The Hydrogen Storage Properties and Catalytic Mechanism of the AZ31-WS2 Nanotube/Pd Composite
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of WS2 Nanotubes
2.2. Synthesis of AZ31-WS2 NT/Pd Composite
2.3. Characterizations
3. Results and Discussion
3.1. Structural Analysis of WS2 NTs
3.2. Morphology Analysis of AZ31-WS2 NT/Pd Composite Powders
3.3. Hydrogen Storage Properties of AZ31-WS2 NT/Pd Composites
3.4. XRD-Phase Analysis of AZ31-WS2 NT/Pd Composite
3.5. Activation Energy Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, H.; He, L.; Lin, H.; Li, H. Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technol. 2018, 6, 445–458. [Google Scholar] [CrossRef]
- Kim, K.C. A review on design strategies for metal hydrides with enhanced reaction thermodynamics for hydrogen storage applications. Int. J. Energy Res. 2018, 42, 1455–1468. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Qu, H. Stress/strain effects on thermodynamic properties of magnesium hydride: A brief review. Int. J. Hydrogen Energy 2017, 42, 16603–16610. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Hu, J.; Gao, M.; Pan, H. Empowering hydrogen storage performance of MgH2 by nanoengineering and nano catalysis. Mater. Today Nano 2020, 9, 100064. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Qu, H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement. Int. J. Hydrogen Energy 2018, 43, 1545–1565. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the fuel for 21st century. Int. J. Hydrogen Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Recent developments in the fabrication, characterization and implementation of MgH2-based solid-hydrogen materials in the Kuwait Institute for Scientific Research. RSC Adv. 2019, 9, 9907–9930. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Kim, H.-T.; Jung, S.; Roh, S.-H.; Park, J.-H.; Jung, H.-Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew. Sustain. Energy Rev. 2017, 72, 523–534. [Google Scholar] [CrossRef]
- Tian, M.; Shang, C. Nano-structured MgH2 catalyzed by TiC nanoparticles for hydrogen storage. J. Chem. Technol. Biotechnol. 2011, 86, 69–74. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Johnson, J.K.; Shaz, M.A.; Srivastava, O.N. TiH2 as a Dynamic Additive for Improving the De/Rehydrogenation Properties of MgH2: A Combined Experimental and Theoretical Mechanistic Investigation. J. Phys. Chem. C 2018, 122, 21248–21261. [Google Scholar] [CrossRef]
- Jain, I.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, X.; Wang, X.; Chen, M.; Lu, Y.; Liu, M.; Chen, L. Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2. Nanoscale 2019, 11, 7465–7473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Bowman, R.C.; Fang, Z.Z.; Lu, J.; Xu, L.; Sun, P.; Liu, H.; Wu, H.; Liu, Y. Amorphous TiCu-Based Additives for Improving Hydrogen Storage Properties of Magnesium Hydride. ACS Appl. Mater. Interfaces 2019, 11, 38868–38879. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, Y.; Chen, J.; Guo, X.; Zhu, Y.; Li, L. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3. Nanotechnology 2018, 29, 265705. [Google Scholar] [CrossRef]
- Yuan, Z.; Sui, Y.; Zhai, T.; Yin, Y.; Luo, L.; Feng, D. Influence of CeO2 nanoparticles on microstructure and hydrogen storage performance of Mg-Ni-Zn alloy. Mater. Charact. 2021, 178, 111248. [Google Scholar] [CrossRef]
- Shtender, V.; Denys, R.; Paul-Boncour, V.; Riabov, A.; Zavaliy, I. Hydrogenation properties and crystal structure of YMgT4 (T = Co, Ni, Cu) compounds. J. Alloys Compd. 2014, 603, 7–13. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Cheng, Y.; Ke, D.; Han, S. Hydrogenation/dehydrogenation performances of the MgH2-WS2 composites. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2015, 30, 670–673. [Google Scholar] [CrossRef]
- Jia, Y.; Han, S.; Zhang, W.; Zhao, X.; Sun, P.; Liu, Y.; Shi, H.; Wang, J. Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2. Int. J. Hydrogen Energy 2013, 38, 2352–2356. [Google Scholar] [CrossRef]
- Xie, X.; Ma, X.; Liu, P.; Shang, J.; Li, X.; Liu, T. Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS. ACS Appl. Mater. Interfaces 2017, 9, 5937–5946. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, G.; Cheng, Y.; Chen, L.; Huo, Q.; Liu, S. Improved hydrogen storage properties of MgH2 by the addition of FeS2 micro-spheres. Dalton Trans. 2018, 47, 5217–5225. [Google Scholar] [CrossRef]
- Huang, S.-J.; Rajagopal, V.; Ali, A.N. Influence of the ECAP and HEBM processes and the addition of Ni catalyst on the hydrogen storage properties of AZ31-x Ni (x = 0, 2, 4) alloy. Int. J. Hydrogen Energy 2019, 44, 1047–1058. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Yang, X.; Zhu, X.; Chen, L. The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite. Dalton Trans. 2020, 49, 4146–4154. [Google Scholar] [CrossRef]
- Ding, X.; Ding, H.; Song, Y.; Xiang, C.; Li, Y.; Zhang, Q. Activity-Tuning of Supported Co–Ni Nanocatalysts via Composition and Morphology for Hydrogen Storage in MgH2. Front. Chem. 2020, 7, 937. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Deng, Q. Constructing Core-Shell Co@N-Rich Carbon Additives Toward Enhanced Hydrogen Storage Performance of Magnesium Hydride. Front. Chem. 2020, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Shahi, R.R.; Tiwari, A.P.; Shaz, M.; Srivastava, O. Studies on de/rehydrogenation characteristics of nanocrystalline MgH2 co-catalyzed with Ti, Fe and Ni. Int. J. Hydrogen Energy 2013, 38, 2778–2784. [Google Scholar] [CrossRef]
- Tarasov, B.P.; Mozhzhukhin, S.A.; Arbuzov, A.A.; Volodin, A.A.; Fokina, E.E.; Fursikov, P.V.; Lototskyy, M.V.; Yartys, V.A. Features of the Hydrogenation of Magnesium with a Ni-Graphene Coating. Russ. J. Phys. Chem. A 2020, 94, 996–1001. [Google Scholar] [CrossRef]
- Verma, S.K.; Bhatnagar, A.; Shukla, V.; Soni, P.K.; Pandey, A.P.; Yadav, T.P.; Srivastava, O.N. Multiple improvements of hydrogen sorption and their mechanism for MgH2 catalyzed through TiH2@Gr. Int. J. Hydrogen Energy 2020, 45, 19516–19530. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Sandhya, K.S.; Ramasamy, D.; Shaula, A.; Fagg, D.P. Transformation of Metallic Ti to TiH2 Phase in the Ti/MgH2 Composite and Its Influence on the Hydrogen Storage Behavior of MgH2. Chem. Phys. Chem. 2020, 21, 1195–1201. [Google Scholar] [CrossRef]
- Ma, Z.; Zou, J.; Khan, D.; Zhu, W.; Hu, C.; Zeng, X.; Ding, W. Preparation and hydrogen storage properties of MgH2-trimesic acid-TM MOF (TM=Co, Fe) composites. J. Mater. Sci. Technol. 2019, 35, 2132–2143. [Google Scholar] [CrossRef]
- Park, K.B.; Ko, W.-S.; Fadonougbo, J.O.; Na, T.-W.; Im, H.-T.; Park, J.-Y.; Kang, J.-W.; Kang, H.-S.; Park, C.-S.; Park, H.-K. Effect of Fe substitution by Mn and Cr on first hydrogenation kinetics of air-exposed TiFe-based hydrogen storage alloy. Mater. Charact. 2021, 178, 111246. [Google Scholar] [CrossRef]
- Taherkhani, A.; Mortazavi, S.; Reyhani, A.; Tayal, A.; Caliebe, W.; Moradi, M.; Noei, H. Temperature-dependent hydrogen storage mechanism in palladium nanoparticles decorated on multi-walled carbon nanotubes. Int. J. Hydrogen Energy 2023, 48, 9734–9747. [Google Scholar] [CrossRef]
- Rothschild, A.; Sloan, J.; Tenne, R. Growth of WS2 nanotubes phases. J. Am. Chem. Soc. 2000, 122, 5169–5179. [Google Scholar] [CrossRef]
- Huang, S.-J.; Immanuel, P.N.; Yen, Y.-K.; Yen, C.-L.; Tseng, C.-E.; Lin, G.-T.; Lin, C.-K.; Huang, Z.-X. Tungsten disulfide nanotube-modified conductive paper-based Chemi resistive sensor for the application in volatile organic compounds’ detection. Sensors 2021, 21, 6121. [Google Scholar] [CrossRef]
- Immanuel, P.N.; Huang, S.-J.; Danchuk, V.; Sedova, A.; Prilusky, J.; Goldreich, A.; Shalom, H.; Musin, A.; Yadgarov, L. Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide. Nanomaterials 2022, 12, 4454. [Google Scholar] [CrossRef]
- Immanuel, P.N.; Huang, S.J.; Taank, P.; Goldreich, A.; Prilusky, J.; Byregowda, A.; Carmieli, R.; Shalom, H.; Leybovich, A.; Zak, A.; et al. Enhanced photocatalytic activity of Cs4PbBr6/WS2 hybrid nanocomposite. Adv. Energy Sustain. Res. 2024, 5, 2300193. [Google Scholar] [CrossRef]
- Huang, S.-J.; Rajagopal, V.; Chen, Y.L.; Chiu, Y.H. Improving the hydrogenation properties of AZ31-Mg alloys with different carbonaceous additives by high energy ball milling (HEBM) and equal channel angular pressing (ECAP). Int. J. Hydrogen Energy 2020, 45, 22291–22301. [Google Scholar] [CrossRef]
- Bendyna, J.K.; Dyjak, S.; Notten, P.H. The influence of ball-milling time on the dehydrogenation properties of the NaAlH4-MgH2 composite. Int. J. Hydrogen Energy 2015, 40, 4200–4206. [Google Scholar] [CrossRef]
- Bayeh, A.W.; Kabtamu, D.M.; Chang, Y.-C.; Chen, G.-C.; Chen, H.-Y.; Liu, T.-R.; Wondimu, T.H.; Wang, K.-C.; Wang, C.-H. Hydrogen-Treated Defect-Rich W18O49 Nanowire-Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery. ACS Appl. Energy Mater. 2019, 2, 2541–2551. [Google Scholar] [CrossRef]
- Yadav, D.K.; Chawla, K.; Pooja; Lal, N.; Choudhary, B.; Lal, C. Catalytic effect of TiO2on hydrogen storage properties of MgH2. Mater. Today Proc. 2021, 46, 2326–2329. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Lin, J.; Leng, H.; Sun, C.; Wu, C.; Li, Q.; Pan, F. The hydrogen storage performance and catalytic mechanism of the MgH2-MoS2 composite. J. Magnes. Alloys 2022, 11, 2530–2540. [Google Scholar] [CrossRef]
- Gao, S.; Wang, H.; Wang, X.; Liu, H.; He, T.; Wang, Y.; Wu, C.; Li, S.; Yan, M. MoSe2 hollow nanospheres decorated with FeNi3 nanoparticles for enhancing the hydrogen storage properties of MgH2. J. Alloys Compd. 2020, 830, 154631. [Google Scholar] [CrossRef]
- Zhang, Q.; Zang, L.; Huang, Y.; Gao, P.; Jiao, L.; Yuan, H.; Wang, Y. Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int. J. Hydrogen Energy 2017, 42, 24247–24255. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, C.; Wu, F.; Wang, Y. Carbon-wrapped Ti-Co bimetallic oxide nanocages: Novel and efficient catalysts for hydrogen storage in magnesium hydride. J. Alloys Compd. 2023, 952, 170002. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Shang, H.; Qi, Y.; Li, P.; Zhao, D. Investigation on structure and hydrogen storage performance of as-milled and cast Mg90Al10 alloys. Int. J. Hydrogen Energy 2018, 43, 6642–6653. [Google Scholar] [CrossRef]
- Wang, P.; Tian, Z.; Wang, Z.; Xia, C.; Yang, T.; Ou, X. Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst. Int. J. Hydrogen Energy 2021, 46, 27107–27118. [Google Scholar] [CrossRef]
- Yang, T.; Yuan, Z.; Bu, W.; Jia, Z.; Qi, Y.; Zhang, Y. Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg88Y12 binary alloy. Int. J. Hydrogen Energy 2016, 41, 2689–2699. [Google Scholar] [CrossRef]
- Xie, L.; Li, J.; Zhang, T.; Song, L. Dehydrogenation steps and factors controlling desorption kinetics of a Mg Ce hydrogen storage alloy. Int. J. Hydrogen Energy 2017, 42, 21121–21130. [Google Scholar] [CrossRef]
- Wang, S.; Yong, H.; Yao, J.; Ma, J.; Liu, B.; Hu, J.; Zhang, Y. Influence of the phase evolution and hydrogen storage behaviors of Mg-RE alloy by a multi-valence Mo-based catalyst. J. Energy Storage 2023, 58, 106397. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, C.; Li, T.; Zhai, T.; Sui, Y.; Li, X.; Feng, D.; Zhang, Y. Improved hydrogen storage performance of Sm-Mg composites by adding nano-graphite. J. Alloys Compd. 2023, 935, 168144. [Google Scholar] [CrossRef]
- Huang, S.-J.; Rajagopal, V.; Skripnyuk, V.; Rabkin, E.; Fang, C. A comparative study of hydrogen storage properties of AZ31 and AZ91 magnesium alloys processed by different methods. J. Alloys Compd. 2023, 935, 167854. [Google Scholar] [CrossRef]
Sample | Ea (kJ/mol) | References |
---|---|---|
MgH2 + 5 wt.% Ti-CoO @ C-3 | 137.76 | [43] |
Mg90 Al10 | 157.7 ± 0.8 | [44] |
MgH2 + CuS2 | 123.7 ± 8 | [45] |
Mg88Y12 | 122.0 | [46] |
Mg-20 Ce | 110.0 ± 3 | [47] |
Mg90Ce5Y5 + Mn | 114.24 | [48] |
Sm5Mg41 + 4 wt % NG | 112.88 | [49] |
AZ31-ECAP | 128 ± 5 | [50] |
AZ31-4 WP | 109.06 | Current work |
AZ31-8 WP | 104.58 | Current work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-J.; Rajagopal, V.; Balu, S.; Selvaraju, S.; Subramani, M. The Hydrogen Storage Properties and Catalytic Mechanism of the AZ31-WS2 Nanotube/Pd Composite. Nanomaterials 2025, 15, 802. https://doi.org/10.3390/nano15110802
Huang S-J, Rajagopal V, Balu S, Selvaraju S, Subramani M. The Hydrogen Storage Properties and Catalytic Mechanism of the AZ31-WS2 Nanotube/Pd Composite. Nanomaterials. 2025; 15(11):802. https://doi.org/10.3390/nano15110802
Chicago/Turabian StyleHuang, Song-Jeng, Veeramanikandan Rajagopal, Sakthipriya Balu, Sivakumar Selvaraju, and Murugan Subramani. 2025. "The Hydrogen Storage Properties and Catalytic Mechanism of the AZ31-WS2 Nanotube/Pd Composite" Nanomaterials 15, no. 11: 802. https://doi.org/10.3390/nano15110802
APA StyleHuang, S.-J., Rajagopal, V., Balu, S., Selvaraju, S., & Subramani, M. (2025). The Hydrogen Storage Properties and Catalytic Mechanism of the AZ31-WS2 Nanotube/Pd Composite. Nanomaterials, 15(11), 802. https://doi.org/10.3390/nano15110802