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Abstract: F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP
synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a
transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant
disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs,
in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered
in this capacity. However, the specific drug search is hampered by the complex mechanism of
regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP,
but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem
of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other
organisms, the understanding of which will be useful for developing a strategy for the search for new
drugs that selectively disrupt the energy production of bacterial cells.

Keywords: membrane protein; biophysics; molecular bioenergetics; inhibition; Fo·F1-ATP
synthase/ATPase; reversibility of enzyme catalysis

1. Introduction

H+-transporting two-sector ATPases (EC 7.1.2.2; systematic name: ATP phospho-
hydrolase (H+-transporting), also named F-type ATPase) are large (more than 500 kDa),
multi-subunit protein complexes found in energy-transducing membranes in bacteria,
chloroplasts, and mitochondria. They couple either ATP synthesis from ADP and phosphate
or ATP hydrolysis to the consumption or production of a transmembrane electrochemical
gradient of protons, known as the proton motive force (pmf ).

ADP + Pi + pmf ↔ ATP + H2O

F1·Fo-ATP synthases/ATPases (for convenience, in this review, called F1·Fo) belong to
the family of rotary ATPases, which, besides the F-type ATPases, also include the eukaryotic
vacuolar (V-type) ATPases and the A-type ATPases of archaea and some extremophilic
bacteria. V-type ATPases use the energy of ATP hydrolysis to generate ion gradients across
secretory membranes, and A-type ATPases generate ATP from a proton gradient like the
F-type but may also work as ATP-driven ion pumps such as the V-type, to which they
are more closely related. This review focuses on recent progress in understanding the
regulatory mechanisms of F-type ATPases, mainly bacterial F1·Fo.

All F1·Fo from various sources have a common structure: they consist of two main
parts, the hydrophilic F1 and the hydrophobic Fo complexes. For most organisms routinely
used in research, structures of F1 have been established, mainly by X-ray analysis [1–3], most
detailed for mitochondrial [4] and yeast [1] F1·Fo and less for bacteria [4]. The hydrophobic
Fo structure is less susceptible to crystallization and is being studied by intensively devel-
oping electron cryomicroscopy (cryoEM) [5,6]. This method allowed obtaining a complete
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structure of Fo from various organisms, including complexes from bacteria [5]. Bacterial
F1·Fo can be subjected to various genetic modifications, and by using this approach, most of
the functionally important enzyme residues have been identified (mainly in Escherichia coli
mutants). The study of the universal F1·Fo rotational mechanism on single molecules
using biophysical methods made it possible to characterize the functional properties of
bacterial enzyme complex [7,8]. In this review, we will mainly focus on bacterial F1·Fo.
Considering the growing interest in F1·Fo as targets for antimicrobials [9–13], in particular
as anti-tuberculosis drugs [14,15], we will also discuss the strategy for developing drugs
selectively affecting the bacterial cell energetics.

2. Common Subunit Composition and Function of F1·Fo

The basic structure of the currently known F1·Fo is composed of eight canonical types
of subunits: F1 is composed of five types of subunits α, β, γ, δ, and ε, whereas Fo is
composed of three types of essential subunits, a, b, and c [16] (Figure 1A). The F1·Fo of most
bacteria contains only these subunits, with the exception to date being α-proteobacteria,
which have an additional F1 subunit called ζ [17,18]. The structure of chloroplast or
mitochondrial F1·Fo may also contain other subunits [6,19].
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Figure 1. Schematic illustration showing the arrangement of subunits in F1·Fo-ATP synthase/ATPase
(E. coli) (A) and chemomechanical coupling scheme of F1·Fo-ATPase (B). (A) Shown are subunits
α (grey), β (brown), γ (green), ε (blue), c (grey), a (light brown), b (orange), and δ (purple). F1 and Fo,
ATP synthesis reaction and direction of γ-subunit rotation during ATP synthesis are marked. The
proton pathway is depicted in red. The position of the half channels in a subunit is shown with a
thin line. (B) Scheme of the F1-ATPase rotary catalytic mechanism. Each αβ subunit pair is shown in
brown, light brown, and beige. Binding site occupation marked with letters: O, open; L, loose; and
T, tight. The γ-subunit is depicted as a green arrow, and, for clarity, the other subunits are not shown.
For a more detailed scheme with the indication of substages proposed for different bacterial and
eukaryotic F1·Fo, see review by Noji and Ueno [8].

The α and β subunits are assembled in the form of hexameric ring 3α3β that alter-
nates α and β and surrounds the central stalk, which in prokaryotes consists of γ and ε
subunits [1,4,16].

Fo is a complex of polypeptides that includes an a subunit and a rotary c-ring im-
mersed in a coupling membrane [4,20]. The a subunit, the largest of the hydrophobic
Fo subunits, consists of transmembrane α-helices oriented perpendicular to the plane of
the membrane [20]. The c-ring stoichiometry is species-specific and ranges from 8 to 17
subunits [4].

Fo is connected to F1 by the central and peripheral stalks. The central stalk comprises
the γε-subcomplex firmly attached to the c-ring forming the enzyme rotor [16,21]. The
peripheral stalk in bacteria consists of a, 2b, and δ subunits (Figure 1A). The a subunit
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is membrane-bound and acts as a collar around the c-ring. One of the functions of the a
subunit is structure, as it anchors the 2b dimer into the membrane phase. Two identical
(for example, in Bacillus sp. PS3 and E. coli [16,22]) or different (for example, in Paracoccus
denitrificans [23] and Mycobacterium smegmatis [9]) b subunits, having the form of long
single α-helices, diverge in the membrane, pressing the a subunit to the c-ring. Leaving
the membrane, the 2b dimer reaches over the 3α3β hexamer, and its opposite end interacts
with the δ subunit, linking 2b to F1 [4,22]. In E. coli, the N-terminal domain (NTD) of the
δ subunit interacts with the N-terminal region of the α subunit and segments of the b
subunit [16]. The 2bδ peripheral stalk holds the 3α3β-hexamer as a part of the stator. In
mycobacteria and many other eubacteria, the peripheral stalk has a special structure—it
consists of two proteins, b’ and bδ, where the bδ subunit arose as the result of the covalent
fusion of the individual b and δ subunits [9].

It was previously assumed that the central and peripheral stalks provide a rigid
connection between F1 and Fo. Now, due to cryoEM data, F1·Fo is assumed to be a mobile
dynamic structure, and catalysis requires significant conformational changes of multiple
subunits [24–26]. The structurally simpler bacterial peripheral stalk of F1·Fo turned out to be
more flexible than the mitochondrial one [4,25,27]. Subunit δ (OSCP in mitochondrial F1·Fo)
allows ATP synthase to adopt different rotational states acting as a hinge [28]. The NTD
that connects to the three α subunits rotates relative to the C-terminal domain (CTD) by 20
to 30◦ on a flexible single-polypeptide stretch connecting the two domains [4]. Subunits in
the central stalk may show flexibility during rotation under strain [16].

3. F1·Fo Rotary Catalysis

F1·Fo catalyzes the synthesis of ATP by consuming energy of pmf generated by the
respiratory chain. From the side of the membrane with a higher H+ concentration, protons
are translocated to the other side of the membrane through two half-channels located in the
Fo at the contact interface between the c-ring and the a subunit [20]. Proton transfer through
the hydrophobic environment of the lipid bilayer between half-channels is enabled by the
conserved acidic residues in the c subunits and by the c-ring rotation, which transfers a
proton from one half-channel to the second one before its release (Figure 1A). The conserved
arginine residue generates a positive charge on the surface of the a subunit in the region of
its contact with the c-ring. This positive charge prevents the short circuit, allowing protons
to pass from one half-channel to another without the c-ring rotation [25–29].

The proton flow through the half-channel system is favored by the electrochemical
gradient and will support the clockwise rotation of the c-ring (CW) toward ATP synthesis.
Since the c-ring is physically attached to the central γε complex, the net result of its rotation
is a conduction of mechanical CW rotary motion to the γ subunit of F1. Once the γ
subunit starts rotating in the CW direction, the asymmetry of the γ subunit causes the
mechanical energy generated by the rotation of the c-ring to be transferred to the 3α3β
subunits of F1 [8,30]. F1 contains three active sites on the interfaces between β and α
subunits [1]. The α and β subunits, depending on the bound nucleotide, can be in three
different conformational states: open βE (no nucleotide), loose βDP (bound ADP) and
tight βTP (bound ATP) [31]. In the binding-change mechanism proposed by Boyer [30], the
physical position of the γ subunit determines the conformational states of α and β [31], and
the γ subunit tightly attached to the Fo rotor causes the α/β subunits to adopt different
conformations with different binding affinities for ATP or ADP and phosphate [8].

The binding-change mechanism was experimentally confirmed by direct observation
of the central stalk rotation in single-molecule experiments with Bacillus sp. PS3 enzyme that
demonstrated consumption of three ATP molecules for each 360◦ rotation of the bacterial
F1·Fo [8]. Hydrolysis of one ATP molecule in the catalytic center of the β subunit led to a
discrete rotation of the γ subunit by 120◦ relative to the 3α3βδ subcomplex [8] (Figure 1B).
Each 120◦ turn is divided into two substeps: the first, an 80◦ rotation, is due to the binding
of ATP (binding dwell), and the second, a 40◦, is due to the bound ATP hydrolysis (catalytic
dwell) [6,7]. The catalytic dwell conformation was observed in the earliest crystallographic
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structures. The binding dwell was detected during structural analysis of isolated enzyme
preparations obtained by cryoEM. This method makes it possible to separate proteins
according to these conformations, and also enables direct visualization of the rotational
cycle at the structural level [6,8,16,19,32]. Substeps of catalytic cycles may vary from one
organism to another [8,33]. For example, human mitochondrial F1 also demonstrates three
120◦ turns of the γ subunit, but each 120◦ turn includes three substeps: 65◦, 25◦, and 30◦,
due to ATP binding, phosphate release, and hydrolysis of bound ATP [34]. It is suggested
that the number of rotational substeps correlates with the number of c subunits in the ring:
the smaller the c-ring, the more dwells observed during a complete ring rotation [33].

On the other hand, the chemomechanical scheme of the P. denitrificans F1·Fo (PdF1·Fo)
was found to differ from that of other known bacterial or eukaryotic enzyme complexes.
Single-molecule experiments showed that during ATP hydrolysis, rotation of the
P. denitrificans F1 (PdF1) exhibited three 120◦ dwells per rotational cycle, without any obvi-
ous substeps, in contrast to all other known F1·Fo. An analysis of the dwell time between
steps showed that PdF1 performs binding, hydrolysis, and possible release of the product
in the same rotational position [33].

4. Reversibility of F1 Fo ATP Synthase Reaction and the Problem of Preventing
Wasteful ATP Hydrolysis

Most researchers in this field believe F1·Fo to be fully reversible: F1·Fo are able to
rotate their rotor in both the clockwise direction (when viewed from Fo to F1), if they
function as ATP synthases [35], and in the counterclockwise (CCW) direction if they work
as ATPases [8,29]. The direction of the reaction changes when pmf drops, for example,
during anoxia in mitochondria or in the dark in chloroplasts. The bacterial F1·Fo is also
assumed to be fully reversible [4]. They work in either direction depending on growth
conditions. Bacteria use pmf across the plasma membrane, generated by the respiratory
chain, to synthesize ATP from ADP and phosphate during aerobic growth. Under anaerobic
conditions, bacteria generate ATP by glycolysis and fermentation. When pmf partially or
completely dissipates due to the lack of oxygen or an alternative terminal electron acceptor,
or during uncoupling, F1·Fo hydrolyzes the formed ATP to restore the membrane potential,
which then can be used to activate other important cellular functions, such as chemotaxis
and secondary solute transport.

If the ATP synthase reaction is reversible [35], a halt to ATP synthesis must also turn off
the enzyme in order to prevent uncontrolled hydrolysis of ATP since, under physiological
conditions, cells need to maintain a high ATP/ADP ratio. Indeed, in most organisms, the
CCW rotation of F1·Fo is preferentially inhibited by several mechanisms to avoid energy
dissipation by wasting the intracellular ATP pool.

Two types of ATP hydrolysis inhibition are known: the so-called ADP(Mg2+)-inhibition
and inhibition by natural inhibitor proteins. ADP(Mg2+)-induced inhibition is inherent in all
bacterial and eukaryotic forms of the enzyme studied so far [36–38]. In mammals and yeast,
F1·Fo inhibitory factor-1 (IF1 protein) is responsible for the inhibition of ATP hydrolysis. It
binds to the enzyme upon pmf collapse and inhibits it [39,40]. In phototrophic organisms,
the formation of a disulfide bridge in the γ subunit prevents ATP hydrolysis [41,42]. In some
bacteria, the ε subunit can change its conformation and integrate into the 3α3β hexamer,
blocking ATP hydrolysis [24,43]. In α-proteobacteria, inhibition of ATP hydrolysis appears
to be achieved by the ζ subunit [23,44,45].

4.1. ADP(Mg2+)-Inhibition

It has long been known that the preincubation of soluble F1 or membrane-bound F1·Fo
with very low amounts of ADP or ATP, almost equal to the concentration of F1, in the
presence of Mg2+, causes the complete disappearance of ATP hydrolase activity [46]. This
phenomenon is referred to as ADP(Mg2+)-inhibition [37,46]. It is assumed that ADP(Mg2+)-
inhibition is due to the specific ADP binding (the presence of Mg2+ is obligatory) in the F1
active site localized on one of the αβ pairs. Removal of ADP from the enzyme preparations
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by treatment with phosphoenolpyruvate + pyruvate kinase and removal of Mg2+ in the
presence of EDTA causes complete but slow (tens of minutes) activation of Fo·F1 ATP
hydrolase activity [36,47]. ADP(Mg2+)-inhibited enzyme can be activated by detergent
lauryl dimethylamine oxide (LDAO) [48,49] and selenite [50] anions. Azide stabilizes the
ADP(Mg2+)-inhibited form of F1·Fo and prevents enzyme activation [36,51]. It should
be stressed that membrane energization leads to the rapid activation of the ADP(Mg2+)-
inhibited hydrolytic activity of F1·Fo in almost all organisms studied [52–54].

This type of inhibition of ATP hydrolysis is caused by permanent occupancy of the
catalytic site by ADP(Mg2+) without Pi [55,56]. Experiments with single molecules of
Bacillus sp. PS3 F1 showed that ADP(Mg2+)-inhibition stopped rotational catalysis at the
angle corresponding to the catalytic dwell, and the activation of the enzyme required
a 40◦ rotation in the direction of ATP hydrolysis by mechanical action or by thermal
fluctuation [57].

The degree of ADP(Mg2+)-inhibition varies in different organisms; ATP hydrol-
ysis is significantly inhibited in Bacillus subtilis [58,59] and very strongly inhibited in
P. denitrificans [49,54] compared to other bacterial F1·Fo. The strength of inhibition corre-
lates with the occupancy of the catalytic site by ADP(Mg2+): for an enzyme with a strongly
inhibited ATPase activity from Caldalkalibacillus thermarum and M. smegmatis, complete
occupancy is shown, and for an enzyme with incomplete inhibition from Fusobacterium
nucleatum, only partial occupancy is shown [3].

4.2. Natural Inhibitor Proteins

The second mechanism of ATP hydrolysis inhibition is implemented with the help of
natural inhibitor proteins: the ε subunit in bacteria [60] and IF1 in mitochondria [61]. This
type of inhibitor also includes the ζ subunit of α-proteobacteria [62].

It was shown in the pioneering works that the removal of the ε subunit from F1 is
accompanied by the activation of the enzyme ATPase activity. The structure of the ε subunit
was solved for the E. coli model. It was found that its NTD is folded into a globular 10-strand
β-sandwich, and the C-terminal domain (CTD) contains two α-helical regions connected
by a flexible linker and lying next to the β-sandwich. In cross-linking and crystallographic
studies, large conformational changes of theseα-helices were observed. When twoα-helices
in CTD are parallel, in a “folded state” and spatially localized on the β-sheet rigid domain,
the ε subunit assumes a compressed “hairpin conformation” and is in the so-called “down”
conformation. Conversely, when these helices are arranged sequentially, they spatially
move away from the rigid β-sheet and stretch parallel to the γ subunit, reaching the 3α3β
catalytic hexamer. In this position (“extended” or “up” conformation), the CTD penetrates
into the cavity of the 3α3β ring, wraps the γ subunit, blocks the rotation of the central stalk
and inhibits ATP hydrolase activity. Upon transition to the “down” conformation, the CTD
subunit ε is displaced from the 3α3β ring. As a result, it stops inhibiting ATP hydrolysis
and promotes ATP-dependent pmf generation [60,63,64].

It was found that the Bacillus sp. PS3 ε subunit contains a nucleotide binding site, and
ATP binding initiates conformational transitions from the inhibitory “up” to the “down”
conformation of the “hairpin” [65,66]. Thus, ATP controls the conformational state of the
ε subunit: at a relatively high concentration of intracellular ATP, the nucleotide binds to
the ε subunit, and its folded compact structure is stabilized without preventing F1·Fo from
rotating in the direction of hydrolysis. At a relatively low intracellular ATP concentration,
the ε subunit assumes an “up” conformation and, upon contact with the γ subunit, controls
the CCW rotation of F1·Fo and inhibits hydrolysis [60]. CryoEM studies of EcF1·Fo showed
that ε subunit CTD is either only in an elevated state or, after exposure to an excess of
ATP(Mg2+), in a lower state or in an “intermediate” state [24].

Although ATP-dependent autoinhibition of F1·Fo by the CTD of the ε subunit has been
shown for some bacterial species [66,67], this regulatory mechanism likely is not conserved
in other genera of bacteria [3,68]. Thus, the ε subunit of C. thermarum is in the “down”
conformation with the ATP and Mg2+ bound [67]. The mycobacterial ε subunit is shortened
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and unable to bind ATP, but it is also in the “down” conformation [69,70]. However, F1·Fo
of these bacteria hydrolyze ATP at low rates. In the sequence of the ε subunit of F1·Fo in
such α-proteobacteria as P. denitrificans, Rhodobacter capsulatus, and Rhodobacter sphaeroides,
the ATP binding site has not been definitely determined [60]. Therefore, it is assumed that
the ε subunit from α-proteobacteria does not bind ATP. However, its CTD appears to be in
the “down” conformation [44].

In mitochondria, when pmf drops during ischemia or during uncoupling, the hy-
drolytic activity of F1·Fo is inhibited by IF1 [39]. IF1 is a 10 kDa protein-forming dimer
at acidic pH, that binds to the F1 part of F1·Fo [40]. The inhibition mechanism includes
two steps: (i) binding, the NTD of IF1 enters through the open αE/βE catalytic interface;
(ii) blocking, after the first catalytic turnover of F1·Fo, rotation of γ by 120◦ leads to deeper
incorporation of IF1, at the same time, the initially disordered NTD of IF1 undergoes a
transition to an ordered structure in the form of an α-helix and mechanically inhibits further
rotation of the mitochondrial F1·Fo [71,72]. The bacterial ε CTD binds to F1 at the same
place where the IF1 subunit contacts the α and β subunits, blocking subunit γ rotation [40].

In most α-proteobacteria, exemplified by P. denitrificans, ATP hydrolysis appears to
be controlled by another 11 kDa protein called the ζ subunit [17]. The presence of the ζ
subunit in both PdF1 and PdF1·Fo preparations indicates that it is an integral subunit of
the enzyme [18]. Although the amino acid sequence of the ζ subunit is very different from
that of the mitochondrial IF1 or bacterial ε subunit, its NTD has retained some similarity
with the inhibitory domain of mitochondrial IF1 [18]. The conserved mobile NTD contains
the inhibitory part of the protein, since the mutant lacking the first 14 residues of the NTD
completely lost its inhibitory function, although it was still able to bind to PdF1 [18]. ζ binds
to PdF1·Fo via a bind/lock mechanism similar to that of IF1 in the mitochondrial F1·Fo: The
ζ subunit enters the open catalytic interface, allowing the γ subunit to make a 120◦ turn
induced by ATP binding, then contacts the γ subunit and blocks its further rotation [44]. It
is assumed that the structure of the ζ subunit is rigid enough to stop the further rotation of
the γ subunit in the CCW direction. A low-affinity nucleotide binding site was found in
the C-terminal part of the ζ subunit [18]. It is hypothesized that this site could work as an
ATP sensor similar to the ε subunit sensor described in E. coli and Bacillus sp. PS3 [66] and
regulate the binding affinity of ζ [18].

4.3. «Ratchet and Pawl» Mechanism of F1·Fo

To avoid the wasting of cellular ATP, inhibitor proteins, ε, ζ, and IF1 work in a
unidirectional manner, preventing only F1·Fo hydrolase activity and not affecting the rate
of ATP synthesis. To explain the unidirectional action of inhibitor proteins, it was suggested
that they act like a ratchet and pawl mechanism (Figure 2), which was originally described
for the bacterial ε subunit [73]. According to the modern view, the inhibitor protein acts
like a pawl formed by γ/ε subunits, preventing CCW rotation of the rotor and, thereby,
inhibiting ATP hydrolysis (mechanical ratchet). A mechanical obstacle, in the form of an
inhibitor protein deeply inserted into 3α3β, can be overcome by pmf or by the substrate
binding energy [72]. Alternatively, during ATP synthesis, F1·Fo CW rotation is possible due
to partial or complete release of the inhibitor protein (conformational pawl-ratchet) [72].
Experimentally, the ratchet mechanism is confirmed for the ε subunit. CryoEM maps show
that the contact of the ε and β subunits in the βTP conformation blocks the rotation of the
rotor in the direction of ATP hydrolysis, while it is still free to rotate in the direction of ATP
synthesis. These data may explain the ability of the ε subunit to selectively inhibit ATP
hydrolysis [16].

The ratchet mechanism is supposed to be universal for all known F1·Fo. A sequence
of evolutionary events was proposed, suggesting that the change in the type of inhibitor
protein that provides unidirectional inhibition of ATP hydrolysis did not essentially change
the mechanism of inhibition. In P. denitrificans, the ε subunit lost its inhibitory function
due to the deletion of the C-terminus and the loss of the ATP binding pocket [18,72]. ζ has
evolved to replace ε as the main inhibitor of ATPase activity in free-living α-proteobacteria.
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However, the inhibitory function of ζ in some symbiotic α-proteobacteria was also partially
lost, and also completely lost in some entirely parasitic α-proteobacteria, such as bacteria
of the order Rickettsiales. P. denitrificans is described as the α-proteobacterium closest to
mitochondria due to the similarity of their respiratory chains, which include four respiratory
complexes [74]. Therefore, it is believed that in mitochondria resulting from endosymbiosis,
IF1 arose independently through convergent evolution [75].
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Figure 2. The inhibition of ATP hydrolysis in F1·Fo by inhibitor protein according to pawl-ratchet
mechanism. (A): Schematic representation of F1·Fo (P. denitrificans). The subunit colors are the same
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The ratchet mechanism of F1·Fo inhibition by inhibitor proteins providing unidi-
rectional inhibition of ATP hydrolysis is widely discussed in the literature [16,62,75–77].
However, some data are not consistent with this model [60].

Eubacteria with extremely low ATPase activity, in which F1·Fo are only capable of ATP
synthesis, are well known in the literature. Latent ATP hydrolysis activity has been shown,
for example, for Bacillus species [78], C. thermarum [67], M. smegmatis [79], Mycobacterium
bovis [80,81], and P. denitrificans [82]. However, inhibition by the ε subunit has been
confirmed only in Bacillus species [60,78]. In P. denitrificans [44], F. nucleatum [3], and
M. smegmatis [69], the ε subunit is in the “down” position, and inhibition of ATP hydrolysis
by the ε subunit-mediated ratchet mechanism cannot be realized [60].

Moreover, KD of the ε·ATP complex differs significantly in different organisms and
either exceeds (E. coli, 22 mM) [66], or is significantly below, the average physiological
total ATP concentration in living cells (Bacillus sp. PS3, 0.29 µM) [83], which is in the
millimolar range [84,85]. Thus, it is unlikely that ATP binding is involved in the regulation
of ε subunit-mediated ATP hydrolysis under physiological conditions.

The role of the ε subunit in the regulation of bacterial ATP synthases is being actively
studied using genetic modifications. On the one hand, it was shown that the ATPase activity
and ATP-dependent proton-translocating activity of the E. coli F1·Fo (EcF1·Fo) lacking the
ε subunit were reduced. These cells showed a reduced growth rate and lower viability
in a low-salt medium [86]. It was also reported that the deletion of five residues in the
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εCTD reduced the ATP synthesis in EcF1·Fo, leading to a decrease in the growth rate under
aerobic conditions by about three times [87]. On the other hand, when the entire εCTD was
genetically removed, E. coli did not show noticeable growth defects under a wide range of
conditions in vitro [86]. Thus, the physiological significance of the ε subunit in the F1·Fo
regulation remains unclear.

Although ε has been shown to preferentially inhibit the ATPase activity without
significantly affecting the ATP synthase activity of F1·Fo [16,72,73], there is evidence that
ε actually inhibits ATP synthesis [88]. Some researchers do not consider the ε subunit as
a unidirectional inhibitor protein, but as a subunit that modulates the rotation rate of the
rotor [64]. Thus, the mechanism of ε action has not been fully established.

Since its discovery, IF1 has been considered a unidirectional inhibitor of ATP hydroly-
sis [39]. However, there have been indications that IF1 also inhibits ATP synthesis. Thus, it
was shown that IF1 can slow down both the pre-stationary phase and the steady-state ATP
synthesis in mitochondria [89]. Studies of the IF1 function in various cell lines produced
conflicting results, which did not help to understand the real role of this protein in the
whole organism. In some experiments, IF1 knockout increased mitochondrial ATPase
activity [61]. Other IF1 knockout mutants in yeast, mice or Caenorhabditis elegans showed
no difference in growth, reproduction or bioenergetics compared to wild types [75].

The P. denitrificans mutants lacking the ζ subunit gene demonstrated a specific growth
defect associated with an increase in PdFo·F1 ATP hydrolytic activity [62] in one case.
However, in another work, the ζ subunit knockdown showed only a slight increase in ATP
hydrolysis by PdFo·F1 [45].

Thus, a promising hypothesis of mechanical inhibition of ATPase by inhibitor proteins
by the ratchet mechanism [72] does not fully explain the data set on the unidirectional
regulation of F1·Fo hydrolytic activity. Therefore, there are other factors to be taken into
account.

It is well known that ATP hydrolysis in IF1-free mitochondrial F1·Fo can be inhibited
by ADP(Mg2+), but the inhibited enzyme will be fully active towards the ATP synthesis [90].
Furthermore, at least two factors are responsible for the inhibition of ATP hydrolysis in
P. denitrificans, ζ subunit [18] and ADP(Mg2+) [46,54]. Their role in the inhibition of the
hydrolytic activity of PdF1 was confirmed in single-molecule experiments. It remains
unclear which of these factors has a dominant effect on PdFo·F1 latent ATP hydrolysis [33].
In these experiments, significant differences were observed in the average lifetime of
enzyme-inhibitor complexes, as well as in their ability for reactivation. While the inhibitory
effect of ADP(Mg2+) has an average duration of about 30 s and is removed spontaneously,
the period of inhibition mediated by the ζ subunit is extended by more than 500 s and is not
spontaneously removed. The authors concluded that ADP(Mg2+) only modulates, while
the ζ subunit completely blocks, the rotation of the PdF1·Fo in the hydrolytic direction [33].
On the other hand, in the PdF1·Fo double mutants, lacking both the ε-CTD and the ζ
subunit, no significant activation of ATP hydrolysis was observed. Instead, even in double
mutant strains, hydrolysis can only be activated by oxyanions, LDAO, or pmf, which
are considered to remove ADP(Mg2+)-inhibition [91], which indicates the main role of
ADP(Mg2+)-inhibition in the control of hydrolytic activity of the P. denitrificans Fo·F1.

Thus, the understanding of F1·Fo unidirectional catalysis may require more complex
schemes involving several regulatory mechanisms.

In this regard, both the mutual action of inhibitory proteins and ADP(Mg2+) [59,91,92]
and their independent action on the F1·Fo regulation are considered [50], but no consensus
has been reached so far. Using compounds with a pronounced activating effect on the latent
F1·Fo hydrolytic activity, it was concluded that εCTD- and ADP(Mg2+)-induced inhibition
are mutually exclusive for the membrane-bound EcF1·Fo [50]. On the other hand, based on
the rearrangement in the enzyme structure observed upon binding of ADP(Mg2+), it was
suggested that the ε subunit can prevent the transition of F1·Fo to the ADP(Mg2+)-inhibited
state [25].
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In any case, the trigger is needed to start the inhibitory mechanism. The ADP/ATP
ratio or pmf were suggested to act as a trigger. However, ATP-dependent regulation
of the ε subunit was shown not for all F1·Fo [60]; it was not found for IF1 and only
suggested for the ζ subunit [18]. In mitochondria, ADP(Mg2+) inhibits F1·Fo at micromolar
concentrations of the nucleotide [36]. In addition, F1·Fo in different organisms show
significant differences in the magnitude of ADP(Mg2+)-inhibition, which can change with
variations in the concentration of Pi and nucleotides [37].

In addition to the ADP/ATP ratio, pmf, which can be considered a “substrate/product”
of ATP synthesis/hydrolysis reactions, can also act as a factor regulating the inhibition
of ATP hydrolysis [46]. For chloroplast [19], mitochondrial [52] and bacterial [53,54]
enzymes, it was shown that membrane energization leads to the rapid activation of the
ADP(Mg2+)-inhibited F1·Fo hydrolytic activity. In single-molecule studies of Bacillus sp.
PS3 F1, activation of the ADP(Mg2+)-inhibited enzyme was demonstrated upon mechanical
rotation of the γ subunit [93]. In addition to the release of ADP(Mg2+) inhibition, it is
believed that pmf induces conformational changes that remove inhibition caused by the
εCTD action [55,94]. Recently, it was reported that the ε subunit changes its conformation
not only in response to a change in the ATP concentration, but also in response to an
increase in pmf [95].

It should be noted that most of the data on the regulation of F1·Fo was obtained
by studying the ATP-hydrolase activity of the water-soluble fragment, F1, or F1·Fo, in
preparations that are unable to maintain the membrane potential. In order to study the role
of pmf in the F1·Fo regulation, it was necessary to introduce into research practice coupled
membrane preparations that do not require artificial coupling and have a high respiratory
control ratio. Sufficiently simple techniques [96] make it possible to obtain preparations of
tightly coupled P. denitrificans membranes with high respiratory control, up to 4.5 when
NADH is oxidized as a respiratory substrate [54], enabling the comparative study of ATP
synthesis/hydrolysis and the role of membrane potential in the regulation of F1·Fo. The
enzyme in P. denitrificans membranes has become a popular object of research at the present
time [23,46,49,74,91,97].

5. Paracoccus denitrificans as a Unidirectional F1·Fo Model

Although the P. denitrificans F1·Fo has a common bacterial complex structure
(3α:3β:γ:δ:ε:a:b:b’:12c) and one intrinsic inhibitor protein ζ [23], the enzyme also has unique
properties. These are a very high rate of ATP synthase and a very low rate of F1- or F1·Fo-
ATPase, with an ATP synthase/ATPase ratio of 20–120, which is more than 100 times higher
than that of other bacteria, such as E. coli (ratio of 0.25) or mitochondrial F1·Fo (ratio of
0.2) [62]. PdF1·Fo is considered a model of a unidirectional enzyme [46,82]. Establishing
the mechanism of its regulation can help solve the problem of the unidirectional operation
of F1·Fo in general.

ATP hydrolase activity of PdF1·Fo, in addition to the significant activation by sul-
fite [49], is also activated by pmf [54]. The studies of PdF1·Fo in tightly coupled inside-out
sub-bacterial particles performed in Vinogradov’s group showed that pmf not only induces
but also maintains the ATP hydrolase state of the enzyme [46,54]. It was also shown that
neither an increase in ATP concentration, nor a decrease in Pi concentration—both causing
a decrease in the ATP synthesis rate—affected the ATP/(ADP × Pi) ratio maintained by
coupled P. denitrificans particles at the end of ADP phosphorylation. A decrease in the
respiratory chain activity also did not result in the ADP concentration remaining in the
medium after the ATP synthesis was completed. The authors concluded that the mass
action ratio, ATP/(ADP × Pi), of the reaction catalyzed by F1·Fo, is not in equilibrium with
pmf generated by respiration [98].

It is assumed that the chemical-mechanical relationship between ATP hydrolysis
and F1 rotation is reversible, and during ATP synthesis, the order of structural changes
in the enzyme accompanying ATP hydrolysis is reversed [1]. However, the question of
whether ATP synthesis by the entire F1·Fo complex is the exact mechanistic reversal of ATP
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hydrolysis reaction remains a subject of discussion [36,99]. If the synthesis and hydrolysis
of ATP occur according to a single catalytic mechanism, then inhibitors and activators will
have the same effect on the F1·Fo forward and reverse reactions. However, a significant
difference was found in the pH profiles of ATP synthesis and hydrolysis: a decrease in
pH from 8.0 to 7.0 led to a reversible inhibition of ATP hydrolysis, while the activity of
ATP synthesis did not change. Thus, the hydrolytic/synthetic activity of the enzyme is
unidirectionally controlled by the pH [100].

Moreover, there are compounds that selectively affect the forward (synthesis) or
the reverse reactions (hydrolysis) only. These are the so-called unidirectional enzyme
inhibitors: aurovertin [101], azide [90], sulfite [102] and venturicidin [82,103]. The existence
of such inhibitors is inconsistent with the concept of the simple reversibility of F1·Fo.
However, the effect of unidirectional inhibitors was explained by the fact that pmf can affect
the kinetics of the enzyme-inhibitor interaction [82] since the oxidative phosphorylation
was measured in energized particles, while ATP hydrolysis was measured in uncoupled
particles. Vinogradov’s group performed a detailed inhibitory analysis of PdF1·Fo ATP
synthesis and hydrolysis, measuring ATP hydrolysis by the ATP-dependent reduction of
NAD+ by succinate (reverse electron transfer), i.e., in energized membranes. Significant
differences were found in the action of venturicidin, a specific inhibitor of bacterial F1·Fo,
in energized membranes, depending on the direction of the reaction: (i) venturicidin was
shown to inhibit ATP synthesis and ATP hydrolysis of PdF1·Fo but had an almost ten-fold
difference in the affinity for the enzyme depending on the direction of catalysis; (ii) the
synthesis of ATP was titrated almost linearly while for the hydrolysis of ATP, the titration
produced a sigmoidal dependence [103].

Hypothesis of Two Forms of F1·Fo: ATP Synthase and ATP Hydrolase

The results obtained in Vinogradov’s group and other laboratories have led to the sug-
gestion of models of the mechanism of oxidative phosphorylation based on the differences
in the catalytic pathways of the forward and reverse reactions [36,99]. The development
of this model led to the hypothesis, proposed by Vinogradov, according to which ATP
synthesis and hydrolysis are catalyzed by two different non-equilibrium forms of F1·Fo in
the coupled energy-converting membranes—synthase and hydrolase [36,46]. The kinetic
properties of the synthase form are best suited for efficiently controlled pmf -dependent ATP
synthesis, and the second one is similarly adapted for ATP-dependent pmf generation [46]
(Figure 3). In this model, two forms are understood as F1·Fo complexes containing or not
containing some subunits or, for example, differing in the set of specific annular phospho-
lipids, and their lifetime is significantly greater than the time of catalytic turnover [46]. This
hypothesis is in good agreement with experimental data [98,100,103].

The concept of two forms is supported by data from other groups. Thus, comparing the
activating effects of sulfite and pmf on latent ATPase activity, it was hypothesized that both
pmf and oxyanions activate different inhibited states present in the PdF1·Fo population [49].
The two-state hypothesis was used to explain the relationship between the three types of
regulation (mediated by the ε and ζ subunits and ADP(Mg2+)-inhibition), suggesting that
ε-CTD induces a change in the distribution of inhibited states, changing the proportion of
the enzyme population capable of activation by pmf [91].

During the purification of PdF1·Fo for X-ray analysis, it was eluted from the Q HiTrap
column with two separate peaks in comparable amounts, which were designated as F-
ATPases I and II. It turned out that these forms differ in their ability to retain native lipids
from the bacterial membrane [23]. The ATPase activity of the P. denitrificans mutants lacking
ε and ζwas still latent and manifested only in the presence of sulfite or LDAO [91].

Subunit ε inhibits the ATPase activity incompletely, which is considered as not inhibi-
tion but modulation of rotor rotation. However, two forms of the enzyme, sensitive and
insensitive to ε subunit upon ATP hydrolysis, could explain this observation [60]. Two
forms of the enzyme are involved in the interpretation of data on two forms of regulation
in E. coli—mediated by ε and ADP(Mg2+) [50]. It has recently been shown that venturicidin
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interacts better with active F1·Fo form and worse with ADP(Mg2+)-inhibited enzyme [104].
The ratio between these forms is known to be controlled by pmf [53,54].
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Figure 3. Synthesis and hydrolysis of ATP catalyzed by two forms of F1·Fo. The main components
of a bacterial cell coupling membrane are shown. The proton motive force (pmf ) is generated by
the respiratory chain (RC). F1·Fo ATP synthase (blue) and ATP hydrolase (red) are composed of
hydrophilic F1 that performs the catalytic function, and Fo provides proton translocation. Fo acts as a
mechanical driving device rotating the γ subunit of F1. Venturicidin inhibition is also shown. Arrows
in the centre indicate high affinity of ATP synthase (thick arrow) and low affinity of ATP hydrolase
(thin arrow) for venturicidin.

It was shown that the H+/ATP coupling ratio (the number of protons transferred
across the membrane per one molecule of hydrolyzed ATP) in bacterial F1·Fo (Rb. capsulatus
and E. coli) depends on the ADP concentration [105]—a decrease in the ADP concentration
at a constant ATP concentration was accompanied by a decrease in the number of H+

transferred per hydrolyzed ATP. To explain these data, the concept of two interconvertible
states of ATP synthase, differing by their coupling ratios, was introduced. It has been
suggested that the state with higher coupling ratios favors the binding of ADP, and the
state with lower coupling ratios favors ATP binding [106].

These data can be explained by the model of two non-equilibrium forms of F1·Fo,
unidirectionally catalyzing the synthesis and/or hydrolysis of ATP. These forms can be
characterized by different types of regulation, which explains the variety of regulatory
elements (ε, ζ, and ADP(Mg2+)) in one organism.

6. Mycobacterium tuberculosis F1·Fo as a Promising Drug Target

Currently, F1·Fo are actively considered as targets of antimicrobial agents [9–13,107],
and various compounds well known as specific F1·Fo inhibitors are considered candidates
for this role [11,108]. It is particularly important that F1·Fo is a new attractive target
for medicines against the tuberculosis pathogen M. tuberculosis [14,109]. The absence of
NAD-dependent lactate dehydrogenase in M. tuberculosis makes oxidative phosphorylation
extremely important for its growth [110]. Therefore, for this bacterium, F1·Fo is a vital
enzyme necessary to provide unusually large amounts of ATP used for the synthesis of its
cell wall [10,111].
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Bedaquiline Is Effective in Curing Highly Drug-Resistant Tuberculosis via Targeting
M. tuberculosis Fo·F1

Tuberculosis is an infectious disease caused by the bacterium M. tuberculosis. It kills
more people than any other infectious disease of bacterial origin. The emergence and
spread of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains
of M. tuberculosis is a great challenge in anti-tuberculosis treatment [112,113]. Thus, there
is an urgent need to create potent antimycobacterial agents with a novel mechanism
of action. The development of compounds that target energy metabolism enzymes in
M. tuberculosis, such as the respiratory chain complexes and F1·Fo, is now considered
a new promising strategy. Bedaquiline (TMC207, BDQ, Sirturo™) was the first drug
approved by the U.S. Food and Drug Administration (FDA) and the European Medicines
Agency (EMA), which belongs to the class of bioenergetics inhibitors [114–117]. It is a
diarylquinoline derivative having a quinolinic central heterocyclic nucleus with alcohol
and amine side chains (Figure 4, left structure) which are suggested to play a significant
role in anti-tuberculosis activity [115,118]. Bedaquiline was reported to selectively target
F1·Fo of M. tuberculosis by interacting with the Fo domain [14,119,120]. This leads to the
inhibition of ATP production and a substantial decrease in ATP levels [119,121]. The
bactericidal effect of bedaquiline was observed with both replicating and dormant bacterial
subpopulations [119,121].
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Figure 4. Structures of bedaquiline (BDQ) and TBAJ-876. In TBAJ-876, BDQ’s quinoline (A) and
dimethylamino (D) groups are retained, whereas its phenyl (B) and naphthalene (C) groups are
replaced with 2,3,5-trialkoxypyridin-4-yl and 3,5-dialkoxypyridin-4-yl groups, respectively. Reprinted
from Sarathy et al. [122] under the terms of the Creative Commons Attribution 4.0 International
Public License.

The mycobacterial F1·Fo is composed of nine different subunits with a stoichiometry
of 3α:3β:γ:δ:ε:a:b:b’:9c [123,124]. The membrane-embedded subunit a and the rotating c-ring
transfer protons from the intermembrane space to the cytoplasm through two half-channels
in subunit a [6,124,125]. These half-channels are separated by an essential arginine residue
in subunit a, which interacts with a key, proton-translocating glutamate residue of the
c-ring, causing the protonation change [126,127].

Similar to the P. denitrificans enzyme, mycobacterial F1·Fo is active in ATP synthesis
but hydrolyzes ATP at very low rates, and their latent ATP hydrolase activity is activated
by the pmf [79]. Although the exact mechanism of mycobacterial F1·Fo regulation has not
yet been established, inhibition of ATP hydrolase activity [124] is thought to result from
the interaction of a unique C-terminal extension of the α subunit and 14 additional amino
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acid residues of the γ subunit [80,81,128]. It was also shown that the duplicated domain
in the N-terminal region of the fused bδ subunits can interact with the N-terminal region
of the α subunit [125], blocking the rotation of the rotor in the CW direction. In addition,
it is believed that the ε subunit [129], as well as hydrolysis products, ADP and Pi, that
surprisingly have been found in the βE catalytic site, contribute to the ATP hydrolysis
inhibition [69].

The cryoEM structure of the M. smegmatis F1·Fo shows seven bedaquiline binding
sites in the Fo domain and large-scale conformational changes induced in the enzyme by
the inhibitor (Figure 5) [6,124]. Five bedaquiline molecules bind with a lower affinity to
the c-ring. In these subunit c-sites (denoted as ‘c-only sites’), the dimethylamino group of
bedaquiline interacts with the carboxyl group of the proton-carrying glutamate-65 residue.
Two more molecules of bedaquiline bind with a higher affinity to two respective subunit
a/c-interfaces. The latter two sites are designated as the ‘leading site’ and the ‘lagging site’.
The ‘leading site’ involves a subunit c that has just interacted with subunit a and picked up
a proton from the periplasm. The ‘lagging site’ involves a subunit c poised to interact with
subunit a to deposit a proton into the cytoplasm [124]. Thus, the wedge-like binding of
bedaquiline to the two subunit a/c-interfaces blocks the rotation of the F1·Fo rotor [124,127].
Hards et al. [130] proposed a second inhibition mechanism upon investigating a blockage
of ATP synthesis by bedaquiline in E. coli inside-out membrane vesicles. The mechanism is
based on the ability of bedaquiline (a weak lipophilic base, pKa = 8.9), upon its localization
at F1·Fo, to function as a H+/K+ ionophore, thus uncoupling the oxidative phosphorylation.
This specific and potent uncoupling thus leads to the dissipation of pmf and equilibration
of transmembrane pH and potassium gradients [130]. The findings reported by Sarathy
et al. [122], however, are in disagreement with that work. They suggest that the uncoupler
activity is not required for diarylquinolines to exert their antimycobacterial activity. Further
studies are needed to clarify the discrepancy.
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The successful therapeutic advance of bedaquiline was, however, overshadowed by
the observation of acquired resistance of M. tuberculosis to the drug [14,131]. Furthermore,
recently, it has become known that bedaquiline also potently inhibits the yeast and hu-
man mitochondrial F1·Fo [132], despite reports of the contrary [8,133,134]. The site of
bedaquiline inhibition was found to partially overlap with that of oligomycin. Surprisingly,
molecular dynamics simulations suggest that the binding mode of bedaquiline to this site
is similar to that previously observed for a mycobacterial enzyme [132]. Although Luo et al.
noted that “the discrepancies between this and other studies of the inhibition of BDQ of the
human enzyme are due to differences in the assays and methods, and in some cases, also
due to species and cell-specific effects” [132], the potential risks associated with taking the
drug because of that discovery cannot be ignored. In view of the particular importance of
the issue, further research is required in this direction. One more drawback of bedaquiline
is its very high lipophilicity, which may contribute to its extremely long elimination half-life
and tissue accumulation at high concentrations [118]. Another drawback of the drug is
its inhibitory action (IC50 = 1.6 µM) on the cardiac potassium channel protein encoded
by the human ether-a-go-go-related gene (hERG) [135]. Dysfunction of the hERG channel
causes long QT syndrome and increases the risk of sudden death in patients with cardiac
ischemia [118]. The development of next-generation analogs of bedaquiline, which would
have the potential to address the above-mentioned issues, is clearly necessary. A newly
developed 3,5-dialkoxypyridine analog of bedaquiline named TBAJ-876 (Figure 4, right
structure) is currently in phase II trials. Compared to bedaquiline, TBAJ-876 displays
improved pharmacological and toxicological properties [118] but retains the same mycobac-
tericidal activity [122]. A new class of selective and potent inhibitors of the mycobacterial
F1·Fo appeared to be tetrahydronaphthalene amides (THNAs). THNAs are effective in
preventing the growth of M. tuberculosis in culture and show improved hERG liability,
clearance, and half-life compared to bedaquiline [136].

In light of the above in this and the previous sections, when developing new drugs, it
is necessary to take into account not only the F1·Fo structure, but also the complexity of
its regulatory mechanisms. For example, it has been found that although venturicidins
do not exhibit antibacterial activity, they are able to enhance the action of aminoglycoside
antibiotics against various bacterial pathogens [137]. However, a recent study of EcF1·Fo
showed that the ATPase activity inhibited by low concentrations of venturicidin is restored
after prolonged incubation with the inhibitor at high concentrations. [104]. A similar
effect was observed in experiments with F1·Fo from M. smegmatis, which was inhibited by
about 80% by nanomolar bedaquiline, but most of the activity was restored by micromolar
bedaquiline. [124].

At the end of this section, it should be noted that the use of a specific and potent
inhibitor of the mycobacterial F1·Fo, in combination with inhibitors of other bioenergetics
enzymes of M. tuberculosis, such as cytochrome bd and/or a bcc-aa3 supercomplex, may
have a synergistic effect [113,138–142]. This would represent an innovative pharmaceutical
strategy for the treatment of highly drug-resistant tuberculosis.

7. Concluding Remarks

Various bacterial F1·Fo complexes are structurally very similar but show significant
differences in the regions of the structure responsible for enzyme regulation [3]. The variety
of regulatory elements (ε, ζ, and ADP(Mg2+)) may provide different regulatory pathways,
but in our opinion, they may also belong to different forms of the enzyme [46,103]. Although
X-ray diffraction analysis and cryoEM are two powerful research methods for studying
the interaction of drug molecules with F1·Fo, such approaches cannot take into account the
role of pmf in that interaction. We believe that the hypothesis of two F1·Fo forms, and the
use of F1·Fo preparations which allow taking into account the role of pmf, may be useful for
establishing the mechanisms of F1·Fo regulation and, further, for biomedical research.
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