Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (694)

Search Parameters:
Keywords = AZ61 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4261 KiB  
Article
Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea
by Tianlong Zhang, Shuai Wu, Hao Liu, Lihui Yang, Tianxing Chen, Xiutong Wang and Yantao Li
Materials 2025, 18(15), 3585; https://doi.org/10.3390/ma18153585 - 30 Jul 2025
Viewed by 171
Abstract
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl [...] Read more.
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl, rainfall, and temperature fluctuations) remain poorly understood—particularly regarding dynamic corrosion–product evolution. The corrosion characteristics and behavior of AZ31 magnesium alloy exposed in Sanya and Nansha were evaluated using X-ray photoelectron spectroscopy, X-ray diffraction, electrochemical measurements, scanning electron microscopy, and weight loss tests. The results showed that the main components of corrosion products were MgCO3·xH2O(x = 3, 5), Mg5(CO3)4(OH)2·4H2O, Mg2Cl(OH)3·4H2O, and Mg(OH)2. The corrosion rate exposed in the Nansha was 26.5 μm·y−1, which was almost two times than that in Sanya. Localized corrosion is the typical corrosion characteristic of AZ31 magnesium alloy in this tropical marine atmosphere. This study exposes the dynamic crack–regeneration mechanism of corrosion products under high-Cl-rainfall synergy. The corrosion types of AZ31 magnesium alloy in this tropical marine atmosphere were mainly represented by pitting corrosion and filamentous corrosion. Full article
(This article belongs to the Special Issue Future Trend of Marine Corrosion and Protection)
Show Figures

Figure 1

15 pages, 7744 KiB  
Article
FEM Analysis of Superplastic-Forming Process to Manufacture a Hemispherical Shell
by Gillo Giuliano and Wilma Polini
Appl. Sci. 2025, 15(14), 8080; https://doi.org/10.3390/app15148080 - 21 Jul 2025
Viewed by 203
Abstract
Superplastic materials are characterised by extreme lightness and remarkable ductility. Instead of a punch, a gas is used to push the sheet into the die cavity, and it is precisely regulated to control the material’s strain rate. Forming a superplastic material while maintaining [...] Read more.
Superplastic materials are characterised by extreme lightness and remarkable ductility. Instead of a punch, a gas is used to push the sheet into the die cavity, and it is precisely regulated to control the material’s strain rate. Forming a superplastic material while maintaining a high strain rate sensitivity index requires the forming gas to follow a precise pressure–time loading curve. This can be excellently predicted with the aid of the finite element method (FEM). Therefore, for the superplastic material to exhibit its best formability throughout the entire process, it is necessary to control the strain rate step by step to keep the maximum strain rate within the material’s optimal superplastic range. In this work, the results of a superplastic-forming process used to create a hemispherical shell are presented. This was carried out using both a circular blank of uniform thickness and a blank with a conical cross-section. The analysis was performed using finite element modelling. Specifically, the results obtained using 3D analysis were compared with those obtained using axisymmetric analysis for conditions of axial symmetry. Using the conical cross-section blank helped achieve a more uniform thickness distribution in the produced hemispherical shell. The success of the numerical activity was validated through results from appropriate experimental work conducted on the magnesium alloy AZ31. The results show that, by employing a blank characterised by a conical section profile, the thickness distribution appears more uniform than that of a constant-thickness blank. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

14 pages, 5535 KiB  
Article
Studies on the Coating Formation and Structure Property for Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy
by Yingting Ye, Lishi Wang, Xinbin Hu and Zhixiang Bu
Coatings 2025, 15(7), 846; https://doi.org/10.3390/coatings15070846 - 19 Jul 2025
Viewed by 330
Abstract
Plasma electrolytic oxidation (PEO) is an advanced electrochemical surface treatment technology. It can effectively improve the corrosion resistance of magnesium and its alloys. This paper aims to form protective PEO coatings on an AZ31 substrate with different electrolytes, while monitoring the micro-discharge evolution [...] Read more.
Plasma electrolytic oxidation (PEO) is an advanced electrochemical surface treatment technology. It can effectively improve the corrosion resistance of magnesium and its alloys. This paper aims to form protective PEO coatings on an AZ31 substrate with different electrolytes, while monitoring the micro-discharge evolution by noise intensity and morphology analysis. By setting the PEO parameters and monitoring process characteristics, such as current density, spark appearance, and noise intensity, it was deduced that the PEO process consists of the following three stages: anodic oxidation, spark discharge, and micro-arc discharge. The PEO oxide coating formed on the AZ31 alloy exhibits various irregular volcano-like structures. Oxygen species are uniformly distributed along the coating cross-section. Phosphorus species tend to be enriched inwards to the coating/magnesium substrate interface, while aluminum piles up towards the surface region. Surface roughness of the PEO coating formed in the silicate-based electrolyte was the lowest in an arithmetic average height (Sa) of 0.76 μm. Electrochemical analysis indicated that the corrosion current density of the PEO coating decreased by about two orders of magnitude compared to that of untreated blank AZ31 substrate, while, at the same time, the open-circuit potential shifted significantly to the positive direction. The corrosion current density of the 10 min/400 V coating was 1.415 × 10−6 A/cm2, approximately 17% lower than that of the 2 min/400 V coating (1.738 × 10−6 A/cm2). For a fixed 10 min treatment, the longer the PEO duration time, the lower the corrosion current density. Finally, the tested potentiodynamic polarization curve reveals the impact of different types of PEO electrolytes and different durations of PEO treatment on the corrosion resistance of the oxide coating surface. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

16 pages, 5893 KiB  
Article
AZ31 Magnesium Alloy Roll-Forming Springback Prediction Considering Anisotropic and Asymmetric Properties
by Yu Yan, Hanzhong Xu, Haibo Wang and Jie Bao
Materials 2025, 18(13), 3111; https://doi.org/10.3390/ma18133111 - 1 Jul 2025
Viewed by 307
Abstract
Plastic forming in magnesium alloy sheet products is becoming a hot topic because of its potential in light-weight structural designs. Due to the special anisotropic and tension–compression asymmetrical properties of magnesium alloys, traditional modeling methods based on the von Mises yield criterion and [...] Read more.
Plastic forming in magnesium alloy sheet products is becoming a hot topic because of its potential in light-weight structural designs. Due to the special anisotropic and tension–compression asymmetrical properties of magnesium alloys, traditional modeling methods based on the von Mises yield criterion and using only uniaxial tensile properties for bending-dominated process simulations are not able to produce accurate predictions. In this study, two kinds of tensile tests (uniaxial and biaxial) and some compressive tests were performed along three material directions to obtain anisotropic and asymmetric properties, based on which the parameters of the Hill48 and Verma yield criteria were obtained. Then, the user subroutine VUMAT was developed, and the roll-forming process for magnesium alloys was simulated with the established anisotropic and asymmetric yield criteria. Finally, a roll-forming experiment on AZ31 magnesium alloy was performed. Compared with the experiments, it was found that roll-forming and springback predictions based on the Verma yield criterion had higher accuracy than those based on the von Mises and Hill48 yield criteria FEM models, which ignore anisotropy and asymmetry. This study provides an important FEM modeling idea that considers not only anisotropy but also asymmetry in the bending-dominated forming processes of magnesium alloys in which tension and compression exist simultaneously. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Graphical abstract

12 pages, 3731 KiB  
Article
Research on Corrosion Protection of TETA-Modified Li–Al LDHs for AZ31 Magnesium Alloy in Simulated Seawater
by Sifan Tu, Liyan Wang, Sixu Wang, Haoran Chen, Qian Huang, Ning Hou, Zhiyuan Feng and Guozhe Meng
Metals 2025, 15(7), 724; https://doi.org/10.3390/met15070724 - 28 Jun 2025
Viewed by 699
Abstract
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. [...] Read more.
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. Electrochemical tests, SEM, FT-IR, XPS, and 3D depth-of-field microscopy were employed to evaluate TETA-modified Li–Al LDH coatings at varying concentrations. Among them, the Li–Al LDHs without the addition of a TETA corrosion inhibitor decreased significantly at |Z|0.01 Hz after immersion for 4 h. However, the Li–Al LDHs coating of 23.5 mM TETA experienced a sudden drop at |Z|0.01 Hz after holding for about 60 h, and the Li–Al LDHs coating of 70.5 mM TETA also experienced a sudden drop at |Z|0.01 Hz after holding for about 132 h. By contrast, at the optimal concentration (47 mM), after 24 h of immersion, the maximum |Z|0.01 Hz reached 7.56 × 105 Ω∙cm2—three orders of magnitude higher than pure Li–Al LDH coated AZ31 (2.55 × 102 Ω∙cm2). After 300 h of immersion, the low-frequency impedance remained above 105 Ω∙cm2, demonstrating superior long-term protection. TETA modification significantly improved the durability of Li–Al LDHs coatings, addressing the short-term protection limitation of standalone Li–Al LDHs. Li–Al LDHs themselves have a layered structure and effectively capture corrosive Cl ions in the environment through ion exchange capacity, reducing the corrosion of the interface. Furthermore, TETA exhibits strong adsorption on Li–Al LDHs layers, particularly at coating defects, enabling rapid barrier formation. This inorganic–organic hybrid design achieves defect compensation and enhanced protective barriers. Full article
(This article belongs to the Special Issue Metal Corrosion Behavior and Protection in Service Environments)
Show Figures

Figure 1

13 pages, 3067 KiB  
Article
In Situ Investigation of Deformation Mechanisms and Stress Evolution in Mg-3Al-1Zn (AZ31) Alloy Using Synchrotron X-Ray Microdiffraction
by Yuxin Cao, Li Li, Yong Wang, Tuo Ye and Changping Tang
Metals 2025, 15(6), 675; https://doi.org/10.3390/met15060675 - 17 Jun 2025
Viewed by 317
Abstract
This study employs synchrotron polychromatic X-ray microdiffraction (micro-XRD) to resolve the dynamic interplay between deformation mechanisms and stress redistribution in a commercial Mg-3Al-1Zn (AZ31) alloy under uniaxial tension. Submicron-resolution mapping across 13 incremental load steps (12–73 MPa) reveals sequential activation of deformation modes: [...] Read more.
This study employs synchrotron polychromatic X-ray microdiffraction (micro-XRD) to resolve the dynamic interplay between deformation mechanisms and stress redistribution in a commercial Mg-3Al-1Zn (AZ31) alloy under uniaxial tension. Submicron-resolution mapping across 13 incremental load steps (12–73 MPa) reveals sequential activation of deformation modes: basal slip initiates at 46 MPa, followed by tensile twinning at 64 MPa, and non-basal slip accommodation during twin propagation at 68 MPa. Key findings include accelerated parent grain rotation (up to 0.275° basal plane tilt) between 43–46 MPa, stress relaxation in parent grains coinciding with twin nucleation, and a ~35 MPa stress reversal within twins. The critical resolved shear stress (CRSS) ratio of twinning to basal slip is experimentally determined as 1.8, with orientation-dependent variations attributed to parent grain crystallography. These results provide unprecedented insights into microscale deformation pathways, critical for optimizing magnesium alloy formability and performance in lightweight applications. Full article
Show Figures

Figure 1

15 pages, 4658 KiB  
Article
Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy
by Qingrong Tan, Ying Zhang, Min Jiang and Jiyuan Zhu
Coatings 2025, 15(6), 722; https://doi.org/10.3390/coatings15060722 - 17 Jun 2025
Viewed by 638
Abstract
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term [...] Read more.
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term corrosion resistance were fabricated on the surface of Mg alloys using the hydrothermal method. Among them, the calcium hydroxide/calcium nitrate–alumina coating successfully filled the cracks in the magnesium hydroxide coating. Meanwhile, we explored the influences of different heating times and temperatures on the coating and analyzed its composition. After immersing the coating in a 3.5% NaCl solution for 168 h, only a small portion of the surface dissolved. Electrochemical test results indicated that the corrosion potential and corrosion current density of the coating increased by three orders of magnitude, significantly improving corrosion resistance in comparison to bare samples. Adhesion tests showed that the coating exhibited good bonding performance to the substrate. This method features a simple, pollution-free preparation process and does not require complex instrumentation, thereby enhancing the longevity of the magnesium alloy. Full article
Show Figures

Graphical abstract

14 pages, 3417 KiB  
Article
The Influence of Water Content in Ethylene Glycol Electrolyte on Magnesium Plasma Electrolytic Fluorinated Coating
by Yifeng Yang, Hao Wang, Xuchen Lu and Cancan Liu
Coatings 2025, 15(6), 701; https://doi.org/10.3390/coatings15060701 - 11 Jun 2025
Viewed by 372
Abstract
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on [...] Read more.
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on the microstructure and corrosion resistance of the PEF coatings were analyzed. The results showed that the addition of water promoted the ionization of ammonium fluoride and increased the conductivity of the glycol electrolyte, which led to a decrease in the termination voltage. However, the coating thickness was not changed by the addition of water. The O element in water was not enough to compete with the F element in the electrolyte and had a small effect on the PEF coating composition, which was still dominated by MgF2. The addition of water had an effect on the structure of the coating: with an increase in water content, the number of coating penetration holes decreases, and the continuity is enhanced. The pores on the surface of the coating tended to be levelled off and transitioned to the typical coating structure of PEO (plasma electrolytic oxidation). The addition of water to the glycol electrolyte was conducive to improving the corrosion resistance of the coatings. The corrosion resistance of PEF coatings in neutral NaCl corrosive medium firstly increased and then decreased, and the strongest corrosion resistance was obtained when the ratio of glycol and water is 6:4. Full article
Show Figures

Figure 1

12 pages, 5075 KiB  
Article
Preparation of MgF2 Coatings on AZ31 Mg Alloy in Micro-Arc Oxidation Process Based on the Solubility Product Rule
by Hao Wang, Yifeng Yang, Cancan Liu and Xuchen Lu
Materials 2025, 18(12), 2717; https://doi.org/10.3390/ma18122717 - 9 Jun 2025
Viewed by 366
Abstract
This work mainly explores whether the solubility product principle has a guiding role in regulating the composition of micro-arc oxidation (MAO) coatings. The MAO process was conducted on AZ31 Mg alloy in silicate electrolyte. Varying amounts of Potassium fluoride (KF) and Ammonium fluoride [...] Read more.
This work mainly explores whether the solubility product principle has a guiding role in regulating the composition of micro-arc oxidation (MAO) coatings. The MAO process was conducted on AZ31 Mg alloy in silicate electrolyte. Varying amounts of Potassium fluoride (KF) and Ammonium fluoride (NH4F) were separately added to the basic electrolyte to regulate the OH and F contents in the electrolyte. The microstructure, phase composition and corrosion resistance of the MAO coatings prepared in different electrolytes were analyzed. Results showed that regardless of KF content, MgO was the main component for the MAO coatings obtained in electrolytes with KF. This was because the addition of KF not only elevated the F concentration in the electrolyte but also enhanced the OH concentration as a result of F hydrolysis. Based on the solubility product constants (Ksp) of MgO and MgF2, a relatively lower concentration of Mg2+ was sufficient for the formation of MgO. Hence, Mg2+ consistently exhibited preferential reactivity with OH, leading to the formation of MgO. The findings of the study demonstrated that the presence of KF electrolyte resulted in an enhancement of conductivity and an increase in the concentration of OH. Conversely, the growth rate of the coating was observed to be low, and the coating-forming phases of the coating were identified as MgO and Mg2SiO4, and the coating had better corrosion resistance. NH4F electrolyte with the increase in NH4F concentration, conductivity decreases and then increases, OH concentration decreases, the growth rate of the coating is faster, the concentration of F/OH is higher, the coating-forming phase is transformed into MgF2, and the corrosion resistance of the coating is reduced. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Figure 1

19 pages, 6131 KiB  
Article
Preparation of Superhydrophobic Hydroxyapatite Coating on AZ31 Mg Alloy by Combining Micro-Arc Oxidation and Liquid-Phase Deposition
by Yanqing Hu, Xin Liang, Yujie Yuan, Feiyu Jian and Hui Tang
Coatings 2025, 15(6), 675; https://doi.org/10.3390/coatings15060675 - 1 Jun 2025
Viewed by 522
Abstract
Magnesium as a biodegradable metal implant has garnered attention. Nevertheless, its rapid degradation rate and insufficient osseointegration restrict its clinical applications. In order to enhance the corrosion resistance and bioactivity of magnesium alloys, superhydrophobic hydroxyapatite (HA) layers were synthesized on micro-arc oxidized (MAO)-treated [...] Read more.
Magnesium as a biodegradable metal implant has garnered attention. Nevertheless, its rapid degradation rate and insufficient osseointegration restrict its clinical applications. In order to enhance the corrosion resistance and bioactivity of magnesium alloys, superhydrophobic hydroxyapatite (HA) layers were synthesized on micro-arc oxidized (MAO)-treated AZ31B magnesium alloy through liquid-phase deposition. This study examined the surface morphology, phase composition, bonding strength, wettability, electrochemical properties, and in vitro mineralization of the synthesized coatings. The study results demonstrated that the improved corrosion resistance of composite coatings in Hank’s solution is due to the formation of a protective HA layer. The inclusion of the MAO coating significantly enhances the bonding strength between the hydroxyapatite (HA) layer and the bare magnesium alloy. The concentration of NaH2PO4 affects both the microstructure and wettability. The composite coating exhibited excellent osseointegration capabilities, with new HA layers observed after immersing the samples in simulated body fluid (SBF) solution for three days. These findings suggest that the combination of MAO and solution treatment presents a promising method for enhancing biocompatibility and reducing magnesium degradation, thus making it a viable option for biodegradable implant applications. Full article
Show Figures

Figure 1

21 pages, 5497 KiB  
Article
Effects of Forging Temperature and Micro-Arc Coatings on the Static/Stress Corrosion Resistance of AZ80 Magnesium Alloy
by Yuna Xue, Jie Zhang, Yi Shen, Yongpeng Qiao, Sheji Luo and Di Wang
Materials 2025, 18(11), 2590; https://doi.org/10.3390/ma18112590 - 1 Jun 2025
Viewed by 642
Abstract
To enhance the surface protection of exposed moving parts made from magnesium alloys, this study focuses on developing high-performance micro-arc composite (MCC) coatings on AZ80 wrought magnesium alloy substrate. AZ80 alloys were fabricated through forging at different temperatures (250 °C, 350 °C, and [...] Read more.
To enhance the surface protection of exposed moving parts made from magnesium alloys, this study focuses on developing high-performance micro-arc composite (MCC) coatings on AZ80 wrought magnesium alloy substrate. AZ80 alloys were fabricated through forging at different temperatures (250 °C, 350 °C, and 450 °C) to investigate the influence of thermal deformation on substrate properties. Subsequently, micro-arc oxidation (MAO) coatings and MCC coatings were applied to the forged alloys. Comprehensive analyses—including microstructural characterization, salt spray corrosion tests, and stress corrosion cracking (SCC) evaluations—were conducted under both static and stress conditions. Among the forging temperatures, 250 °C produced substrates with refined grains and a favorable distribution of β-Mg17Al12 precipitates, resulting in improved baseline corrosion resistance. MAO coatings offered moderate protection, primarily delaying corrosion initiation and crack propagation under stress environments. Building upon this foundation, MCC coatings—fabricated by electrostatic spraying to form an inner-embedded and outer-wrapped structure over the MAO layer—demonstrated significantly superior protective performance. Under both static and stress corrosion scenarios, the MCC coatings effectively suppressed SCC initiation and progression, highlighting their potential for robust surface protection in demanding service environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

30 pages, 6450 KiB  
Article
Response Surface Methodology-Based Optimization of AZ91 Composites Reinforced with Short Carbon Fibers for Enhanced Mechanical and Wear Properties
by Sabbah Ataya, Nashmi H. Alrasheedi, Mohamed M. El-Sayed Seleman, Rana G. Eid, Ashraf Bakkar, Ahmed Ataya and Ramy A. Fouad
Processes 2025, 13(6), 1697; https://doi.org/10.3390/pr13061697 - 28 May 2025
Viewed by 628
Abstract
This study aims to enhance the mechanical and wear properties of AZ91 magnesium alloy by reinforcing it with 23 vol.% short carbon fibers (SCFs) aligned in normal (AZ91C-N) and parallel (AZ91C-P) orientations via squeeze-casting. The microstructure and elemental distribution maps were analyzed using [...] Read more.
This study aims to enhance the mechanical and wear properties of AZ91 magnesium alloy by reinforcing it with 23 vol.% short carbon fibers (SCFs) aligned in normal (AZ91C-N) and parallel (AZ91C-P) orientations via squeeze-casting. The microstructure and elemental distribution maps were analyzed using an advanced SEM-EDS system. A response surface methodology (RSM) based on a Face-Centered Composite Design (FCCD) was employed to optimize the properties under varying temperature (20–300 °C) and wear load (1–5 N) conditions. The ultimate compressive strength (UCS), yield strength (YS), reduction in height at fracture (Fr), reduction in height at maximum stress (Sr), volume loss, and wear rate were analyzed and optimized. ANOVA confirmed the significant influence of the experimental parameters. A statistical model was developed, with validation showing deviations less than 0.05. The optimized conditions resulted in a UCS of 253 MPa, a YS of 193 MPa, an Fr of 26.1%, an Sr of 21.7%, a volume loss of 0.066 cm3, and a wear rate of 840 cm3/m. The worn surface and surface roughness were also investigated and discussed. The orientation of SCFs significantly influenced wear resistance and surface roughness. This study demonstrates the effectiveness of RSM in optimizing AZ91-SCF composites for high-performance applications. Full article
(This article belongs to the Special Issue Fiber-Reinforced Composites: Latest Advances and Interesting Research)
Show Figures

Figure 1

14 pages, 6538 KiB  
Article
The Hydrogen Storage Properties and Catalytic Mechanism of the AZ31-WS2 Nanotube/Pd Composite
by Song-Jeng Huang, Veeramanikandan Rajagopal, Sakthipriya Balu, Sivakumar Selvaraju and Murugan Subramani
Nanomaterials 2025, 15(11), 802; https://doi.org/10.3390/nano15110802 - 27 May 2025
Viewed by 456
Abstract
Magnesium-based alloys, known for their high hydrogen storage capacity, suffer from sluggish kinetics and high activation energy barriers. It can be further optimized through synergistic combinations with metal hydrides. This study aims to address these limitations by investigating the hydrogen sorption properties of [...] Read more.
Magnesium-based alloys, known for their high hydrogen storage capacity, suffer from sluggish kinetics and high activation energy barriers. It can be further optimized through synergistic combinations with metal hydrides. This study aims to address these limitations by investigating the hydrogen sorption properties of AZ31 magnesium alloy combined with different compositions of WS2 nanotubes (NTs) and Pd. The materials AZ31, WS2 (tungsten disulfide) NTs, and Pd were pre-processed via the mechanical ball milling process. Field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to investigate the composite morphology and confirm the nanotubular structure of WS2. This work is among the first to explore the synergistic catalytic effects of WS2 nanotubes and Pd on the hydrogenation/dehydrogenation behavior of AZ31 alloys. The composite with 8 wt.% WS2 NT/Pd demonstrated the fastest hydrogen sorption kinetics and a significant reduction in activation energy, from 123.25 kJ/mol to 104.58 kJ/mol. These results highlight the enhanced dehydrogenation performance of AZ31 through catalyst inclusion, offering a promising approach to improve hydrogen storage materials. These findings highlight the potential of combining inorganic NTs and transition metals as effective catalysts to enhance the hydrogen storage performance. This research paves the way for developing advanced hydrogen storage materials with improved performance, contributing to a sustainable energy future. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Figure 1

17 pages, 5214 KiB  
Article
Development and Characterization of AZ91 Magnesium Alloy Reinforced with Ti Wires
by Wojciech Wyrwa, Adrianna Filipiak-Kaczmarek and Anna Nikodem
Materials 2025, 18(11), 2517; https://doi.org/10.3390/ma18112517 - 27 May 2025
Viewed by 460
Abstract
Lightweight metals are increasingly used in biomedical engineering, and can be found in orthopaedics (screws, implants), stomatology, cardiology (stents) and as scaffolds. Magnesium alloys have a low density (1.74 g/cm3), which is very close to that of bone (1.75 g/cm3 [...] Read more.
Lightweight metals are increasingly used in biomedical engineering, and can be found in orthopaedics (screws, implants), stomatology, cardiology (stents) and as scaffolds. Magnesium alloys have a low density (1.74 g/cm3), which is very close to that of bone (1.75 g/cm3), as well as high biocompatibility, and are biodegradable. Unfortunately, their disadvantage is their low resistance to corrosion in the human body, which further causes deterioration of mechanical and physical properties. Improvement of these properties can be achieved by making the composite on a magnesium matrix—depending on the reinforcement added, the required properties can be obtained. This paper presents the results of a study on the extrusion of a magnesium matrix composite with titanium (Ti) reinforcement. The study included three-point bending tests, from which it is clear that the introduction of Ti reinforcement improves the bending strength of the specimens. In addition, the samples were immersed in SBF (simulated body fluid) for 1, 2, 4, 8, 12 and 24 h to determine the degradation of the Mg–Ti composite. Full article
Show Figures

Figure 1

16 pages, 3243 KiB  
Article
Comparative Analysis of Dry, Minimum Quantity Lubrication, and Nano-Reinforced Minimum Quantity Lubrication Environments on the Machining Performance of AZ91D Magnesium Alloy
by Berat Baris Buldum, Kamil Leksycki and Suleyman Cinar Cagan
Machines 2025, 13(5), 430; https://doi.org/10.3390/machines13050430 - 19 May 2025
Cited by 1 | Viewed by 563
Abstract
This study investigates the machining performance of AZ91D magnesium alloy under three different cooling environments: dry, minimum quantity lubrication (MQL), and nano-reinforced MQL (NanoMQL) with multi-walled carbon nanotubes. Turning experiments were conducted on a CNC lathe with systematically varied cutting parameters, including cutting [...] Read more.
This study investigates the machining performance of AZ91D magnesium alloy under three different cooling environments: dry, minimum quantity lubrication (MQL), and nano-reinforced MQL (NanoMQL) with multi-walled carbon nanotubes. Turning experiments were conducted on a CNC lathe with systematically varied cutting parameters, including cutting speed (150–450 m/min), feed rate (0.05–0.2 mm/rev), and depth of cut (0.5–2 mm). The machining performance was evaluated through cutting force measurements, surface roughness analysis, and tool wear examination using SEM. The results demonstrate that the NanoMQL environment significantly outperforms both dry and conventional MQL conditions, providing a 42.2% improvement in surface quality compared to dry machining and a 33.6% improvement over conventional MQL. Cutting forces were predominantly influenced by the depth of cut and the feed rate, while cutting speed showed variable effects. SEM analysis revealed that the NanoMQL environment substantially reduced built-up edge formation and flank wear, particularly under aggressive cutting conditions. The superior performance of the NanoMQL environment is attributed to the enhanced thermal conductivity and lubrication properties of carbon nanotubes, which form a protective tribofilm at the tool–workpiece interface. This study provides valuable insights for optimizing the machining parameters of AZ91D magnesium alloy in industrial applications, particularly where high surface quality and tool longevity are required. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

Back to TopTop