Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (863)

Search Parameters:
Keywords = APX001

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2619 KiB  
Article
Oxidative Stress in Wheat Caused by Ampicillin and Amoxicillin and Their Mixture Applied to the Soil
by Robert Biczak, Arkadiusz Telesiński, Marcin Sysa, Agnieszka Godela and Barbara Pawłowska
Int. J. Mol. Sci. 2025, 26(17), 8156; https://doi.org/10.3390/ijms26178156 - 22 Aug 2025
Abstract
Ampicillin (AMP) and amoxicillin (AMX) are widely used penicillin antibiotics. After administration to humans and animals, they are largely excreted in unchanged or metabolized forms, leading to their release into wastewater. In surface waters, their concentrations usually reach the ng∙L−1 range and [...] Read more.
Ampicillin (AMP) and amoxicillin (AMX) are widely used penicillin antibiotics. After administration to humans and animals, they are largely excreted in unchanged or metabolized forms, leading to their release into wastewater. In surface waters, their concentrations usually reach the ng∙L−1 range and rarely exceed µg∙L−1, although in India AMX levels above mg∙L−1 were detected in hospital effluents. The limited efficiency of wastewater treatment plants allows these compounds to enter aquatic and terrestrial environments, where they affect various organisms. The aim of this study was to assess the effects of AMP, AMX, and their mixture on wheat, one of the most extensively cultivated cereals. Determinations were carried out using standardized methodologies. The results showed that antibiotics induce oxidative stress in plants, with symptoms observed only at concentrations of 1000 mg∙kg−1 of soil DW. At this level, changes included altered antioxidant enzyme activity (APX, SOD, POD, and CAT), increased proline and H2O2 content, and reduced MDA levels. By contrast, antibiotics had minimal influence on glutathione and ascorbate and caused only slight changes in photosynthetic pigments and chlorophyll fluorescence. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 7982 KiB  
Article
Sowing Methods and Strigolactones Alleviate Damage to the Photosynthetic System of Rice Seedlings Under Salt Stress by Enhancing Antioxidant Capacity
by Shaobiao Duan, Liming Zhao, Weinan Chen, Qicheng Zhang, Jiangyuan Ya, Wenji Zhong, Qianqian Shang, Jinji Tu, Hongtao Xiang, Jianqin Zhang and Junhua Zhang
Antioxidants 2025, 14(8), 1020; https://doi.org/10.3390/antiox14081020 - 20 Aug 2025
Viewed by 152
Abstract
Seedling cultivation of rice (Oryza sativa L.) is a critical initial step in rice production. This study investigated the effects of sowing methods and strigolactone (GR24) on rice seedlings under salt stress. Results showed that drill-sown seedlings exhibited superior quality under normal [...] Read more.
Seedling cultivation of rice (Oryza sativa L.) is a critical initial step in rice production. This study investigated the effects of sowing methods and strigolactone (GR24) on rice seedlings under salt stress. Results showed that drill-sown seedlings exhibited superior quality under normal conditions compared to broadcast-sown seedlings. Salt stress significantly increased the contents of Cl, Na+, reactive oxygen species (ROS), and malondialdehyde (MDA), disrupted chloroplast structure and hormonal balance, and reduced gas exchange parameters and chlorophyll fluorescence parameters. Notably, drill-sowing conferred stronger salt tolerance than broadcast-sowing. Exogenous application of GR24 enhanced activities of antioxidant enzymes—including superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT)—and elevated non-enzymatic antioxidant contents such as ascorbic acid (ASA), glutathione (GSH), total phenolics, and flavonoids, alongside related enzyme activities. Concurrently, GR24 reduced Na+ and Cl accumulation, lowered the Na+/K+ ratio, and increased the contents of K+, Ca2+, Mg2+, and hormones. Consequently, GR24 decreased MDA and ROS levels, protected membrane integrity, reduced electrolyte leakage, repaired chloroplast structure, and improved gas exchange and chlorophyll fluorescence parameters. Due to their superior spatial distribution and photosynthetic efficiency, drill-sown seedlings synergized with GR24 to enhance antioxidant capacity under salt stress, enabling more effective scavenging of peroxidative radicals, stabilization of the photosynthetic system, and mitigation of salt-induced growth inhibition. Ultimately, this combination demonstrated greater stress alleviation than broadcast-sown seedlings. Full article
Show Figures

Figure 1

28 pages, 1805 KiB  
Article
Maize Crops Under Rising Temperatures: Bacterial Influence on Biochemical and Lipidomic Changes Induced by Heat
by Ricardo Pinto, Paulo Cardoso, Bruno Carneiro, Glória Pinto, Carmen Bedia and Etelvina Figueira
Plants 2025, 14(16), 2593; https://doi.org/10.3390/plants14162593 - 20 Aug 2025
Viewed by 115
Abstract
Rising global temperatures are increasingly affecting plant performance, leading to reduced growth, altered metabolism, and compromised membrane integrity. Although plant growth-promoting bacteria (PGPB) show promise in enhancing thermotolerance, the underlying mechanisms remain insufficiently explored. Therefore, this study investigated the effects of PGPB inoculation [...] Read more.
Rising global temperatures are increasingly affecting plant performance, leading to reduced growth, altered metabolism, and compromised membrane integrity. Although plant growth-promoting bacteria (PGPB) show promise in enhancing thermotolerance, the underlying mechanisms remain insufficiently explored. Therefore, this study investigated the effects of PGPB inoculation on Zea mays under control (26 °C) and heat stress (36 °C) conditions. Maize plants were inoculated with two thermotolerant bacterial strains and their effects were compared to non-inoculated plants through morphometric, biochemical, and lipidomic analyses. Heat stress negatively affected germination (−35.9%), increased oxidative stress (+46% for LPO, +57% for SOD, +68% for GPx), and altered leaf lipid composition, particularly fatty acids, glycerolipids, and sphingolipids. Inoculation with Pantoea sp. improved germination by 15% for seeds exposed to heat stress, increased growth (+28% shoot and +17% root), enhanced antioxidant defenses (+35% for CAT and +38% for APx), and reduced membrane damage by 65% compared with the control. Lipidomic profiling revealed that inoculation mitigated temperature-induced lipid alterations by reducing triacylglycerol accumulation and preserving the levels of polyunsaturated galactolipids and hexosylceramides. Notably, Pantoea sp.-inoculated plants under heat stress exhibited lipid profiles that were more similar to those of control plants, suggesting enhanced heat resilience. These results underscore the importance of specific plant–microbe interactions in mitigating heat stress and highlight PGPB inoculation as a promising strategy to enhance crop performance and resilience under projected climate warming scenarios. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Figure 1

36 pages, 15506 KiB  
Article
Genome-Wide Identification of DREB Gene Family in Kiwifruit and Functional Characterization of Exogenous 5-ALA-Mediated Cold Tolerance via ROS Scavenging and Hormonal Signaling
by Ping Tian, Daming Chen, Jiaqiong Wan, Chaoying Chen, Ke Zhao, Yinqiang Zi, Pu Liu, Chengquan Yang, Hanyao Zhang and Xiaozhen Liu
Plants 2025, 14(16), 2560; https://doi.org/10.3390/plants14162560 - 17 Aug 2025
Viewed by 784
Abstract
Dehydration response element binding proteins (DREBs) have been identified as major regulators of cold acclimatization in many angiosperms. Cold stress is one of the primary abiotic stresses affecting kiwifruit growth and development. However, kiwifruit is currently one of the most widely consumed fruits [...] Read more.
Dehydration response element binding proteins (DREBs) have been identified as major regulators of cold acclimatization in many angiosperms. Cold stress is one of the primary abiotic stresses affecting kiwifruit growth and development. However, kiwifruit is currently one of the most widely consumed fruits worldwide because of its high nutritional value. 5-Aminolevulinic acid (5-ALA) is a nonprotein amino acid known for its distinct promotional effects on plant resistance, growth, and development. However, studies on the function of the kiwifruit DREB gene in alleviating low-temperature stress in its seedlings via exogenous 5-ALA have not been reported. Therefore, in this study, we performed a genome-wide identification of DREB gene family members in kiwifruit and analyzed the regulatory effects of exogenous 5-ALA on kiwifruit DREB genes under low-temperature stress. A total of 193 DREB genes were identified on 29 chromosomes. Phylogenetic analysis classified these genes into six subfamilies. Although there were some differences in cis-elements among subfamilies, all of them contained more biotic or abiotic stresses and hormone-related cis-acting elements. GO and KEGG enrichment analyses revealed that AcDREB plays an essential role in hormone signaling, metabolic processes, and the response to adverse stress. Under low-temperature stress, the application of exogenous 5-ALA inhibited the accumulation of APX and DHAR, promoted an increase in chlorophyll, and increased the accumulation of enzymes and substances such as 5-ALA, MDHAR, GR, ASA, GAH, and GSSH, thereby accelerating ROS scavenging and increasing the cold hardiness of kiwifruits. Functional analysis revealed that 46 differentially expressed DREB genes, especially those encoding AcDREB69, AcDREB92, and AcDREB148, which are involved in ethylene signaling and defense signaling, and, after the transcription of downstream target genes is activated, are involved in the regulation of low-temperature-stressed kiwifruits by exogenous 5-ALA, thus improving the cold tolerance of kiwifruits. Notably, AcDREB69, AcDREB92, and AcDREB148 could serve as key genes for cold tolerance. This study is the first to investigate the function of AcDREB genes involved in the role of exogenous 5-ALA in regulating low-temperature stress, revealing the regulatory mechanism by which DREB is involved in the ability of exogenous 5-ALA to alleviate low-temperature stress. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 37852 KiB  
Article
Curcumin-Mediated Photodynamic Treatment Enhances Storage Quality of Fresh Wolfberries via Antioxidant System Modulation
by Yan-Fei Shen, Wen-Ping Ma, Run-Hui Ma, Kiran Thakur, Zhi-Jing Ni, Wei Wang and Zhao-Jun Wei
Foods 2025, 14(16), 2843; https://doi.org/10.3390/foods14162843 - 16 Aug 2025
Viewed by 164
Abstract
Photodynamic inactivation (PDI) is an innovative non-thermal sterilization and preservation method that has recently emerged as a safe, effective, cost-effective and environmentally sustainable alternative for biomedical applications. Curcumin (Cur), a commonly used food additive, possesses photosensitizing properties. In this study, we investigated the [...] Read more.
Photodynamic inactivation (PDI) is an innovative non-thermal sterilization and preservation method that has recently emerged as a safe, effective, cost-effective and environmentally sustainable alternative for biomedical applications. Curcumin (Cur), a commonly used food additive, possesses photosensitizing properties. In this study, we investigated the effect of curcumin-mediated photodynamic treatment (Cur-PDT) on the preservation of fresh wolfberries. Our experimental data revealed that a Cur-PDT treatment using a cur concentration of 500 μmol/L for 30 min, with 20 W irradiation, achieved the best preservation effect on fresh wolfberries. This intervention significantly slowed the decline in post-harvest hardness and delayed the progression of decay. It also reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (•O2). Notably, at day 3, the enzymatic activities of catalase (CAT) and ascorbate peroxidase (APX) in Cur-PDT-treated wolfberries were 1.12 and 1.88 times higher, respectively, than those in the control group. These elevated enzyme activities promoted the biosynthesis and recycling of ascorbic acid (AsA) and glutathione (GSH), leading to their substantial accumulation under oxidative stress conditions. By modulating the antioxidant defense system, Cur-PDT has the potential to extend the shelf-life of post-harvest wolfberries and enhance their overall quality attributes, thereby maintaining physiological homeostasis during storage. Full article
Show Figures

Graphical abstract

18 pages, 6628 KiB  
Article
An Analysis of the Different Salt-Tolerance Mechanisms in Rice Cultivars Induced by Cerium Oxide Nanoparticles
by Chunmei Yang, Qing Bu, Tao Su, Tian Wang, Zaid Khan, Mingwei Li, Juntian Wu, Xiaodan Di, Yong Chen and Jing An
Antioxidants 2025, 14(8), 994; https://doi.org/10.3390/antiox14080994 - 13 Aug 2025
Viewed by 305
Abstract
Cerium oxide nanoparticles (CeO2NPs) can boost crops’ salt tolerance, yet their regulatory mechanisms in rice cultivars with contrasting salt tolerance remain unclear. This study investigated the regulatory differences in poly (acrylic acid)-coated nanoceria (PNC)-primed in salt-sensitive (Huanghuazhan, H) and salt-tolerant (Xiangliangyou900, [...] Read more.
Cerium oxide nanoparticles (CeO2NPs) can boost crops’ salt tolerance, yet their regulatory mechanisms in rice cultivars with contrasting salt tolerance remain unclear. This study investigated the regulatory differences in poly (acrylic acid)-coated nanoceria (PNC)-primed in salt-sensitive (Huanghuazhan, H) and salt-tolerant (Xiangliangyou900, X) rice. The results showed that PNC priming improved salt tolerance in two cultivars, but the underlying mechanisms differed. In the H cultivar, the enhanced tolerance was primarily attributed to enhanced photosynthesis (net photosynthesis and transpiration rates were 53.27% and 20.52% higher than the X cultivar); increased abscisic acid (ABA) content (up by 18.80% compared to the X cultivar), and activated stress-responsive signaling. Metabolomics further revealed that the differential metabolites were enriched in galactose metabolism, ascorbate, and aldarate metabolism, synergistically maintaining intracellular redox balance. In the X cultivar, PNC boosted reactive oxygen species’ (ROS) scavenging capacity (catalase (CAT) increased 36.07%, H2O2 and malondialdehyde (MDA) decreased 27.31% and 48.61% compared to H); elevated endogenous indole-3-acetic acid (IAA) and gibberellic acid3 (GA3) levels by 9.55% and 9.08%; and specifically activated cellular defense response and glutathione metabolism. Transcriptome analysis further revealed that the expression of IAA/GA3 signal-responsive genes (OsARGOS/OsGASR2) and antioxidant genes (OsCatA, OsAPX1) were significantly higher in the X cultivar than the H cultivar (p < 0.05), whereas the H cultivar showed higher expression of GST and ABA-related genes. This study provides a new perspective for the mechanism of PNC-enhanced salt tolerance in rice. Full article
Show Figures

Figure 1

18 pages, 1661 KiB  
Article
Field-Based Assessment of Soil Salinity and Alkalinity Stress on Growth and Biochemical Responses in Eggplant (Solanum melongena L.)
by Eren Özden, Faruk Tohumcu and Serdar Sarı
Agronomy 2025, 15(8), 1945; https://doi.org/10.3390/agronomy15081945 - 12 Aug 2025
Viewed by 354
Abstract
Soil salinity and sodicity are escalating global threats to agricultural productivity, severely limiting crop yield and quality. In the Igdir Plain of Türkiye, high summer temperatures, minimal precipitation, and a shallow groundwater table have intensified salinity-related challenges, currently affecting one-third of the arable [...] Read more.
Soil salinity and sodicity are escalating global threats to agricultural productivity, severely limiting crop yield and quality. In the Igdir Plain of Türkiye, high summer temperatures, minimal precipitation, and a shallow groundwater table have intensified salinity-related challenges, currently affecting one-third of the arable land. Despite the substantial impact of salinity stress on eggplant (Solanum melongena L.) production, studies addressing plant tolerance mechanisms under real field conditions remain limited. In this study, eggplant was cultivated in eight distinct soil classes under open-field conditions to evaluate the effects of soil salinity and saline-alkalinity on morphological, physiological, and biochemical traits. Increasing soil exchangeable sodium percentage (ESP) and electrical conductivity (ECe) levels significantly suppressed plant height, root length, stem diameter, and leaf area, along with over 90% reductions in shoot and root biomass. Salinity impaired the uptake of essential nutrients (Ca, K, P, and Fe), while promoting toxic Na+ accumulation in leaves. This ionic imbalance induced oxidative stress, as indicated by elevated malondialdehyde (MDA), hydrogen peroxide (H2O2), and antioxidant enzyme activities (SOD, CAT, APX), all of which were strongly correlated with proline accumulation. The results highlight a coordinated plant response under salinity stress but also reveal the insufficiency of natural defense mechanisms under high salinity levels. Unless supported by external interventions to improve stress resilience and ensure productivity, growing eggplant in saline–alkaline soils should be avoided. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 6405 KiB  
Article
Methyl Jasmonate Orchestrates Multi-Pathway Antioxidant Defense to Enhance Salt Stress Tolerance in Walnut (Juglans regia L.)
by Ruining Nie, Chengxu Wu, Xinying Ji, Ao Li, Xu Zheng, Jiajia Tang, Leyuan Sun, Yi Su and Junpei Zhang
Antioxidants 2025, 14(8), 974; https://doi.org/10.3390/antiox14080974 - 8 Aug 2025
Viewed by 359
Abstract
Walnut (Juglans regia L.), an ecologically and economically important species, requires the elucidation of its salt stress response mechanisms for improved salt tolerance breeding. This study elucidates the physiological and molecular mechanisms through which exogenous methyl jasmonate (MeJA) mitigates salt stress in [...] Read more.
Walnut (Juglans regia L.), an ecologically and economically important species, requires the elucidation of its salt stress response mechanisms for improved salt tolerance breeding. This study elucidates the physiological and molecular mechanisms through which exogenous methyl jasmonate (MeJA) mitigates salt stress in walnut, providing novel strategies for salt-tolerant cultivar development. This integrated study combined physiological, biochemical, and multi-omics analyses to decipher how exogenous MeJA enhances ROS scavenging through the synergistic activation of phenylalanine (Phe), tryptophan (Trp), and α-linolenic acid pathways, establishing a multilevel antioxidant defense network. MeJA treatment effectively mitigated salt stress-induced oxidative damage, as demonstrated by a significant 16.83% reduction in malondialdehyde (MDA) content, concurrent 11.60%, 10.73% and 22.25% increases in superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, respectively, the elevation of osmoregulatory soluble sugars (SS), and 1.2- to 2.0-fold upregulation of key antioxidant enzyme genes (SOD, POD, APX, GPX, DHAR) and elevated osmoregulatory substances (soluble sugars, SS). Improved photosynthetic parameters (Pn, Gs) and chlorophyll fluorescence efficiency (Fv/Fm) collectively indicated reduced oxidative stress (improved by 7.97–23.71%). Joint metabolomic-transcriptomic analyses revealed MeJA-enhanced ROS scavenging via the coordinated regulation of Phe, Trp, and α-linolenic acid pathways. In summary, MeJA significantly enhanced reactive oxygen species (ROS) scavenging efficiency and comprehensive antioxidant capacity in walnut seedlings through the synergistic regulation of key metabolic pathways, effectively mitigating salt stress. These findings establish a crucial mechanistic foundation for understanding plant salt stress responses and advance the utilization of MeJA-mediated strategies for the genetic improvement of salinity tolerance in walnut. Future research should prioritize optimizing MeJA application protocols and functionally validating key regulatory genes for breeding applications. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Graphical abstract

20 pages, 2633 KiB  
Article
Microbial–Organic Inputs with Glycine Supplementation Enhance Growth and Heat Stress Tolerance in Lettuce
by Kanjana Kudpeng, Ahmad Nuruddin Khoiri, Thanawat Duangfoo, Supapon Cheevadhanarak and Jiraporn Jirakkakul
Horticulturae 2025, 11(8), 935; https://doi.org/10.3390/horticulturae11080935 - 8 Aug 2025
Viewed by 363
Abstract
The escalating demand for sustainable agriculture calls for innovative strategies that enhance crop resilience while minimizing dependence on synthetic fertilizers. This study evaluated the synergistic effects of a microbial consortium (PYS), organic fertilizer (OF), glycine (Gly), and indole-3-acetic acid (IAA) on lettuce under [...] Read more.
The escalating demand for sustainable agriculture calls for innovative strategies that enhance crop resilience while minimizing dependence on synthetic fertilizers. This study evaluated the synergistic effects of a microbial consortium (PYS), organic fertilizer (OF), glycine (Gly), and indole-3-acetic acid (IAA) on lettuce under heat stress. The experiment was conducted in a greenhouse in Bangkok, Thailand, simulating tropical high-temperature conditions. The PYS+OF+Gly treatment significantly improved fresh weight, matching the performance of chemical fertilizer (CF) and indicating a strong growth-promoting synergy. Chlorophyll a, chlorophyll b, and carotenoid contents were higher in PYS or PYS+OF treatment, suggesting enhanced photosynthetic efficiency. At 60 days, PYS-based treatments also led to substantial increases in total phenolics and flavonoids, coupled with reduced lipid peroxidation and elevated antioxidant activities (DPPH, APX, CAT, POD, and SOD). However, vitamin C levels remained highest in the CF and OF controls, indicating a potential metabolic shift toward phenylpropanoid rather than ascorbate biosynthesis. Overall, our results demonstrate that combining microbial consortia with organic and biostimulant inputs could enhance growth, stress tolerance, and the nutritional quality of lettuce. This integrated approach presents a promising strategy for climate-resilient crop production and warrants further validation across different crops, environmental settings, and large-scale agricultural systems. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

22 pages, 4006 KiB  
Article
Biochar and Melatonin Partnership Mitigates Arsenic Toxicity in Rice by Modulating Antioxidant Defense, Phytochelatin Synthesis, and Down-Regulating the Transporters Involved in Arsenic Uptake
by Mehmood Ali Noor, Muhammad Umair Hassan, Tahir Abbas Khan, Baoyuan Zhou and Guoqin Huang
Plants 2025, 14(15), 2453; https://doi.org/10.3390/plants14152453 - 7 Aug 2025
Viewed by 312
Abstract
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also [...] Read more.
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also shown tremendous results in mitigating metal toxicity and improving crop productivity. Nevertheless, the mechanism of combined BC and MT in alleviating As toxicity in rice (Oryza sativa L.) remains unexplored. In this study, we investigated how As affected rice and how the combined BC and MT facilitated As tolerance. The study comprised a control, As stress (100 mg kg−1), As stress (100 mg kg−1) + BC (2%), As stress (100 mg kg−1) + MT (100 µM) and As stress (100 mg kg−1) + BC (2%) + MT (100 µM). Arsenic significantly decreased rice growth and yield by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Co-applying BC and MT substantially enhanced rice growth and yield by increasing chlorophyll synthesis (48.12–92.42%) leaf water contents (40%), antioxidant activities (ascorbate peroxide: 56.43%, catalase: 55.14%, peroxidase: 57.77% and superoxide dismutase: 57.52%), proline synthesis (41.35%), MT synthesis (91.53%), and phytochelatins synthesis (125%) nutrient accumulation in rice seedlings and soil nutrient availability. The increased rice yield with BC + MT was also linked with reduced H2O2 production, As accumulation, soil As availability, and an increase in OsAPx6, OsCAT, OsPOD, OsSOD OsASMT1, and OsASMT2 and a decrease in expression of OsABCC1. Biochar + MT enhanced residual OM- and Fe, ((Fe2As) and Mn (Mn3(AsO4)2) bound forms of As leading to a substantial increase in rice growth and yield. Thus, the combination of BC and MT is an eco-friendly approach to mitigate As toxicity and improve rice productivity. Full article
Show Figures

Figure 1

14 pages, 1820 KiB  
Article
Ozone Treatment Modulates Reactive Oxygen Species Metabolism Regulation and Enhances Storage Quality of Kiwifruit During Cold Storage
by Ziyu Jin, Jin Tan, Xinyu Zhang, Xin Li, Wenqiang Guan, Pu Liu and Aiqiang Chen
Horticulturae 2025, 11(8), 911; https://doi.org/10.3390/horticulturae11080911 - 4 Aug 2025
Viewed by 275
Abstract
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as [...] Read more.
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as an efficient and eco-friendly solution for preserving fruit quality after harvest. The maturation and aging processes of kiwifruit are closely linked to the involvement of reactive oxygen species (ROS) metabolism. This study aimed to investigate the effects of intermittent ozone treatment (21.4 mg/m3, applied for 0, 1, 3, or 5 h weekly) on ROS metabolism, the antioxidant defense system, and storage quality of kiwifruit during cold storage (0.0 ± 0.5 °C). The results showed ozone treatment slowed the decline in titratable acid (TA) content and fruit firmness, inhibited increases in total soluble solids (TSSs) and weight loss, and maintained the storage quality. Additionally, ozone treatment enhanced the activities of antioxidant-related enzymes. This includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Furthermore, it delayed the reduction in ascorbate (ASA), glutathione (GSH), total phenolic compounds, and flavonoid content, while also preventing the accumulation of ROS and the rise in malondialdehyde (MDA) levels. In summary, the results indicate that ozone treatment enhances the antioxidant capacity of kiwifruit by increasing the structural integrity of cell membranes, preserving the structural integrity of cell membranes, and effectively maintaining the storage quality of the fruit. Full article
Show Figures

Figure 1

27 pages, 1757 KiB  
Article
Salt Stress Mitigation and Field-Relevant Biostimulant Activity of Prosystemin Protein Fragments: Novel Tools for Cutting-Edge Solutions in Agriculture
by Martina Chiara Criscuolo, Raffaele Magliulo, Valeria Castaldi, Valerio Cirillo, Claudio Cristiani, Andrea Negroni, Anna Maria Aprile, Donata Molisso, Martina Buonanno, Davide Esposito, Emma Langella, Simona Maria Monti and Rosa Rao
Plants 2025, 14(15), 2411; https://doi.org/10.3390/plants14152411 - 4 Aug 2025
Viewed by 401
Abstract
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt [...] Read more.
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt stress and as biostimulants modulating tomato yield and quality traits. The treatments of tomato plants with femtomolar amounts of the peptides alleviated salt stress symptoms, likely due to an increase in root biomass up to 18% and the upregulation of key antioxidant genes such as APX2 and HSP90. In addition, the peptides exhibited biostimulant activity, significantly improving root area (up to 10%) and shoot growth (up to 9%). We validated such activities through two-year field trials carried out on industrial tomato crops. Peptide treatments confirmed their biostimulant effects, leading to a nearly 50% increase in marketable production compared to a commonly used commercial product and consistently enhancing fruit °Brix values. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

26 pages, 2221 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 - 3 Aug 2025
Viewed by 229
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1141 KiB  
Article
Coordinated Roles of Osmotic Adjustment, Antioxidant Defense, and Ion Homeostasis in the Salt Tolerance of Mulberry (Morus alba L. ‘Tailai Sang’) Seedlings
by Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Yu Shaopeng
Forests 2025, 16(8), 1258; https://doi.org/10.3390/f16081258 - 1 Aug 2025
Viewed by 290
Abstract
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old [...] Read more.
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old mulberry (‘Tailai Sang’) seedlings subjected to six NaCl treatments (0, 50, 100, 150, 200, and 300 mmol L−1) for 28 days. Results showed that growth parameters and photosynthetic gas exchange exhibited dose-dependent declines. The reduction in net photosynthetic rate (Pn) was attributed to both stomatal limitations (decreased stomatal conductance) and non-stomatal limitations, as evidenced by a significant decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) under high salinity. To cope with osmotic stress, seedlings accumulated compatible solutes, including soluble sugars, proteins, and proline. Critically, mulberry seedlings demonstrated effective ion homeostasis by sequestering Na+ in the roots to maintain a high K+/Na+ ratio in leaves, a mechanism that was compromised above 150 mmol L−1. Concurrently, indicators of oxidative stress—malondialdehyde (MDA) and H2O2—rose significantly with salinity, inducing the activities of antioxidant enzymes (SOD, CAT, APX, and GR), which peaked at 150 mmol L−1 before declining under extreme stress. A biomass-based LC50 of 179 mmol L−1 NaCl was determined. These findings elucidate that mulberry salt tolerance is a coordinated process involving three key mechanisms: osmotic adjustment, selective ion distribution, and a robust antioxidant defense system. This study establishes an indicative tolerance threshold under controlled conditions and provides a physiological basis for further field-based evaluations of ‘Tailai Sang’ mulberry for cultivation on saline soils. Full article
Show Figures

Figure 1

18 pages, 4455 KiB  
Article
Spermine Promotes the Formation of Conchosporangia in Pyropia haitanensis Through Superoxide Anions
by Tingting Niu, Haike Qian, Lufan Cheng, Qijun Luo, Juanjuan Chen, Rui Yang, Peng Zhang, Tiegan Wang and Haimin Chen
Mar. Drugs 2025, 23(8), 309; https://doi.org/10.3390/md23080309 - 30 Jul 2025
Viewed by 808
Abstract
The transition from conchocelis to conchosporangia in Pyropia haitanensis represents a pivotal stage in its life cycle. As a commercially vital red alga, P. haitanensis plays a dominant role in global nori production. The transition governing its sporulation efficiency is pivotal for aquaculture [...] Read more.
The transition from conchocelis to conchosporangia in Pyropia haitanensis represents a pivotal stage in its life cycle. As a commercially vital red alga, P. haitanensis plays a dominant role in global nori production. The transition governing its sporulation efficiency is pivotal for aquaculture success, yet the underlying regulatory mechanisms, especially their integration with metabolic cues such as polyamines, remain poorly understood. This study uncovered a critical role for the polyamine spermine (SPM) in promoting conchosporangial formation, mediated through the signaling activity of superoxide anions (O2·). Treatment with SPM markedly elevated O2· levels, an effect that was effectively inhibited by the NADPH oxidase inhibitor diphenyliodonium chloride (DPI), underscoring the role of O2· as a key signaling molecule. Transcriptomic analysis revealed that SPM enhanced photosynthesis, carbon assimilation, and respiratory metabolism, while simultaneously activating antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), to regulate hydrogen peroxide (H2O2) levels and maintain redox homeostasis. Furthermore, SPM upregulated genes associated with photosynthetic carbon fixation and the C2 oxidative photorespiration pathway, supplying the energy and metabolic resources necessary for this developmental transition. These findings suggested that SPM orchestrated O2· signaling, photosynthetic activity, and antioxidant defenses to facilitate the transition from conchocelis to conchosporangia in P. haitanensis. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Figure 1

Back to TopTop