Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = ATP synthesis and hydrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1985 KiB  
Article
BLF1 Affects ATP Hydrolysis Catalyzed by Native and Mutated eIF4A1 and eIF4A2 Proteins
by Min An, Xin Cheng, Yu Zhang, Jiang Gu and Xuhu Mao
Toxins 2025, 17(5), 232; https://doi.org/10.3390/toxins17050232 - 7 May 2025
Viewed by 666
Abstract
Burkholderia lethal factor 1 (BLF1), a toxin derived from Burkholderia pseudomallei, reacts with eukaryotic initiation factor (eIF) 4A to inhibit protein synthesis. eIF4A1 and eIF4A2 are involved in translation initiation and share over 90% sequence similarity. However, they exert distinct effects on [...] Read more.
Burkholderia lethal factor 1 (BLF1), a toxin derived from Burkholderia pseudomallei, reacts with eukaryotic initiation factor (eIF) 4A to inhibit protein synthesis. eIF4A1 and eIF4A2 are involved in translation initiation and share over 90% sequence similarity. However, they exert distinct effects on cancer treatment outcomes. To understand the molecular mechanism by which BLF1 modulates eIF4A isoforms in cancer cells, we investigated its effects on eIF4A-mediated adenosine 5′-triphosphate (ATP) hydrolysis. We found that eIF4A1 has a higher ATP-binding affinity compared to eIF4A2 (Km = 6.55 ± 0.78 μM vs. Km = 11.61 ± 2.33 μM). Meanwhile, we also found that eIF4A1 is more sensitive to changes in temperature, pH, and Mg2+ concentration. Through N-terminal swapping and single amino acid mutations, we found that leucine 98 (L98) and alanine 100 (A100) play important roles in the ATPase activities of eIF4A isoforms. Moreover, BLF1 treatment significantly enhanced eIF4A2-mediated ATP hydrolysis at all tested ATP concentrations. These differences in BLF1-regulated eIF4A isoforms may explain its selective cytotoxicity against cancer cells. Our findings provide molecular insights into the functional difference between eIF4A isoforms and suggest that BLF1 might be of promising value for anticancer therapies. Full article
Show Figures

Figure 1

16 pages, 3081 KiB  
Article
Comparative Transcriptome Analysis Highlights the Role of NlABCG14 in the Honeydew Production of Virulent Brown Planthoppers (Nilaparvata lugens Stål) to Resistant Rice Variety
by Shengli Jing, Mengjia Geng, Bojie Lu, Bing Wu, Yuhan Shao, Chenxi Li, Qingqing Yu, Jingang Xu, Wei Hu, Qingsong Liu and Bin Yu
Insects 2024, 15(12), 992; https://doi.org/10.3390/insects15120992 - 15 Dec 2024
Viewed by 1165
Abstract
Brown planthoppers (BPHs, Nilaparvata lugens Stål) are a major threat to rice cultivation in Asia, necessitating the development of pest-resistant varieties for effective management. However, the adaptability of BPHs has resulted in the development of virulent populations, such as biotype Y BPHs, which [...] Read more.
Brown planthoppers (BPHs, Nilaparvata lugens Stål) are a major threat to rice cultivation in Asia, necessitating the development of pest-resistant varieties for effective management. However, the adaptability of BPHs has resulted in the development of virulent populations, such as biotype Y BPHs, which exhibit significant virulence against the rice variety YHY15 that harbors the resistance gene Bph15. The various response mechanisms of BPH populations to resistant rice varieties are critical yet underexplored. Via RNA sequencing, the present study identified distinct transcriptional profiles in avirulent (biotype 1) and virulent (biotype Y) BPH nymphs both before and after feeding on YHY15 rice. Our findings revealed differential expression patterns of gene clusters involved in protein synthesis, hydrolysis, fatty acid biosynthesis, metabolism, cuticle composition, and translocation. Further analysis elucidated changes in the expression of genes associated with longevity and structural components of cuticles, highlighting specific disruptions in both biotype 1 and biotype Y BPHs. Moreover, the two biotypes showed differences in the expression level of genes involved in ATP-binding cassette (ABC) transporters. A functional assessment of ABC transporter genes revealed a role of NlABCG14 in the honeydew production of biotype Y BPHs to YHY15 rice, without impacting their survival and developmental dynamics. These insights deepen our understanding of the mechanisms of virulent BPHs response to resistant rice varieties and highlight potential targets for improving pest management strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 5747 KiB  
Article
Comparative Transcriptome Analysis of Non-Organogenic and Organogenic Tissues of Gaillardia pulchella Revealing Genes Regulating De Novo Shoot Organogenesis
by Yashika Bansal, A. Mujib, Mahima Bansal, Mohammad Mohsin, Afeefa Nafees and Yaser Hassan Dewir
Horticulturae 2024, 10(11), 1138; https://doi.org/10.3390/horticulturae10111138 - 25 Oct 2024
Viewed by 1295
Abstract
Gaillardia pulchella is an important plant species with pharmacological and ornamental applications. It contains a wide array of phytocompounds which play roles against diseases. In vitro propagation requires callogenesis and differentiation of plant organs, which offers a sustainable, alternative synthesis of compounds. The [...] Read more.
Gaillardia pulchella is an important plant species with pharmacological and ornamental applications. It contains a wide array of phytocompounds which play roles against diseases. In vitro propagation requires callogenesis and differentiation of plant organs, which offers a sustainable, alternative synthesis of compounds. The morphogenetic processes and the underlying mechanisms are, however, known to be under genetic regulation and are little understood. The present study investigated these events by generating transcriptome data, with de novo assembly of sequences to describe shoot morphogenesis molecularly in G. pulchella. The RNA was extracted from the callus of pre- and post-shoot organogenesis time. The callus induction was optimal using leaf segments cultured onto MS medium containing α-naphthalene acetic acid (NAA; 2.0 mg/L) and 6-benzylaminopurine (BAP; 0.5 mg/L) and further exhibited a high shoot regeneration/caulogenesis ability. A total of 68,366 coding sequences were obtained using Illumina150bpPE sequencing and transcriptome assembly. Differences in gene expression patterns were noted in the studied samples, showing opposite morphogenetic responses. Out of 10,108 genes, 5374 (53%) were downregulated, and there were 4734 upregulated genes, representing 47% of the total genes. Through the heatmap, the top 100 up- and downregulating genes’ names were identified and presented. The up- and downregulated genes were identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Important pathways, operative during G. pulchella shoot organogenesis, were signal transduction (13.55%), carbohydrate metabolism (8.68%), amino acid metabolism (5.11%), lipid metabolism (3.75%), and energy metabolism (3.39%). The synthesized proteins displayed phosphorylation, defense response, translation, regulation of DNA-templated transcription, carbohydrate metabolic processes, and methylation activities. The genes’ product also exhibited ATP binding, DNA binding, metal ion binding, protein serine/threonine kinase -, ATP hydrolysis activity, RNA binding, protein kinase, heme and GTP binding, and DNA binding transcription factor activity. The most abundant proteins were located in the membrane, nucleus, cytoplasm, ribosome, ribonucleoprotein complex, chloroplast, endoplasmic reticulum membrane, mitochondrion, nucleosome, Golgi membrane, and other organellar membranes. These findings provide information for the concept of molecular triggers, regulating programming, differentiation and reprogramming of cells, and their uses. Full article
(This article belongs to the Special Issue Plant Tissue and Organ Cultures for Crop Improvement in Omics Era)
Show Figures

Figure 1

18 pages, 33207 KiB  
Article
IF1 Promotes Cellular Proliferation and Inhibits Oxidative Phosphorylation in Mouse Embryonic Fibroblasts under Normoxia and Hypoxia
by Lothar Lauterboeck, Sung Wook Kang, Donnell White, Rong Bao, Parnia Mobasheran and Qinglin Yang
Cells 2024, 13(6), 551; https://doi.org/10.3390/cells13060551 - 21 Mar 2024
Viewed by 2045
Abstract
ATP synthase inhibitory factor subunit 1 (IF1) is an inhibitory subunit of mitochondrial ATP synthase, playing a crucial role in regulating mitochondrial respiration and energetics. It is well-established that IF1 interacts with the F1 sector of ATP synthase to inhibit the reversal rotation [...] Read more.
ATP synthase inhibitory factor subunit 1 (IF1) is an inhibitory subunit of mitochondrial ATP synthase, playing a crucial role in regulating mitochondrial respiration and energetics. It is well-established that IF1 interacts with the F1 sector of ATP synthase to inhibit the reversal rotation and, thus, ATP hydrolysis. Recent evidence supports that IF1 also inhibits forward rotation or the ATP synthesis activity. Adding to the complexity, IF1 may also facilitate mitophagy and cristae formation. The implications of these complex actions of IF1 for cellular function remain obscure. In the present study, we found that IF1 expression was markedly upregulated in hypoxic MEFs relative to normoxic MEFs. We investigate how IF1 affects cellular growth and function in cultured mouse embryonic fibroblasts derived from mouse lines with systemic IF1 overexpression and knockout under normoxia and hypoxia. Cell survival and proliferation analyses revealed that IF1 overexpression exerted limited effects on cellular viability but substantially increased proliferation under normoxia, whereas it facilitated both cellular viability and proliferation under hypoxia. The absence of IF1 may have a pro-survival effect but not a proliferative one in both normoxia and hypoxia. Cellular bioenergetic analyses revealed that IF1 suppressed cellular respiration when subjected to normoxia and was even more pronounced when subjected to hypoxia with increased mitochondrial ATP production. In contrast, IF1 knockout MEFs showed markedly increased cellular respiration under both normoxia and hypoxia with little change in mitochondrial ATP. Glycolytic stress assay revealed that IF1 overexpression modestly increased glycolysis in normoxia and hypoxia. Interestingly, the absence of IF1 in MEFs led to substantial increases in glycolysis. Therefore, we conclude that IF1 mainly inhibits cellular respiration and enhances cellular glycolysis to preserve mitochondrial ATP. On the other hand, IF1 deletion can significantly facilitate cellular respiration and glycolysis without leading to mitochondrial ATP deficit. Full article
Show Figures

Figure 1

27 pages, 2435 KiB  
Article
Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by FOF1-ATP Synthase
by Sunil Nath
Molecules 2023, 28(22), 7486; https://doi.org/10.3390/molecules28227486 - 8 Nov 2023
Cited by 12 | Viewed by 2209
Abstract
The integration of phosphorus chemistry with the mechanism of ATP synthesis/hydrolysis requires dynamical information during ATP turnover and catalysis. Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events [...] Read more.
The integration of phosphorus chemistry with the mechanism of ATP synthesis/hydrolysis requires dynamical information during ATP turnover and catalysis. Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. They have been shown to provide valuable time-resolved information on enzyme catalysis during ATP synthesis and ATP hydrolysis. The present work conducts new experiments on oxygen exchange catalyzed by submitochondrial particles designed to (i) measure the relative rates of Pi–ATP, Pi–HOH, and ATP–HOH isotope exchanges; (ii) probe the effect of ADP removal on the extent of inhibition of the exchanges, and (iii) test their uncoupler sensitivity/resistance. The objectives have been realized based on new experiments on submitochondrial particles, which show that both the Pi–HOH and ATP–HOH exchanges occur at a considerably higher rate relative to the Pi–ATP exchange, an observation that cannot be explained by previous mechanisms. A unifying explanation of the kinetic data that rationalizes these observations is given. The experimental results in (ii) show that ADP removal does not inhibit the intermediate Pi–HOH exchange when ATP and submitochondrial particles are incubated, and that the nucleotide requirement of the intermediate Pi–HOH exchange is adequately met by ATP, but not by ADP. These results contradicts the central postulate in Boyer’s binding change mechanism of reversible catalysis at a F1 catalytic site with Keq~1 that predicts an absolute requirement of ADP for the occurrence of the Pi–HOH exchange. The prominent intermediate Pi–HOH exchange occurring under hydrolytic conditions is shown to be best explained by Nath’s torsional mechanism of energy transduction and ATP synthesis/hydrolysis, which postulates an essentially irreversible cleavage of ATP by mitochondria/particles, independent from a reversible formation of ATP from ADP and Pi. The explanation within the torsional mechanism is also shown to rationalize the relative insensitivity of the intermediate Pi–HOH exchange to uncouplers observed in the experiments in (iii) compared to the Pi–ATP and ATP–HOH exchanges. This is shown to lead to new concepts and perspectives based on ligand displacement/substitution and ligand permutation for the elucidation of the oxygen exchange reactions within the framework of fundamental phosphorus chemistry. Fast mechanisms that realize the rotation/twist, tilt, permutation and switch of ligands, as well as inversion at the γ-phosphorus synchronously and simultaneously and in a concerted manner, have been proposed, and their stereochemical consequences have been analyzed. These considerations take us beyond the binding change mechanism of ATP synthesis/hydrolysis in bioenergetics. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry: A New Perspective, 2nd Edition)
Show Figures

Figure 1

32 pages, 4463 KiB  
Article
Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F1-ATPase
by Sunil Nath
Biomolecules 2023, 13(11), 1596; https://doi.org/10.3390/biom13111596 - 30 Oct 2023
Cited by 7 | Viewed by 2214
Abstract
Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. This work presents a new theory of oxygen exchange and tests it [...] Read more.
Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. This work presents a new theory of oxygen exchange and tests it on oxygen exchange data recorded on ATP hydrolysis by mitochondrial F1-ATPase (MF1). The apparent rate constant of oxygen exchange governing the intermediate Pi–HOH exchange accompanying ATP hydrolysis is determined by kinetic analysis over a ~50,000-fold range of substrate ATP concentration (0.1–5000 μM) and a corresponding ~200-fold range of reaction velocity (3.5–650 [moles of Pi/{moles of F1-ATPase}−1 s−1]). Isotopomer distributions of [18O]Pi species containing 0, 1, 2, and 3 labeled oxygen atoms predicted by the theory have been quantified and shown to be in perfect agreement with the experimental distributions over the entire range of medium ATP concentrations without employing adjustable parameters. A novel molecular mechanism of steady-state multisite ATP hydrolysis by the F1-ATPase has been proposed. Our results show that steady-state ATP hydrolysis by F1-ATPase occurs with all three sites occupied by Mg-nucleotide. The various implications arising from models of energy coupling in ATP synthesis/hydrolysis by the ATP synthase/F1-ATPase have been discussed. Current models of ATP hydrolysis by F1-ATPase, including those postulated from single-molecule data, are shown to be effectively bisite models that contradict the data. The trisite catalysis formulated by Nath’s torsional mechanism of energy transduction and ATP synthesis/hydrolysis since its first appearance 25 years ago is shown to be in better accord with the experimental record. The total biochemical information on ATP hydrolysis is integrated into a consistent model by the torsional mechanism of ATP synthesis/hydrolysis and shown to elucidate the elementary chemical and mechanical events within the black box of enzyme catalysis in energy metabolism by F1-ATPase. Full article
(This article belongs to the Special Issue Mitochondria and Energy Metabolism in Health and Disease)
Show Figures

Figure 1

16 pages, 2722 KiB  
Article
I-Shaped Dimers of a Plant Chloroplast FOF1-ATP Synthase in Response to Changes in Ionic Strength
by Stepan D. Osipov, Yury L. Ryzhykau, Egor V. Zinovev, Andronika V. Minaeva, Sergey D. Ivashchenko, Dmitry P. Verteletskiy, Vsevolod V. Sudarev, Daria D. Kuklina, Mikhail Yu. Nikolaev, Yury S. Semenov, Yuliya A. Zagryadskaya, Ivan S. Okhrimenko, Margarita S. Gette, Elizaveta A. Dronova, Aleksei Yu. Shishkin, Norbert A. Dencher, Alexander I. Kuklin, Valentin Ivanovich, Vladimir N. Uversky and Alexey V. Vlasov
Int. J. Mol. Sci. 2023, 24(13), 10720; https://doi.org/10.3390/ijms241310720 - 27 Jun 2023
Cited by 4 | Viewed by 2364
Abstract
F-type ATP synthases play a key role in oxidative and photophosphorylation processes generating adenosine triphosphate (ATP) for most biochemical reactions in living organisms. In contrast to the mitochondrial FOF1-ATP synthases, those of chloroplasts are known to be mostly monomers [...] Read more.
F-type ATP synthases play a key role in oxidative and photophosphorylation processes generating adenosine triphosphate (ATP) for most biochemical reactions in living organisms. In contrast to the mitochondrial FOF1-ATP synthases, those of chloroplasts are known to be mostly monomers with approx. 15% fraction of oligomers interacting presumably non-specifically in a thylakoid membrane. To shed light on the nature of this difference we studied interactions of the chloroplast ATP synthases using small-angle X-ray scattering (SAXS) method. Here, we report evidence of I-shaped dimerization of solubilized FOF1-ATP synthases from spinach chloroplasts at different ionic strengths. The structural data were obtained by SAXS and demonstrated dimerization in response to ionic strength. The best model describing SAXS data was two ATP-synthases connected through F1/F1′ parts, presumably via their δ-subunits, forming “I” shape dimers. Such I-shaped dimers might possibly connect the neighboring lamellae in thylakoid stacks assuming that the FOF1 monomers comprising such dimers are embedded in parallel opposing stacked thylakoid membrane areas. If this type of dimerization exists in nature, it might be one of the pathways of inhibition of chloroplast FOF1-ATP synthase for preventing ATP hydrolysis in the dark, when ionic strength in plant chloroplasts is rising. Together with a redox switch inserted into a γ-subunit of chloroplast FOF1 and lateral oligomerization, an I-shaped dimerization might comprise a subtle regulatory process of ATP synthesis and stabilize the structure of thylakoid stacks in chloroplasts. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

13 pages, 3608 KiB  
Review
Asteltoxins: Synthesis and Biological Studies
by Eslam R. El-Sawy, Gilbert Kirsch and Mohamed S. Abdel-Aziz
Appl. Microbiol. 2023, 3(3), 592-604; https://doi.org/10.3390/applmicrobiol3030042 - 21 Jun 2023
Cited by 1 | Viewed by 2400
Abstract
Asteltoxins belong to a group of polyene pyrone mycotoxins that are known to be potent inhibitors of mitochondrial ATP synthesis and ATP hydrolysis. Asteltoxin A was first isolated from the toxic maize cultures of Aspergillus stellatus. Several attempts have been made to [...] Read more.
Asteltoxins belong to a group of polyene pyrone mycotoxins that are known to be potent inhibitors of mitochondrial ATP synthesis and ATP hydrolysis. Asteltoxin A was first isolated from the toxic maize cultures of Aspergillus stellatus. Several attempts have been made to synthesize asteltoxin A, starting with the synthesis of a bis(tetrahydrofuran) moiety that has been demonstrated previously in biosynthetic studies. This review highlights the fungal sources of asteltoxins, similar asteltoxins, biosynthetic pathways, their synthetic trials, and their biological activities. This review is the first of its kind covering the periods from 1979 to 2023. Full article
Show Figures

Figure 1

14 pages, 3920 KiB  
Article
Insights into Proteomics Reveal Mechanisms of Ethanol-Enhanced Bacterial Cellulose Biosynthesis by Komagataeibacter nataicola
by Shuangwen Fei, Xuan Yang, Wentao Xu, Jiachao Zhang, Jun Li, Huamei Chen, Xue Lin, Sixin Liu and Congfa Li
Fermentation 2023, 9(6), 575; https://doi.org/10.3390/fermentation9060575 - 17 Jun 2023
Cited by 7 | Viewed by 2862
Abstract
Nata de coco, known as bacterial cellulose (BC), has been given much attention in the food industry and biomaterial areas due to its specific properties such as low calorie content, high content of fiber, high purity and high biocompatibility. Komagataeibacter spp. are indispensable [...] Read more.
Nata de coco, known as bacterial cellulose (BC), has been given much attention in the food industry and biomaterial areas due to its specific properties such as low calorie content, high content of fiber, high purity and high biocompatibility. Komagataeibacter spp. are indispensable microorganisms for BC production due to their highly efficient production. Here, proteomics was applied to investigate the metabolism regulation mechanisms of BC yield improvements in K. nataicola Y19 by 48 ± 3% after ethanol supplementation. The results evidenced that differentially expressed proteins involved in the BC biosynthesis system, glycolytic pathway, TCA cycle and oxidative phosphorylation process were up-regulated. The proteins accelerated the BC biosynthesis by providing more energy and via intermediate metabolites. Furthermore, the elongation factor Tu, chaperone DnaK and translocase subunit SecB may be involved in the BC synthesis procedure by regulating electron transfer, hydrolysis of ATP and protein transformation. Moreover, the ethanol-enhanced BC biosynthesis may be associated with the decreased expression of endoglucanase. This research elucidates the proteomics mechanism of higher BC production based on ethanol addition, providing references for nata de coco production efficiency and the synthetic regulation of bacterial cellulose in the future. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

20 pages, 2109 KiB  
Review
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis
by Tatyana V. Zharova, Vera G. Grivennikova and Vitaliy B. Borisov
Int. J. Mol. Sci. 2023, 24(6), 5417; https://doi.org/10.3390/ijms24065417 - 12 Mar 2023
Cited by 22 | Viewed by 10719
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the [...] Read more.
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells. Full article
(This article belongs to the Special Issue Biophysical Properties of Membrane Proteins)
Show Figures

Figure 1

25 pages, 3028 KiB  
Article
H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation
by Evgeniya A. Malykh, Liubov I. Golubeva, Ekaterina S. Kovaleva, Mikhail S. Shupletsov, Elena V. Rodina, Sergey V. Mashko and Nataliya V. Stoynova
Microorganisms 2023, 11(2), 294; https://doi.org/10.3390/microorganisms11020294 - 23 Jan 2023
Cited by 4 | Viewed by 2462
Abstract
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic [...] Read more.
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic PPase (S-PPases) with the released energy dissipated in the form of heat. In Rhodospirillum rubrum, part of this energy can be conserved by proton-pumping pyrophosphatase (H+-PPaseRru) in the form of a proton electrochemical gradient for further ATP synthesis. Here, the codon-harmonized gene hppaRru encoding H+-PPaseRru was expressed in the Escherichia coli chromosome. We demonstrate, for the first time, that H+-PPaseRru complements the essential native S-PPase in E. coli cells. 13C-MFA confirmed that replacing native PPase to H+-PPaseRru leads to the re-distribution of carbon fluxes; a statistically significant 36% decrease in tricarboxylic acid (TCA) cycle fluxes was found compared with wild-type E. coli MG1655. Such a flux re-distribution can indicate the presence of an additional method for energy generation (e.g., ATP), which can be useful for the microbiological production of a number of compounds, the biosynthesis of which requires the consumption of ATP. Full article
Show Figures

Figure 1

13 pages, 635 KiB  
Article
Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress
by Andrés García-Sánchez, Luis Gómez-Hermosillo, Jorge Casillas-Moreno, Fermín Pacheco-Moisés, Tannia Isabel Campos-Bayardo, Daniel Román-Rojas and Alejandra Guillermina Miranda-Díaz
Antioxidants 2023, 12(1), 165; https://doi.org/10.3390/antiox12010165 - 10 Jan 2023
Cited by 10 | Viewed by 2866
Abstract
Obesity and hypertension are health problems of increasing prevalence in developed countries. The link between obesity and hypertension is not yet fully determined. Oxidative stress (OS) and mitochondrial function may play a role in obesity-associated hypertension. A cross-sectional study with 175 subjects with [...] Read more.
Obesity and hypertension are health problems of increasing prevalence in developed countries. The link between obesity and hypertension is not yet fully determined. Oxidative stress (OS) and mitochondrial function may play a role in obesity-associated hypertension. A cross-sectional study with 175 subjects with normal weight, overweight, or obese who attended a medical check-up was included. The subjects were divided according to the body mass index (BMI) into normal-weight (n-53), overweight (n-84), and obesity (n-38). Hypertension was also evaluated. To measure mitochondrial function, ATP hydrolysis and ATP synthesis in platelets and serum, respectively, were determined. Superoxide dismutase (SOD), catalase, lipohydroperoxides, 8-isoprostanes, carbonyl groups in proteins, nitric oxide (NO) metabolites, 8-hydroxy-2′-deoxyguanosine (8-OHG), 8-oxoguanine glycosylase (hOGG1), tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were measured by standard colorimetric or immunoassay methods. Obese subjects showed lower ATP hydrolysis activity than normal weight and overweight subjects (p < 0.01). No differences between those groups were found in ATP synthase and catalase activities, lipid hydroperoxides, carbonyl groups in proteins, 8-isoprostanes, and NO metabolites. In the obesity group, SOD activity (p < 0.01) was decreased while 8-OHG (p < 0.01) was increased. Subjects with hypertension showed increased 8-OHG (p < 0.01) and less reparative enzyme (hOGG1 p = 0.04) than subjects with normal weight. Moreover, we found a decrease of SOD (p < 0.01), catalase activities (p = 0.04), NO metabolites (p < 0.01), and increases of carbonyl groups in proteins (p = 0.01), TNF-α (p < 0.01) and IL-6 (p < 0.01 in hypertensive subjects. Obese subjects show a decrease in ATP hydrolysis. The decrease in ATP hydrolysis rate and ATP synthesis and an increase in OS and inflammation markers were associated with the hypertensive state. Full article
15 pages, 1064 KiB  
Article
Knockdown of the Sodium/Potassium ATPase Subunit Beta 2 Reduces Egg Production in the Dengue Vector, Aedes aegypti
by Nathan P. Martinez, Matthew Pinch, Yashoda Kandel and Immo A. Hansen
Insects 2023, 14(1), 50; https://doi.org/10.3390/insects14010050 - 5 Jan 2023
Cited by 2 | Viewed by 3961
Abstract
The Na+/K+ ATPase (NKA) is present in the cellular membrane of most eukaryotic cells. It utilizes energy released by ATP hydrolysis to pump sodium ions out of the cell and potassium ions into the cell, which establishes and controls ion [...] Read more.
The Na+/K+ ATPase (NKA) is present in the cellular membrane of most eukaryotic cells. It utilizes energy released by ATP hydrolysis to pump sodium ions out of the cell and potassium ions into the cell, which establishes and controls ion gradients. Functional NKA pumps consist of three subunits, alpha, beta, and FXYD. The alpha subunit serves as the catalytic subunit while the beta and FXYD subunits regulate the proper folding and localization, and ion affinity of the alpha subunit, respectively. Here we demonstrate that knockdown of NKA beta subunit 2 mRNA (nkaβ2) reduces fecundity in female Ae. aegypti. We determined the expression pattern of nkaβ2 in several adult mosquito organs using qRT-PCR. We performed RNAi-mediated knockdown of nkaβ2 and assayed for lethality, and effects on female fecundity. Tissue expression levels of nkaβ2 mRNA were highest in the ovaries with the fat body, midgut and thorax having similar expression levels, while Malpighian tubules had significantly lower expression. Survival curves recorded post dsRNA injection showed a non-significant decrease in survival of nkaβ2 dsRNA-injected mosquitoes compared to GFP dsRNA-injected mosquitoes. We observed a significant reduction in the number of eggs laid by nkaβ2 dsRNA-injected mosquitoes compared to control mosquitoes. These results, coupled with the tissue expression profile of nkaβ2, indicate that this subunit plays a role in normal female Ae. aegypti fecundity. Additional research needs to be conducted to determine the exact role played by NKAβ2 in mosquito post-blood meal nutrient sensing, transport, yolk precursor protein (YPP) synthesis and yolk deposition. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 2196 KiB  
Article
Engineering Escherichia coli for Efficient Aerobic Conversion of Glucose to Malic Acid through the Modified Oxidative TCA Cycle
by Alexandra Yu. Skorokhodova, Anastasiya A. Stasenko, Natalya V. Krasilnikova, Andrey Yu. Gulevich and Vladimir G. Debabov
Fermentation 2022, 8(12), 738; https://doi.org/10.3390/fermentation8120738 - 14 Dec 2022
Cited by 11 | Viewed by 4068
Abstract
Malic acid is a versatile building-block chemical that can serve as a precursor of numerous valuable products, including food additives, pharmaceuticals, and biodegradable plastics. Despite the present petrochemical synthesis, malic acid, being an intermediate of the TCA cycle of a variety of living [...] Read more.
Malic acid is a versatile building-block chemical that can serve as a precursor of numerous valuable products, including food additives, pharmaceuticals, and biodegradable plastics. Despite the present petrochemical synthesis, malic acid, being an intermediate of the TCA cycle of a variety of living organisms, can also be produced from renewable carbon sources using wild-type and engineered microbial strains. In the current study, Escherichia coli was engineered for efficient aerobic conversion of glucose to malic acid through the modified oxidative TCA cycle resembling that of myco- and cyanobacteria and implying channelling of 2-ketoglutarate towards succinic acid via succinate semialdehyde formation. The formation of succinate semialdehyde was enabled in the core strain MAL 0 (∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆ptsG, PL-glk, Ptac-galP, ∆aceBAK, ∆glcB) by the expression of Mycobacterium tuberculosis kgd gene. The secretion of malic acid by the strain was ensured, resulting from the deletion of the mdh, maeA, maeB, and mqo genes. The Bacillus subtilis pycA gene was expressed in the strain to allow pyruvate to oxaloacetate conversion. The corresponding recombinant was able to synthesise malic acid from glucose aerobically with a yield of 0.65 mol/mol. The yield was improved by the derepression in the strain of the electron transfer chain and succinate dehydrogenase due to the enforcement of ATP hydrolysis and reached 0.94 mol/mol, amounting to 94% of the theoretical maximum. The implemented strategy offers the potential for the development of highly efficient strains and processes of bio-based malic acid production. Full article
(This article belongs to the Special Issue Bioprocess and Metabolic Engineering)
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
Transcriptomic Analysis Revealed Antimicrobial Mechanisms of Lactobacillus rhamnosus SCB0119 against Escherichia coli and Staphylococcus aureus
by Huan Peng, Gang Zhou, Xi-Miao Yang, Guo-Jun Chen, Hai-Bin Chen, Zhen-Lin Liao, Qing-Ping Zhong, Li Wang, Xiang Fang and Jie Wang
Int. J. Mol. Sci. 2022, 23(23), 15159; https://doi.org/10.3390/ijms232315159 - 2 Dec 2022
Cited by 12 | Viewed by 3806
Abstract
Lactic acid bacteria were reported as a promising alternative to antibiotics against pathogens. Among them, Lactobacillus rhamnosus could be used as probiotics and inhibit several pathogens, but its antibacterial mechanisms are still less known. Here, L. rhamnosus SCB0119 isolated from fermented pickles could [...] Read more.
Lactic acid bacteria were reported as a promising alternative to antibiotics against pathogens. Among them, Lactobacillus rhamnosus could be used as probiotics and inhibit several pathogens, but its antibacterial mechanisms are still less known. Here, L. rhamnosus SCB0119 isolated from fermented pickles could inhibit bacterial growth or even cause cell death in Escherichia coli ATCC25922 and Staphylococcus aureus ATCC6538, which was mainly attributed to the cell-free culture supernatant (CFS). Moreover, CFS induced the accumulation of reactive oxygen species and destroyed the structure of the cell wall and membrane, including the deformation in cell shape and cell wall, the impairment of the integrity of the cell wall and inner membrane, and the increases in outer membrane permeability, the membrane potential, and pH gradient in E. coli and S. aureus. Furthermore, the transcriptomic analysis demonstrated that CFS altered the transcripts of several genes involved in fatty acid degradation, ion transport, and the biosynthesis of amino acids in E. coli, and fatty acid degradation, protein synthesis, DNA replication, and ATP hydrolysis in S. aureus, which are important for bacterial survival and growth. In conclusion, L. rhamnosus SCB0119 and its CFS could be used as a biocontrol agent against E. coli and S. aureus. Full article
Show Figures

Figure 1

Back to TopTop