Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = ATP-binding transporter proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 21437 KB  
Article
Genome-Wide Identification, Function, and Expression Analysis of the ABC Transporter Gene Family in Forest Musk Deer (Moschus berezovskii) Under Musk Secretion Stage
by Ying-Ying Ren, Xuan-Ze Zhou, Jin-Fang Ma, Xue-Mei Jiang, Fang Dan, Dan-Dan Liao, Cong-Xue Yao, Cheng-Li Zheng and Wen-Hua Qi
Animals 2025, 15(24), 3630; https://doi.org/10.3390/ani15243630 - 17 Dec 2025
Abstract
The ATP-binding cassette (ABC) transporter family is one of the oldest conserved protein families and is widely present in animal and plant cells. However, few studies have investigated the role of ABC in the forest musk deer (FMD; Moschus berezovskii). In this [...] Read more.
The ATP-binding cassette (ABC) transporter family is one of the oldest conserved protein families and is widely present in animal and plant cells. However, few studies have investigated the role of ABC in the forest musk deer (FMD; Moschus berezovskii). In this study, we employed bioinformatics methods to identify and analyze the ABC transporter genes in M. berezovskii to elucidate the potential function of ABC genes in musk secretion. A total of 51 members of the MbABC gene family were identified. The analysis encompassed various aspects including physical and chemical properties, phylogenetic tree, structure prediction, conserved motifs, gene structures, chromosome localization, collinearity analysis, and KEGG and GO enrichment. Collinearity analysis revealed that the ABC transporter gene family is conserved in FMD, Cervidae, and five Bovinae species. MbABCB6, MbABCD4, MbABCF3, and MbABCG5 are key genes in protein–protein interaction networks, which are primarily involved in the transport of vitamins, lipids, and proteins. Tissue expression analysis showed that MbABCs were expressed at different stages. The RT-qPCR analysis revealed that 12 MbABC genes were up-regulated in musk gland cells during the non-secretion phase and stimulation phase, particularly MbABCC4d and MbABCC3. This study provides comprehensive information on the ABC gene family in FMD which can be further used for their functional validation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

27 pages, 3603 KB  
Article
Elacridar Reverses P-gp-Mediated Drug Resistance in Ovarian Cancer Cells in 2D and 3D Culture Models
by Piotr Stasiak, Justyna Sopel, Julia Maria Lipowicz, Agnieszka Anna Rawłuszko-Wieczorek, Karolina Sterzyńska, Jan Korbecki and Radosław Januchowski
Int. J. Mol. Sci. 2025, 26(24), 12105; https://doi.org/10.3390/ijms262412105 - 16 Dec 2025
Viewed by 88
Abstract
Multidrug resistance (MDR) remains a major obstacle in the treatment of ovarian cancer. MDR is often mediated by the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). In this study, we evaluated the ability of [...] Read more.
Multidrug resistance (MDR) remains a major obstacle in the treatment of ovarian cancer. MDR is often mediated by the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). In this study, we evaluated the ability of elacridar, a dual P-gp and BCRP inhibitor, to overcome MDR in W1, an ovarian cancer cell line sensitive to Paclitaxel (PAC) and its PAC-resistant variants. Cells were cultured under both two-dimensional (2D) and three-dimensional (3D) conditions to account for differences in tumor-like microenvironments. The MDR1 gene and P-gp protein expression were determined for the analyzed model; P-gp activity was measured by flow-cytometry and fluorescent observation, with and without elacridar. The MTT tests were carried out to evaluate how elacridar, combined with chemotherapeutics, affects cell viability. Our results demonstrate that elacridar effectively inhibited transporter activity and increased cellular sensitivity to PAC and DOX. The inhibitory effect was observed in both 2D and 3D cultures, although the re-sensitization effect in 3D conditions was less pronounced, reflecting the complexity of tumor-specific resistance mechanisms. These findings highlight elacridar as a promising compound for reversing MDR in ovarian cancer and emphasize the importance of 3D models in preclinical drug evaluation. Further studies in advanced in vitro and in vivo models are required to assess the potential of elacridar better. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Molecular Oncology)
Show Figures

Graphical abstract

45 pages, 1951 KB  
Review
Targeting Multidrug Resistance in Cancer: Impact of Retinoids, Rexinoids, and Carotenoids on ABC Transporters
by Martina Čižmáriková, Viktória Háziková, Radka Michalková, Ondrej Franko, Beáta Lešková, Atila David Homolya, Juliana Gabzdilová and Peter Takáč
Int. J. Mol. Sci. 2025, 26(22), 11157; https://doi.org/10.3390/ijms262211157 - 18 Nov 2025
Viewed by 577
Abstract
The active efflux of drugs by adenosine triphosphate (ATP)-binding cassette (ABC) trans-porters, such as multidrug resistance protein 1 (MDR1/ABCB1), multidrug resistance-associated protein 1 and 2 (MRP1/ABCC1; MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2), is a well-established mechanism contributing to multidrug resistance (MDR). Interestingly, [...] Read more.
The active efflux of drugs by adenosine triphosphate (ATP)-binding cassette (ABC) trans-porters, such as multidrug resistance protein 1 (MDR1/ABCB1), multidrug resistance-associated protein 1 and 2 (MRP1/ABCC1; MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2), is a well-established mechanism contributing to multidrug resistance (MDR). Interestingly, various vitamin A-based molecules have been found to influence the expression or function of these transporters. This work investigated the current evidence on the effects of retinoids, rexinoids, and carotenoids on ABC transporters and their potential to reverse MDR. Several studies indicated that these compounds could inhibit ABC transporter activity at non-toxic concentrations, either by downregulating gene/protein expression or by directly blocking efflux function. These effects were often associated with increased chemosensitivity to several conventional anticancer agents. Overall, the degree of inhibition varied depending on several factors, including compound type and their chemical modification, dose, incubation time, treatment timing, the type of target cells, method of transporter overexpression, and coadministration with other compounds. Although particular attention was paid to elucidating the underlying mechanisms, current knowledge in this area remains limited. Moreover, extensive in vivo and clinical studies validating these findings are still lacking, emphasizing the need for further research to evaluate their translational potential. Full article
Show Figures

Figure 1

17 pages, 305 KB  
Article
Specificity of Gene Expression in Fructose Metabolism in Apilactobacillus kunkeei Isolated from Honey Bees
by Iskra Vitanova Ivanova, Yavor Rabadjiev, Maria Ananieva, Ilia Iliev and Svetoslav Dimitrov Todorov
Appl. Microbiol. 2025, 5(4), 130; https://doi.org/10.3390/applmicrobiol5040130 - 12 Nov 2025
Viewed by 310
Abstract
Fructophilic lactic acid bacteria (FLAB), Apilactobacillus kunkeei strains AG8 and AG9 were selected in the current study for in-depth analysis. Cultivation on fructose yeast peptone (FYP) medium with varying fructose concentrations (1%, 10%, and 30%) revealed that higher fructose levels promoted acetate production [...] Read more.
Fructophilic lactic acid bacteria (FLAB), Apilactobacillus kunkeei strains AG8 and AG9 were selected in the current study for in-depth analysis. Cultivation on fructose yeast peptone (FYP) medium with varying fructose concentrations (1%, 10%, and 30%) revealed that higher fructose levels promoted acetate production over lactate, confirming a heterofermentative metabolic profile. Ethanol production was negligible, consistent with the absence of alcohol dehydrogenase (ADH) activity. Enzyme assays showed fructokinase activity doubled at 30% fructose, while acetate kinase activity increased and L-lactate dehydrogenase activity decreased. This shift in enzyme ratios from 1:1 at 1% fructose to 10:1 or 15:1 at higher concentrations explains the metabolic preference for acetate. Apb. kunkeei is an obligate FLAB, growing poorly on glucose unless supplemented with external electron acceptors like pyruvate or oxygen. It lacks ADH, but retains acetaldehyde dehydrogenase (ALDH), enabling acetate production and additional ATP generation, enhancing biomass yield. The absence of the adhE gene contributes to NAD+/NADH imbalance and favors acetate production. Gene expression studies targeting fructose transport enzymes showed elevated expression of ABC transporters and carbohydrate metabolism genes in response to fructose. ADH expression remained low across sugar concentrations. Fructokinase gene expression was shown to be strain specific. Neither strain expressed the ABC transporter ATP-binding protein gene on glucose, nor the bacteriocin ABC transporter gene, correlating with the absence of antibacterial activity. These findings underscore the metabolic specialization of Apb. kunkeei, its reliance on fructose, and the role of ABC transporters in optimizing fermentation. The strain-specific gene expression and metabolic flexibility highlight its potential as a probiotic and feed additive in apiculture and biotechnology. Full article
21 pages, 7691 KB  
Article
Physiologically Relevant Simulation of Carbohydrate Digestion: From Glycemic Index Estimation to Intestinal Cellular Responses
by Jinfeng Meng, Ying Sun, Peng Wu, Zhizhong Dong, Yuhan Qin, Liming Wang, Jie Xiao, Can Hou, Xin Ying, Jiaxing Gao, Meili Huan, Ran Chen, Yan Wang, Yufeng Wang, Jingjing Wang, Xiaodong Chen and Tai An
Foods 2025, 14(22), 3864; https://doi.org/10.3390/foods14223864 - 12 Nov 2025
Viewed by 644
Abstract
Simulating carbohydrate digestion in physiologically relevant ways remains a challenge for in vitro models. In this study, the Dynamic In vitro Human Stomach (DIVHS) system was applied to investigate cereal digestion and subsequent intestinal cellular responses. Rice, millet, and corn were digested under [...] Read more.
Simulating carbohydrate digestion in physiologically relevant ways remains a challenge for in vitro models. In this study, the Dynamic In vitro Human Stomach (DIVHS) system was applied to investigate cereal digestion and subsequent intestinal cellular responses. Rice, millet, and corn were digested under dynamic and static conditions. Compared with the static model, the dynamic system generated smaller grain fragments, a larger chyme–enzyme contact area (451.2 ± 4.4 cm2 vs. 160.4 ± 6.0 cm2), and higher average intragastric pressure (25.0 ± 1.2 kPa vs. 7.2 ± 0.7 kPa). Salivary amylase activity also declined more gradually in the dynamic system. An empirical approach for predicting the glycemic index (eGI) was proposed, which showed improved agreement with reported human GI values compared with earlier in vitro methods. Exposure of Caco-2 cells to digested products significantly altered transcriptional profiles, including protein binding, ATP binding, and glucose transporter activity. Notably, products from the dynamic model induced stronger transcriptional responses than those from the static model, including 421 genes up-regulated and 138 down-regulated. Functional enrichment highlighted pathways related to glucose transport, energy metabolism, and cellular regulation. Overall, this study demonstrates the advantages of dynamic digestion models in replicating gastrointestinal conditions, improving GI prediction, and providing mechanistic insights into intestinal cellular responses to digested carbohydrates. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 960 KB  
Article
Potential Effects of Nicotinamide on Serum HDL-Cholesterol Levels and Hepatic Oxidative Stress, ABCA1 Gene and Protein Expression in Rats Fed a High-Fat/Fructose Diet
by Jesús I. Serafín-Fabián, Armando Ramírez-Cruz, J. D. Villeda-González, Jaime Gómez-Zamudio, Adrián Hernández-Díazcouder, Clara Ortega-Camarillo, Eugenia Flores-Alfaro, Miguel Cruz and Miguel Vazquez-Moreno
Nutrients 2025, 17(21), 3458; https://doi.org/10.3390/nu17213458 - 1 Nov 2025
Viewed by 709
Abstract
A hypercaloric diet is associated with oxidative stress and the dysfunction of ATP-Binding Cassette transporter A1 (ABCA1), a key element in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. Nicotinamide (NAM) presents antioxidant properties, which may contribute to maintaining lipid metabolism. Therefore, we [...] Read more.
A hypercaloric diet is associated with oxidative stress and the dysfunction of ATP-Binding Cassette transporter A1 (ABCA1), a key element in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. Nicotinamide (NAM) presents antioxidant properties, which may contribute to maintaining lipid metabolism. Therefore, we aimed to evaluate the effect of NAM on HDL-cholesterol (HDL-C) level, oxidative stress markers, and the gene expression and protein levels of ABCA1 in Sprague-Dawley rats fed a hypercaloric diet. Forty male rats were divided into five groups: one group received a standard diet, and the remaining groups received a single high-fat, high-fructose diet (HFDF). Three of the HFDF groups received NAM treatment (5, 10, and 15 mM) in drinking water for 16 weeks (5 h/day). While HDL-C and oxidative stress were measured in serum samples, oxidative stress markers, and the gene expression and protein levels of ABCA1 were quantified in liver samples. The HDL-C level altered by the HFDF was improved by treatment with NAM. Furthermore, NAM reduces systemic lipid peroxidation levels and enhances the hepatic antioxidant response affected by the HFDF. In addition, NAM modulates the hepatic ABCA1 gene expression and protein level, altered by the HFDF. Our results suggest that NAM may modify the serum HDL-C level by an improvement of antioxidant response, and a possible modulation of the hepatic ABCA1 gene and protein expression. Further metabolic and molecular studies are needed to support the potential therapeutic role of NAM to prevent or treat lipid alterations promoted by a hypercaloric diet. Full article
(This article belongs to the Special Issue The Role of Lipids and Lipoproteins in Health)
Show Figures

Figure 1

25 pages, 5052 KB  
Article
Comprehensive Analysis of the TaABCB Gene Family and the Role of TaABCB7 in the Phosphate Starvation Response in Wheat
by Guoqing Cui, Haigang Wang, Yanzhen Wang, Xia Liu, Menglin Lei, Huibin Qin, Rui Huang, Juan Lu, Zhixin Mu and Yanming Bai
Biology 2025, 14(11), 1525; https://doi.org/10.3390/biology14111525 - 30 Oct 2025
Viewed by 397
Abstract
The ABCB subfamily, a subset transporter of the ATP-binding cassette (ABC) superfamily, is vital for various plant life processes, especially in the transport of polar auxin and brassinosteroids. Although ABCB transporters have been characterized in diverse plant species, their specific functions in wheat [...] Read more.
The ABCB subfamily, a subset transporter of the ATP-binding cassette (ABC) superfamily, is vital for various plant life processes, especially in the transport of polar auxin and brassinosteroids. Although ABCB transporters have been characterized in diverse plant species, their specific functions in wheat remain largely unexplored. In this study, we identified 99 TaABCB members in wheat and categorized them into four groups based on their conserved domains and phylogenetic relationships. These members were found to be unevenly distributed across all 21 wheat chromosomes. We conducted a comprehensive genome-wide analysis encompassing gene structure, protein motifs, gene duplication events, collinearity, and cis-acting elements. Transcriptome analysis revealed that different TaABCB members displayed distinct expression patterns under phosphate starvation stress. Notably, we discovered that TaABCB7 might play a role in regulating wheat’s phosphate starvation. Crucially, we pinpointed an elite haplotype, H001, of the candidate gene TaABCB7, which has been progressively selected and employed in wheat breeding improvement programs. Overall, this study enhances our comprehensive understanding of TaABCB members and offers a potential gene resource for molecular marker-assisted selection breeding in wheat. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

9 pages, 701 KB  
Article
Potential Modulation of Polygoni Cuspidati Rhizoma et Radix on Breast Cancer Resistance Protein and Marked Alteration on Methotrexate Pharmacokinetics
by Yu-Chi Hou, Pei-Ying Li, Shiuan-Pey Lin, Pei-Wen Hsu, Meng-Hao Wu and Chung-Ping Yu
Pharmaceuticals 2025, 18(11), 1636; https://doi.org/10.3390/ph18111636 - 29 Oct 2025
Viewed by 452
Abstract
Background/Objectives: Polygoni Cuspidati Rhizoma et Radix (PCRR) is an herb and a source of a resveratrol-containing dietary supplement. Breast cancer resistance protein (BCRP) is an ATP-binding cassette transporter involved in numerous drug-related pharmacokinetic interactions. This study used both in vivo and in [...] Read more.
Background/Objectives: Polygoni Cuspidati Rhizoma et Radix (PCRR) is an herb and a source of a resveratrol-containing dietary supplement. Breast cancer resistance protein (BCRP) is an ATP-binding cassette transporter involved in numerous drug-related pharmacokinetic interactions. This study used both in vivo and in vitro models to investigate the modulation effect of PCRR ingestion on BCRP. Methods: Three groups of rats were orally administered methotrexate (MTX), a probe substrate of BCRP, without and with PCRR at 1.0 g/kg and 2.0 g/kg in a parallel design, and the MTX pharmacokinetics were compared among three treatments. The modulation effects of PCRR and its serum metabolites (PCRRM) on BCRP were assayed by in vitro models. Results: PCRR at 1.0 g/kg and 2.0 g/kg significantly decreased the area under the serum level–time curve from 0 to 240 min (AUC0-240) of MTX by 31% and 58%, respectively; 2.0 g/kg of PCRR markedly increased the area under the serum level–time curve from 240 to 2880 min (AUC240-2880) and the mean residence time (MRT) of MTX by 39% and 74%, respectively. The results of in vitro assays indicated that PCRR enhanced the function of BCRP by 33~48%; on the contrary, PCRRM reduced the function of BCRP by 200~209%. Conclusions: PCRR activated BCRP, whereas PCRRM inhibited BCRP, thereby the coadministration of PCRR reduced both the absorption and excretion of MTX in rats. In clinical practice, the concurrent use of PCRR with critical BCRP substrate drugs should be avoided. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

19 pages, 6883 KB  
Article
Interactions of Arachidonic Acid with AAC1 and UCP1
by Jonathan H. Borowsky and Michael Grabe
Int. J. Mol. Sci. 2025, 26(21), 10504; https://doi.org/10.3390/ijms262110504 - 29 Oct 2025
Viewed by 451
Abstract
The inner mitochondrial membrane proteins ATP/ADP carrier protein 1 (AAC1) and Uncoupling protein 1 (UCP1) belong to the SLC25 mitochondrial carrier family. AAC1 is responsible for ATP/ADP exchange, while UCP1-dependent proton transport, which also requires small molecules known as activators, is the basis [...] Read more.
The inner mitochondrial membrane proteins ATP/ADP carrier protein 1 (AAC1) and Uncoupling protein 1 (UCP1) belong to the SLC25 mitochondrial carrier family. AAC1 is responsible for ATP/ADP exchange, while UCP1-dependent proton transport, which also requires small molecules known as activators, is the basis of brown fat thermogenesis. Arachidonic acid (AA) is an endogenous activator capable of inducing proton transport in both proteins. As such, both AAC1- and UCP1-dependent proton transport are potential targets of weight loss drugs. While AAC1 structures have long been available, only recently have structures of UCP1 been determined. Unfortunately, no AA-bound structure of either protein is available. To explore their interactions with AA, we performed molecular dynamics (MD) simulations of both proteins. Six parallel simulations of each protein were run with an average length of just over 6 μs, for a total of 75 μs of aggregate simulation across both proteins. AA bound deeply between transmembrane helix (TM) helices or in the central cavity of AAC1 in 14 events and between TM helices of UCP1 in 6 events. All AA involved in these deep binding events came from the intermembrane space-facing (C) leaflet. In AAC1, AA most often bound between TM1/TM2 and TM5/TM6. In four cases the fatty acid bound at the bottom of the central cavity rather than in an interhelical groove. In UCP1, all but one deeply bound AA sat between TM5 and TM6. No AA fully entered the cavity as observed in AAC1. In addition to entering the proteins, AAs were enriched around them in the surrounding membrane adjacent to the TM helices. While both protein structures exhibit hydrophobic stretches separating the intermembrane space (IMS) from the matrix, water wires formed through both AAC1 and UCP1, connecting the bulk water in both regions. Grotthuss shuttling along water wires has been proposed as a possible mechanism of AAC1/UCP1-dependent proton transport, but water wires are not present in experimental structures and have not previously been reported in MD simulations. Calculations of electric potentials along these water wires find a large 0.75–1 V electrostatic barrier along water wires through AAC1 and a substantially smaller such barrier of ~0.5 V through UCP1. Full article
Show Figures

Figure 1

17 pages, 5668 KB  
Article
Transcriptome Analysis Reveals Differences in Molecular Mechanisms Between Salt-Tolerant and Salt-Sensitive Rice (Oryza sativa L.) Varieties Under Salt Stress
by Yu Han, Chenyang Wu, Xue Ji, Mengran Yang, Hongyu Zhu, Zhongyou Pei, Mingnan Qu, Lijun Qu, Zhibin Li and Shuangyong Yan
Curr. Issues Mol. Biol. 2025, 47(10), 832; https://doi.org/10.3390/cimb47100832 - 10 Oct 2025
Cited by 1 | Viewed by 733
Abstract
To elucidate the molecular mechanisms underlying salt tolerance in rice (Oryza sativa L.), this study investigated differential transcriptional responses during the tillering stage. Salt-tolerant (N14) and salt-sensitive (N6) varieties were subjected to 0.3% and 0.6% NaCl treatments for 72 h, and their [...] Read more.
To elucidate the molecular mechanisms underlying salt tolerance in rice (Oryza sativa L.), this study investigated differential transcriptional responses during the tillering stage. Salt-tolerant (N14) and salt-sensitive (N6) varieties were subjected to 0.3% and 0.6% NaCl treatments for 72 h, and their transcriptomes were analyzed via RNA-Seq. The results revealed distinct response strategies: 372 differentially expressed genes (DEGs) were identified in N14 and 393 in N6, with only 17 genes responding similarly. Gene Ontology (GO) analysis showed the tolerant N14 activated protein phosphorylation and lipid transport, primarily in the membrane and extracellular regions (e.g., ATP binding), whereas the sensitive N6 activated photosynthesis and protein folding, localized to chloroplasts and peroxisomes. KEGG analysis highlighted the activation of “Plant-pathogen interaction” in N14 versus “Metabolic pathways” in N6. Differential transcription factor activation was also observed, with N14 mobilizing 52 TFs (mainly WRKY and MYB) and N6 mobilizing 36 TFs (mainly MYB and b-ZIP). This study demonstrates that N14 and N6 utilize significantly different molecular pathways to cope with salinity, providing a crucial theoretical foundation for identifying novel salt tolerance genes and developing molecular breeding strategies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 7309 KB  
Article
Population Genomics and Genetic Diversity of Prosopis cineraria in the United Arab Emirates: Insights for Conservation in Arid Ecosystems
by Anestis Gkanogiannis, Salama Rashed Almansoori, Maher Kabshawi, Mohammad Shahid, Saif Almansoori, Hifzur Rahman and Augusto Becerra Lopez-Lavalle
Plants 2025, 14(19), 2970; https://doi.org/10.3390/plants14192970 - 25 Sep 2025
Viewed by 1164
Abstract
Prosopis cineraria (L.) Druce is a keystone tree species in the arid and semi-arid regions of West and South Asia, with critical ecological, cultural, and conservation significance. In the United Arab Emirates (UAE) and other regions of the Arabian Peninsula, this beneficial tree [...] Read more.
Prosopis cineraria (L.) Druce is a keystone tree species in the arid and semi-arid regions of West and South Asia, with critical ecological, cultural, and conservation significance. In the United Arab Emirates (UAE) and other regions of the Arabian Peninsula, this beneficial tree is called Ghaf. Despite its importance, genomic resources and population-level diversity data for the tree remain limited. Here, we present the first comprehensive population genomics study of Ghaf based on whole-genome resequencing of 204 individual trees collected across the UAE. Following Single-Nucleotide Polymorphism (SNP) discovery and stringent filtering, we analyzed 57,183 high-quality LD-pruned SNPs to assess population structure, diversity, and gene flow. Principal component analysis (PCA), sparse non-negative matrix factorization (sNMF), and discriminant analysis of principal components (DAPC) revealed four well-defined genetic clusters, broadly corresponding to geographic origins. The genetic diversity varied significantly among the groups, with observed heterozygosity (Ho), inbreeding coefficients (F), and nucleotide diversity (π) showing strong population-specific trends. Genome-wide fixation index FST scans identified multiple highly differentiated genomic regions, enriched for genes involved in stress response, transport, and signaling. Functional enrichment using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam annotations indicated overrepresentation of protein kinase activity, ATP binding, and hormone signaling pathways. TreeMix analysis revealed gene flow into one of the genetic clusters from both others, suggesting historical admixture and geographic connectivity. This work provides foundational insights into the population genomic profile of P. cineraria, supporting conservation planning, restoration strategies, and long-term genetic monitoring in arid ecosystems. Full article
(This article belongs to the Special Issue Genetic Diversity and Population Structure of Plants)
Show Figures

Figure 1

14 pages, 2507 KB  
Review
An Emerging Paradigm for ABCC5/MRP5 Function in Human Physiology
by Jenai Chinoy, Charlotte Meller and Heidi de Wet
Int. J. Mol. Sci. 2025, 26(18), 9211; https://doi.org/10.3390/ijms26189211 - 20 Sep 2025
Viewed by 962
Abstract
Since the first paper published by Susan Cole in 1990 detailing multidrug resistance mediated by ABCC1/MRP1, research into the C-subfamily of ATP-binding cassette transporters has continued to uncover a wide range of functionally divergent proteins. However, several orphan transporters remain in the C-subfamily, [...] Read more.
Since the first paper published by Susan Cole in 1990 detailing multidrug resistance mediated by ABCC1/MRP1, research into the C-subfamily of ATP-binding cassette transporters has continued to uncover a wide range of functionally divergent proteins. However, several orphan transporters remain in the C-subfamily, and the physiological function and substrates of ABCC5, ABCC11, and ABCC12 remain elusive. This review explores the emerging understanding of human ABCC5. Unlike other ABC transporters with well-defined drug export functions, ABCC5’s physiological roles remain only partially understood. While it is known for its involvement in multidrug resistance in cancers, recent studies suggest broader implications in development, metabolism, neurobiology, and male fertility. ABCC5 exports various endogenous substrates, including cyclic nucleotides (cAMP and cGMP), glutamate conjugates like NAAG, and possibly haem. Knockout models in mice, zebrafish, and sea urchins reveal ABCC5’s role in gut formation, brain function, eye development, and iron metabolism. In mice, its deletion results in lower adipose tissue mass, enhanced insulin sensitivity, and neurobehavioral changes resembling schizophrenia, highlighting its role in glutamatergic signalling and circadian regulation. Functionally, ABCC5 appears to impact adipocyte differentiation and GLP-1 release, implicating it in type 2 diabetes susceptibility in humans. Structural studies using human ABCC5 revealed a novel autoinhibitory mechanism involving a peptide segment (C46–S64) that blocks substrate binding, offering new potential for selective inhibitor development. However, this review emphasises caution in targeting ABCC5 for cancer therapy due to its underappreciated physiological function(s), particularly in the brain and male reproductive system. Understanding ABCC5’s substrate specificity, regulatory mechanisms, and functional redundancy with its paralog ABCC12 remains critical for successful therapeutic strategies in humans. Full article
(This article belongs to the Special Issue ABC Transporters: Where Are We 45 Years On? (2nd Edition))
Show Figures

Figure 1

22 pages, 4297 KB  
Article
Unraveling the Roles of Epigenetic Regulators During the Embryonic Development of Rhipicephalus microplus
by Anderson Mendonça Amarante, Daniel Martins de Oliveira, Marcos Paulo Nicolich Camargo de Souza, Manoel Fonseca-Oliveira, Antonio Galina, Serena Rosignoli, Angélica Fernandes Arcanjo, Bruno Moraes, Alessandro Paiardini, Dante Rotili, Juan Diego de Paula Li Yasumura, Sarah Henaut-Jacobs, Thiago Motta Venancio, Marcelle Uhl, Rodrigo Nunes-da-Fonseca, Luis Fernando Parizi, Itabajara da Silva Vaz Junior, Claudia dos Santos Mermelstein, Thamara Rios, Lucas Tirloni, Carlos Logullo and Marcelo Rosado Fantappiéadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(18), 9171; https://doi.org/10.3390/ijms26189171 - 19 Sep 2025
Viewed by 1026
Abstract
Epigenetic modifications are long-lasting changes to the genome that influence a cell’s transcriptional potential, thereby altering its function. These modifications can trigger adaptive responses that impact protein expression and various cellular processes, including differentiation and growth. The primary epigenetic mechanisms identified to date [...] Read more.
Epigenetic modifications are long-lasting changes to the genome that influence a cell’s transcriptional potential, thereby altering its function. These modifications can trigger adaptive responses that impact protein expression and various cellular processes, including differentiation and growth. The primary epigenetic mechanisms identified to date include DNA and RNA methylation, histone modifications, and microRNA-mediated regulation of gene expression. The intricate crosstalk among these mechanisms makes epigenetics a compelling field for the development of novel control strategies, particularly through the use of epigenetic drugs targeting arthropod vectors such as ticks. In this study, we identified the Rhipicephalus microplus orthologs of canonical histone-modifying enzymes, along with components of the machinery responsible for m5C and 6mA-DNA, and m6A-RNA methylations. We further characterized their transcriptional profiles and enzymatic activities during embryonic development. To explore the functional consequences of epigenetic regulation in R. microplus, we evaluated the effects of various epigenetic inhibitors on the BME26 tick embryonic cell line. Molecular docking simulations were performed to predict the binding modes of these inhibitors to tick enzymes, followed by in vitro assessment of their effects on cell viability and morphology. Tick cells exposed to these inhibitors presented phenotypic and molecular alterations. Notably, we observed high levels of DNA methylation in the nuclear genome. Importantly, inhibition of DNA methylation using 5′-azacytidine (5′-AZA) was associated with increased activity of the mitochondrial electron transport chain and ATP synthesis but reduced cellular proliferation. Our findings highlight the importance of epigenetic regulation during tick embryogenesis and suggest that targeting these pathways may constitute a novel and promising strategy for tick control. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

14 pages, 1306 KB  
Article
Comparative Analyses of Gene and Protein Expressions and the Lipid Contents in Intramuscular and Subcutaneous Fat Tissues in Fattening Steers
by Kaixi Ji, Ming Yang, Ziying Tan, Hongbo Zhao and Xianglun Zhang
Animals 2025, 15(18), 2733; https://doi.org/10.3390/ani15182733 - 19 Sep 2025
Viewed by 688
Abstract
In this study, we aimed to characterize intramuscular fat (IMF) tissue in fattening steers through a comparison with subcutaneous fat (SCF) tissue. The IMF of the longissimus thoracis et lumborum and the SCF of the back fat from three fattening steers (mean body [...] Read more.
In this study, we aimed to characterize intramuscular fat (IMF) tissue in fattening steers through a comparison with subcutaneous fat (SCF) tissue. The IMF of the longissimus thoracis et lumborum and the SCF of the back fat from three fattening steers (mean body weight of 703.50 ± 11.45 kg) were collected, and the muscle tissue, connective tissue, and fascia were carefully removed. Gene and protein expressions and the lipid contents were assessed via transcriptomic, proteomic, and lipidomic analyses, respectively. Subsequently, tissue-specific factors were identified using integrated analysis. The results revealed that the expressions of sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (ATP2A2), enolase 3 (ENO3), fructose-bisphosphatase 2 (FBP2), myosin heavy chain 7 (MYH7), myosin light chain 3 (MYL3), myosin light chain kinase (MYLK), glycogen phosphorylase (PYGM), troponin C1 (TNNC1), and tropomyosin 2 (TPM2) significantly increased in IMF at both the mRNA and protein levels, whereas those of fatty acid-binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD), and apolipoprotein E (APOE) were reduced. The abundances of both phosphatidylinositol (PI) (18:1/20:4) and phosphatidylcholine (PC) (15:0/18:2) were positively correlated with APOE. Conversely, that of PI (18:1/20:4) was negatively correlated with ENO3 and PYGM, whereas PC (15:0/18:2) was negatively correlated with TNNC1 and MYLK. In conclusion, we identified calcium signaling and glycolysis as key IMF-regulating pathways. ATP2A2, ENO3, FBP2, MYH7, MYL3, MYLK, PYGM, TNNC1, TPM2, and LPE 18:0 were negatively associated with IMF deposition, whereas FABP4, SCD, APOE, PI (18:1/20:4), and PC (15:0/18:2) were positively associated with it. These findings offer underlying IMF-related targets to promote IMF deposition in cattle. Full article
(This article belongs to the Special Issue Livestock Omics)
Show Figures

Figure 1

11 pages, 1746 KB  
Brief Report
Valproic Acid as a Histone Deacetylase Inhibitor Induces ABCB1 Overexpression and De Novo ABCB5 Expression in HeLa Cells
by Gabriela Rebeca Luna-Palencia, José Correa-Basurto and Ismael Vásquez-Moctezuma
Curr. Issues Mol. Biol. 2025, 47(9), 749; https://doi.org/10.3390/cimb47090749 - 11 Sep 2025
Viewed by 792
Abstract
Histone deacetylase inhibitors (HDACis) induce the expression of multidrug resistance (MDR) pumps and can even display the MDR phenotype in cell lines. This is the first report to include the profiles of ATP-binding cassette (ABC) transporters in intrinsically expressed HeLa cells as well [...] Read more.
Histone deacetylase inhibitors (HDACis) induce the expression of multidrug resistance (MDR) pumps and can even display the MDR phenotype in cell lines. This is the first report to include the profiles of ATP-binding cassette (ABC) transporters in intrinsically expressed HeLa cells as well as those acquired due to a 5 mM valproic acid (VPA) treatment. Expression of ABC transporters related to the MDR phenotype was analyzed by RT-PCR in untreated HeLa cells and HeLa cells treated with 5 mM VPA. The ABCB5 protein was identified in HeLa cells by immunocytochemistry. HeLa cell treatment with 5 mM VPA increased ABCB1 expression and triggered the de novo expression of ABCB5 in mRNA and protein. Despite the expression of ABCB5 and the overexpression of ABCB1, VPA reduced the growth rate by 20%, delayed doubling time by 25%, and decreased the number of living cells per well to 50% after 72 h. Pretreatment with VPA for 24 h followed by cotreatment with doxorubicin (DOX) sensitized HeLa cells to DOX. However, for the de novo expression of ABCB5, HeLa cells did not acquire the MDR phenotype from the 5 mM VPA treatment. The ABCB5 isoform induced by VPA treatment probably lacks MDR activity. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

Back to TopTop