Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sub-Mitochondrial Membranes of Platelets
2.2. ATP Synthesis Activity
2.3. ATPase Activity
2.4. Antioxidants
2.4.1. Superoxide Dismutase Activity
2.4.2. Catalase Activity
2.5. Oxidants
2.5.1. Lipid Hydroperoxides
2.5.2. Carbonyl Groups in Proteins
2.5.3. 8-Isoprostane
2.5.4. Nitric Oxide Metabolites
2.5.5. Markers of Oxidative Damage and Repair of DNA
8-Hydroxy-2′-Deoxyguanosine (8-OHG)
8-Oxoguanine-DNA-N-Glycosylase-1
2.6. Pro-Inflammatory Cytokines
TNF-α and IL6
2.7. Statistical Analysis
3. Results
3.1. Mitochondrial Function in Hypertension
3.2. Proinflammatory Cytokines in Hypertension
3.3. DNA Oxidative Damage Markers in Hypertension
3.4. Antioxidants in Hypertension
3.5. Oxidants in Hypertension
3.6. Mitochondrial Function in Overweight or Obese Subjects with and without Hypertension
3.7. DNA Oxidative Damage Markers in Overweight, Obesity, and Hypertension
3.8. Oxidants in Overweight, Obesity, and Hypertension
3.9. Antioxidants in Overweight, Obesity, and Hypertension
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Haslam, D.; James, P. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Jiang, S.Z.; Lu, W.; Zong, X.F.; Ruan, H.Y.; Liu, Y. Obesity and hypertension. Obes. Hypertens. Exp. Med. 2016, 12, 2395–2399. [Google Scholar]
- Wärnberg, J.; Moreno, L.A.; Mesana, M.I.; Marcos, A. Inflammatory mediators in overweight and obese Spanish adolescents. The AVENA Study. Int. J. Obes. 2004, 28, S59–S63. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.G.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative Stress in Obesity: A Critical Component in Human Diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Mokdad, A.H.; Giles, W.H.; Brown, D.W. The metabolic syndrome and antioxidant concentrations: Findings from the Third National Health and Nutrition Examination Survey. Diabetes 2003, 52, 2346–2352. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract. 2013, 7, e330–e341. [Google Scholar] [CrossRef]
- Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress, and cell death. Apoptosis 2007, 12, 913–922. [Google Scholar] [CrossRef]
- Nicolson, G.L. Mitochondrial dysfunction and chronic disease: Treatment with natural supplements. Integr. Med. 2014, 13, 35–43. [Google Scholar]
- Patti, M.-E.; Corvera, S. The Role of Mitochondria in the Pathogenesis of Type 2 Diabetes. Endocr. Rev. 2010, 31, 364–395. [Google Scholar] [CrossRef]
- Rubattu, S.; Stanzione, R.; Volpe, M. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease. Oxid. Med. Cell. Longev. 2016, 2016, 1067801. [Google Scholar] [CrossRef] [Green Version]
- Fetterman, J.L.; Holbrook, M.; Westbrook, D.G.; Brown, J.A.; Feeley, K.P.; Bretón-Romero, R.; Linder, E.A.; Berk, B.D.; Weisbrod, R.M.; Widlansky, M.E.; et al. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease. Cardiovasc. Diabetol. 2016, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Jonckheere, A.I.; Smeitink, J.A.M.; Rodenburg, R.J.T. Mitochondrial ATP synthase: Architecture, function and pathology. J. Inherit. Metab. Dis. 2011, 35, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Issartel, J.P.; Dupuis, A.; Garin, J.; Lunardi, J.; Michel, L.; Vignais, P.V. The ATP synthase (F0−F1) complex in oxidative phosphorylation. Exp. 1992, 48, 351–362. [Google Scholar] [CrossRef]
- Kaludercic, N.; Giorgio, V. The dual function of reactive oxygen/nitrogen species in bioenergetics and cell death: The role of ATP synthase. Oxid. Med. Cell. Longev. 2016, 2016, 3869610. [Google Scholar] [CrossRef] [Green Version]
- Tamarit, J.; Cabiscol, E.; Ros, J. Identification of the Major Oxidatively Damaged Proteins inEscherichia coli Cells Exposed to Oxidative Stress. J. Biol. Chem. 1998, 273, 3027–3032. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.B.; Foster, D.B.; Rucker, J.; O’Rourke, B.; Kass, D.A.; Van Eyk, J.E. Redox regulation of mitochondrial ATP synthase: Implications for cardiac resynchronization therapy. Circ. Res. 2011, 109, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.; Langlais, P.R.; Hoffman, N.; Roust, L.; Katsanos, C.S. Mitochondrial ATP synthase β-subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity. Exp. Physiol. 2019, 104, 126–135. [Google Scholar] [CrossRef] [Green Version]
- WHO Study Group. Obesity: “Preventing and managing the global epidemic. Report of a WHO consultation”. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Carey, R.M.; Whelton, P.K. Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline. Ann. Intern. Med. 2018, 168, 351–358. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef]
- Jiang, Z.-Y.; Hunt, J.V.; Wolff, S.P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 1992, 202, 384–389. [Google Scholar] [CrossRef]
- Haidar, Y.M.; Cosman, B.C. Obesity epidemiology. Clin. Colon. Rectal Surg. 2011, 24, 205–210. [Google Scholar] [CrossRef]
- DiBonaventura, M.D.; Meincke, H.; Le Lay, A.; Fournier, J.; Bakker, E.; Ehrenreich, A. Obesity in Mexico: Prevalence, comorbidities, associations with patient outcomes, and treatment experiences. Diabetes Metab. Syndr. Obes. 2017, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rtveladze, K.; Marsh, T.; Barquera, S.; Romero, L.M.S.; Levy, D.; Melendez, G.; Webber, L.; Kilpi, F.; McPherson, K.; Brown, M. Obesity prevalence in Mexico: Impact on health and economic burden. Public Health Nutr. 2014, 17, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Shariq, O.A.; McKenzie, T.J. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery. Gland Surg. 2020, 9, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Wang, F.; Liu, L.; Wang, H. China National Survey of Chronic Kidney Disease Working Group. Prevalence, awareness, treatment, and control of hypertension in China: Results from a national survey. Am. J. Hypertens. 2014, 27, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Palomo-Piñón, S.; Antonio-Villa, N.E.; García-Cortés, L.R.; Álvarez-Aguilar, C.; González-Palomo, E.; Bertadillo-Mendoza, O.M.; Figueroa-Suárez, M.E.; Vargas-Hernández, F.; Herrera-Olvera, I.G.; Cruz-Toledo, J.E.; et al. Prevalence and characterization of undiagnosed arterial hypertension in the eastern zone of Mexico. J. Clin. Hypertens. 2022, 24, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Appleton, S.L.; Neo, C.; Hill, C.L.; Douglas, K.A.; Adams, R.J. Untreated hypertension: Prevalence and patient factors and beliefs associated with under-treatment in a population sample. J. Hum. Hypertens. 2013, 27, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carretero, O.A.; Oparil, S. Essential hypertension. Part I: Definition and etiology. Circulation 2000, 101, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMarco, V.G.; Aroor, A.R.; Sowers, J.R. The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol. 2014, 10, 364–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Iñiguez, A.L.; Ortiz, G.G.; El Hafidi, M.; Rincón-Sánchez, A.R.; Macías-Rodríguez, E.; Pacheco-Moisés, F.P. Acute treatment of constant darkness increases the efficiency of ATP synthase in rat liver mitochondria. Ann. Hepatol. 2009, 8, 371–376. [Google Scholar] [CrossRef]
- Dimroth, P.; von Ballmoos, C.; Meier, T. Catalytic and mechanical cycles in F-ATP synthases. EMBO Rep. 2006, 7, 276–282. [Google Scholar] [CrossRef]
- Zimmerman, J.J.; von Saint, A.; von Arnim, A.; McLaughlin, J. Cellular respiration. Pediatric critical care. Mosby 2011, 1058–1072. [Google Scholar]
- Liesa, M.; Shirihai, O.S. Mitochondrial Dynamics in the Regulation of Nutrient Utilization and Energy Expenditure. Cell Metab. 2013, 17, 491–506. [Google Scholar] [CrossRef] [Green Version]
- Kusminski, C.M.; Scherer, P.E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab. 2012, 23, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Stepien, K.M.; Heaton, R.; Rankin, S.; Murphy, A.; Bentley, J.; Sexton, D.; Hargreaves, I.P. Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J. Clin. Med. 2017, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- De Pauw, A.; Tejerina, S.; Raes, M.; Keijer, J.; Arnould, T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am. J. Pathol. 2009, 175, 927–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen, S.; Buzkova, J.; Muniandy, M.; Kaksonen, R.; Ollikainen, M.; Ismail, K.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Vuolteenaho, K.; et al. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes 2015, 64, 3135–3145. [Google Scholar] [CrossRef] [Green Version]
- Vernochet, C.; Damilano, F.; Mourier, A.; Bezy, O.; Mori, M.A.; Smyth, G.; Rosenzweig, A.; Larsson, N.; Kahn, C.R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J. 2014, 28, 4408–4419. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, R.; Bächler, J.P.; Araya, J.; Prat, H.; Passalacqua, W. Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Mol. Cell. Biochem. 2007, 303, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Harrison, D.G. Inflammation in Hypertension. Can. J. Cardiol. 2020, 36, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of Inflammation, Oxidative Stress, and Vascular Dysfunction in Hypertension. BioMed Res. Int. 2014, 2014, 406960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerdá, C.; Sánchez, C.; Climent, B.; Vázquez, A.; Iradi, A.; El Amrani, F.; Bediaga, A.; Sáez, G.T. Oxidative Stress and DNA Damage in Obesity-Related Tumorigenesis. Adv. Exp. Med. Biol. 2014, 824, 5–17. [Google Scholar] [CrossRef]
- Xiang, F.; Shuanglun, X.; Jingfeng, W.; Ruqiong, N.; Yuan, Z.; Yongqing, L.; Jun, Z. Association of serum 8-hydroxy-2′-deoxyguanosine levels with the presence and severity of coronary artery disease. Coron. Artery Dis. 2011, 22, 223–227. [Google Scholar] [CrossRef]
- Kroese, L.J.; Scheffer, P.G. 8-Hydroxy-2′-Deoxyguanosine and Cardiovascular Disease: A Systematic Review. Curr. Atheroscler. Rep. 2014, 16, 452. [Google Scholar] [CrossRef]
- Negishi, H.; Ikeda, K.; Kuga, S.; Noguchi, T.; Kanda, T.; Njelekela, M.; Liu, L.; Miki, T.; Nara, Y.; Sato, T.; et al. The relation of oxidative DNA damage to hypertension and other cardiovascular risk factors in Tanzania. J. Hypertens. 2001, 19, 529–533. [Google Scholar] [CrossRef]
- Wang, C.-L.; Hsieh, M.-C.; Hsin, S.-C.; Lin, H.-Y.; Lin, K.-D.; Lo, C.-S.; Chen, Z.-H.; Shin, S.-J. The hOGG1 Ser326Cys gene polymorphism is associated with decreased insulin sensitivity in subjects with normal glucose tolerance. J. Hum. Genet. 2006, 51, 124–128. [Google Scholar] [CrossRef] [Green Version]
- McAdam, E.; Brem, R.; Karran, P. Oxidative Stress–Induced Protein Damage Inhibits DNA Repair and Determines Mutation Risk and Therapeutic Efficacy. Mol. Cancer Res. 2016, 14, 612–622. [Google Scholar] [CrossRef] [Green Version]
- García-Sánchez, A.; Gámez-Nava, J.I.; la Cruz, E.N.D.-D.; Cardona-Muñoz, E.G.; Becerra-Alvarado, I.N.; Aceves-Aceves, J.A.; Sánchez-Rodríguez, E.N.; Miranda-Díaz, A.G. The Effect of Visceral Abdominal Fat Volume on Oxidative Stress and Proinflammatory Cytokines in Subjects with Normal Weight, Overweight and Obesity. Diabetes Metab. Syndr. Obes. 2020, 13, 1077–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caimi, G.; Hopps, E.; Montana, M.; Carollo, C.; Calandrino, V.; Gallà, E.; Canino, B.; Presti, R.L. Behaviour of carbonyl groups in several clinical conditions: Analysis of our survey. Clin. Hemorheol. Microcirc. 2020, 74, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Hozawa, A.; Ebihara, S.; Ohmori, K.; Kuriyama, S.; Ugajin, T.; Koizumi, Y.; Suzuki, Y.; Matsui, T.; Arai, H.; Tsubono, Y.; et al. Increased Plasma 8-Isoprostane Levels in Hypertensive Subjects: The Tsurugaya Project. Hypertens. Res. 2004, 27, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermann, M.; Flammer, A.; Lüscher, T.F. Nitric oxide in hypertension. J. Clin. Hypertens. (Greenwich) 2006, 8, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, N.W.; Karim, F.; Straznicky, N.E.; Fernandez, S.; Evans, R.G.; Head, G.A.; Kaye, D.M. Augmented endothelial-specific L-arginine transport prevents obesity-induced hypertension. Acta Physiol. 2014, 212, 39–48. [Google Scholar] [CrossRef]
- Rajapakse, N.W.; Head, G.A.; Kaye, D.M. Say NO to obesity-related hypertension: Role of the L-arginine-nitric oxide pathway. Hypertension 2016, 67, 813–819. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [Green Version]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [PubMed]
Normal-Wright | Overweight | Obesity | p | |
---|---|---|---|---|
n-53 | n-84 | n-38 | ||
Gender | ||||
Male n (%) | 21 (39.6) | 30 (35.7) | 11 (28.9) | 0.58 |
Female n (%) | 32 (60.4) | 54 (64.3) | 27 (71.1) | |
Age years | 49 (33.5–59.0) | 45 (33.25–53.7) | 53 (45.0–60.0) a,b | <0.01 ꞙ |
Hypertension n (%) | 4 (7.5) | 12 (14.3) a | 16 (42.1) a | <0.01 ꞙ |
Dyslipidemia n (%) | 26 (49.1) | 37 (44.0) | 16 (42.1) | 0.18 |
Mitochondrial function | ||||
ATP synthesis (nmol/min mg protein) | 132.1 (101.7–147.3) | 116.1 (92.2–147.2) | 107.5 (91.0–132.6) | 0.12 |
ATP hydrolysis (nmol/min mg protein) | 15.9 (12.1–18.8) | 15.3 (10.1–20.5) | 9.3 (7.5–15.6) a,b | <0.01 * |
Pro-inflammatory cytokines | ||||
TNF-α (pg/mL) | 206.4 (142.0–556.9) | 195.6 (146.5–529.3) | 496.2 (245.9–777.9) | 0.08 |
IL-6 (pg/mL) | 63.9 (50.9–290.2) | 66.5 (51.1–184.9) | 217.0 (56.5–482.4) | 0.12 |
Markers of oxidative damage and repair of DNA | ||||
8-OHdG (ng/mL) | 4.8 (1.1–39.4) b | 1.9 (1.01–23.8) b | 23.0 (3.7–70.9) | <0.01 * |
hOGG1 (ng/mL) | 0.59 (0.06–2.8) | 0.44 (0.05–1.9) | 0.05 (0.02–9.0) | 0.68 |
Antioxidants | ||||
Catalase (KU/mL) | 150.2 (128.6–177.8) | 152.0 (122.7–171.7) | 139.2 (104.8–152.8) | 0.11 |
SOD (U/mL) | 0.66 (0.5–1.0) | 0.62 (0.3–1.1) | 0.4 (0.1–0.6) | <0.01 * |
Oxidants | ||||
Lipid hydroperoxides (µmol) | 3.3 (3.2–3.5) | 3.3 (3.2–3.4) | 3.3 (3.2–3.5) | 0.88 |
Carbonyl groups in proteins (µmol) | 3.34 (1.33–4.2) | 3.07 (1.9–4.7) | 3.6 (2.8–4.9) | 0.13 |
8-Isoprostane (pg/mL) | 31.4 (20.5–62.1) | 28.6 (19.1–66.4) | 25.5 (18.0–44.0) | 0.71 |
Nitric oxide metabolites (µM) | 290.0 (238.2–370.0) | 300.5 (249.9–379.2) | 265.7 (234.8–327.0) | 0.08 |
Non-Hypertensive n-143 | Hypertensive n-32 | p | |
---|---|---|---|
Mitochondrial function | |||
ATP hydrolysis (nmol/min mg protein) | 15.9 (11.4–20.4) | 9.0 (7.6–12.9) | <0.01 |
ATP synthesis (nmol/min mg protein) | 127.27 (96.70–144.71) | 108.08 (88.19–145.43) | 0.24 |
Pro-inflammatory cytokines | |||
TNF-α (pg/mL) | 197.7 (142.0–197.7) | 516.1 (279.7–856.3) | <0.01 |
IL-6 (pg/mL) | 64.9 (50.6–247.9) | 235.3 (83.1–482.4) | <0.01 |
Marker of oxidative damage and repair of DNA | |||
8-OHdG (ng/mL) | 2.5 (0.9–22.8) | 45.1 (5.8–70.9) | <0.01 |
hOGG1 (ng/mL) | 0.6 (0.2–4.2) | 0.04 (0.02–3.6) | 0.04 |
Antioxidants | |||
Catalase (KU/mL) | 149.90 (126.4–171.6) | 119.8 (91.1–167.1) | 0.04 |
SOD (U/mL) | 0.7 (0.4–1.0) | 0.4 (0.1–0.6) | <0.01 |
Oxidants | |||
Lipid hydroperoxides (µmol) | 3.32 (3.22–3.44) | 3.38 (3.24–3.65) | 0.17 |
Carbonyl groups in proteins (µmol) | 3.1 (1.9–4.5) | 4.0 (3.3–5.5) | 0.01 |
8-Isoprostane (pg/mL) | 31.6 (20.5–66.5) | 23.9 (17.7–35.5) | 0.04 |
Nitric oxide metabolites (µM) | 300.0 (253.0–376.1) | 251.7 (227.6–290.1) | <0.01 |
Overweight | Obesity | ||||||
---|---|---|---|---|---|---|---|
Non-Hypertensive n-72 | Hypertensive n-12 | pU-MW | Non-Hypertensive n-22 | Hypertensive n-16 | pU-MW | * pU-MW | |
Mitochondrial function | |||||||
ATP synthesis (nmol/min mg protein) | 130.4 (94.0–147.5) | 103.6 (80.2–143.5) | 0.26 | 108.7 (94.1–134.1) | 107.4 (89.1–128.0) | 0.68 | 0.36 |
ATP hydrolysis (nmol/min mg protein) | 16.2 (12.5–20.8) | 9.4 (8.3–12.9) | 0.01 * | 10.2 (7.9–17.8) | 8.1 (7.0–9.5) | 0.06 | 0.02 * |
Pro-inflammatory cytokines | |||||||
TNF-α (pg/mL) | 186.8 (142.0–500.6) | 438.7 (207.9–977.8) | 0.07 | 410.0 (160.6–820.9) | 604.4 (374.7–767.9) | 0.27 | 0.25 |
IL-6 (pg/mL) | 64.6 (49.3–175.8) | 164.3 (65.6–778.8) | 0.10 | 141.2 (49.0–371.4) | 265.0 (172.3–482.4) | 0.10 | 0.48 |
Markers of oxidative damage and repair of DNA | |||||||
8-OHdG (ng/mL) | 1.7 (0.4–16.1) | 40.2 (2.3–72.2) | 0.01 * | 23.0 (1.6–75.1) | 27.6 (6.4–70.8) | 0.45 | 0.03 * |
hOGG1 (ng/mL) | 0.5 (0.3–3.0) | 0.02 (0.01–0.6) | 0.01 * | 0.04 (0.01–14.40) | 0.40 (0.04–6.6) | 0.69 | 0.31 |
Antioxidants | |||||||
Catalase (KU/mL) | 151.3 (125.3–171.6) | 169.4 (79.8–186.1) | 0.81 | 142.4 (114.8–177.0) | 112.8 (95.1–140.6) | 0.02 * | 0.86 |
SOD (U/mL) | 0.8 (0.4–1.1) | 0.2 (0.1–0.6) | <0.01 * | 0.4 (0.1–0.7) | 0.4 (0.2–0.6) | 0.96 | 0.01 * |
Oxidants | |||||||
Lipid hydroperoxides (µmol) | 3.3 (3.2–3.4) | 3.3 (3.2–3.7) | 0.69 | 3.3 (3.2–3.4) | 3.4 (3.2–3.5) | 0.66 | 0.57 |
Carbonyl groups in proteins (µmol) | 3.0 (1.6–4.5) | 4.0 (3.0–5.8) | 0.05 | 3.6 (2.5–4.6) | 3.6 (3.2–5.6) | 0.55 | 0.15 |
8-Isoprostane (pg/mL) | 36.4 (20.2–69.2) | 19.2 (17.2–26.0) | 0.01 * | 24.2 (18.4–49.7) | 28.4 (17.6–39.9) | 0.91 | 0.37 |
Nitric oxide metabolites (µM) | 323.7 (259.9–383.2) | 249.6 (237.3–269.8) | 0.01 * | 270.2 (247.3–334.0) | 255.5 (203.2–304.2) | 0.29 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sánchez, A.; Gómez-Hermosillo, L.; Casillas-Moreno, J.; Pacheco-Moisés, F.; Campos-Bayardo, T.I.; Román-Rojas, D.; Miranda-Díaz, A.G. Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress. Antioxidants 2023, 12, 165. https://doi.org/10.3390/antiox12010165
García-Sánchez A, Gómez-Hermosillo L, Casillas-Moreno J, Pacheco-Moisés F, Campos-Bayardo TI, Román-Rojas D, Miranda-Díaz AG. Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress. Antioxidants. 2023; 12(1):165. https://doi.org/10.3390/antiox12010165
Chicago/Turabian StyleGarcía-Sánchez, Andrés, Luis Gómez-Hermosillo, Jorge Casillas-Moreno, Fermín Pacheco-Moisés, Tannia Isabel Campos-Bayardo, Daniel Román-Rojas, and Alejandra Guillermina Miranda-Díaz. 2023. "Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress" Antioxidants 12, no. 1: 165. https://doi.org/10.3390/antiox12010165
APA StyleGarcía-Sánchez, A., Gómez-Hermosillo, L., Casillas-Moreno, J., Pacheco-Moisés, F., Campos-Bayardo, T. I., Román-Rojas, D., & Miranda-Díaz, A. G. (2023). Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress. Antioxidants, 12(1), 165. https://doi.org/10.3390/antiox12010165