Vliet, K.J.; Venkatesh, T.A.; Suresh, S.J.A.M. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001, 49, 3899–3918. [Google Scholar] [CrossRef]
- Le, M.-Q. A computational study on the instrumented sharp indentations with dual indenters. Int. J. Solids Struct. 2008, 45, 2818–2835. [Google Scholar] [CrossRef]











| Material | Al | Co | Cr | Fe | Ni | 
|---|---|---|---|---|---|
| AlCoCrFeNi2.1 | 8.67 | 18.94 | 16.71 | 17.95 | 37.73 | 
| Material | C | Cr | Ni | Ti | Al | Fe | Mn | Si | P | S | 
|---|---|---|---|---|---|---|---|---|---|---|
| GH3030 | 0.10 | 21.20 | 58.11 | 17.94 | 0.02 | 1.20 | 0.60 | 0.69 | 0.02 | 0.02 | 
| Sample | Welding Material | Laser Power (W) | Welding Speed (m/min) | Heat Input (J/mm) | Defocus Amount (mm) | Argon Gas Flow Rate (L/min) | 
|---|---|---|---|---|---|---|
| 1 | GH3030/GH3030 | 1350 | 1.2 | 67.5 | 0 | 16 | 
| 2 | AlCoCrFeNi2.1/AlCoCrFeNi2.1 | 1350 | 1.2 | 67.5 | 0 | 16 | 
| 3 | AlCoCrFeNi2.1/GH3030 | 1350 | 1.2 | 67.5 | 0 | 16 | 
| 4 | AlCoCrFeNi2.1/GH3030 | 1500 | 1.2 | 75 | 0 | 16 | 
| 5 | AlCoCrFeNi2.1/GH3030 | 1350 | 1.0 | 81 | 0 | 16 | 
| Sample | Experimental Material | Laser Power (W) | Welding Speed (m/min) | 
|---|---|---|---|
| 1 | GH3030 base material | — | — | 
| 2 | AlCoCrFeNi2.1 base material | — | — | 
| 3 | GH3030 welded joint | 1350 | 1.2 | 
| 4 | AlCoCrFeNi2.1 welded joint | 1350 | 1.2 | 
| 5 | AlCoCrFeNi2.1/GH3030 welded joint 1 | 1350 | 1.2 | 
| 6 | AlCoCrFeNi2.1/GH3030 welded joint 2 | 1500 | 1.2 | 
| 7 | AlCoCrFeNi2.1/GH3030 welded joint 3 | 1350 | 1.0 | 
| Sample | Experimental Material | Er (GPa) | H (GPa) | E (GPa) | σy (GPa) | n | εy | 
|---|---|---|---|---|---|---|---|
| 1 | GH3030 base material | 176.66 | 4.99 | 184.85 | 1.20 | 0.32 | 0.0065 | 
| 2 | AlCoCrFeNi2.1 base material | 174.21 | 5.87 | 189.33 | 1.41 | 0.31 | 0.0075 | 
| 3 | GH3030 welded joint | 174.82 | 4.44 | 186.23 | 1.07 | 0.30 | 0.0058 | 
| 4 | AlCoCrFeNi2.1 welded joint | 242.44 | 6.50 | 187.00 | 1.57 | 0.31 | 0.0084 | 
| 5 | AlCoCrFeNi2.1/GH3030 welded joint 1 | 232.58 | 5.29 | 266.42 | 1.28 | 0.30 | 0.0048 | 
| 6 | AlCoCrFeNi2.1/GH3030 welded joint 2 | 231.06 | 5.69 | 255.59 | 1.37 | 0.34 | 0.0054 | 
| 7 | AlCoCrFeNi2.1/GH3030 welded joint 3 | 176.66 | 5.37 | 253.91 | 1.29 | 0.371 | 0.0051 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; An, Z.; Wang, B.; Qiao, H.; Chang, K.; Fan, Y. The Laser Welding Research of Dissimilar Materials Between AlCoCrFeNi2.1 Eutectic High-Entropy Alloy and GH3030 Nickel-Based Alloy. Materials 2025, 18, 4970. https://doi.org/10.3390/ma18214970
Liu A, An Z, Wang B, Qiao H, Chang K, Fan Y. The Laser Welding Research of Dissimilar Materials Between AlCoCrFeNi2.1 Eutectic High-Entropy Alloy and GH3030 Nickel-Based Alloy. Materials. 2025; 18(21):4970. https://doi.org/10.3390/ma18214970
Chicago/Turabian StyleLiu, Anmin, Ze An, Bin Wang, Hailin Qiao, Keming Chang, and Yu Fan. 2025. "The Laser Welding Research of Dissimilar Materials Between AlCoCrFeNi2.1 Eutectic High-Entropy Alloy and GH3030 Nickel-Based Alloy" Materials 18, no. 21: 4970. https://doi.org/10.3390/ma18214970
APA StyleLiu, A., An, Z., Wang, B., Qiao, H., Chang, K., & Fan, Y. (2025). The Laser Welding Research of Dissimilar Materials Between AlCoCrFeNi2.1 Eutectic High-Entropy Alloy and GH3030 Nickel-Based Alloy. Materials, 18(21), 4970. https://doi.org/10.3390/ma18214970
 
        


 
       