Methyl Jasmonate Orchestrates Multi-Pathway Antioxidant Defense to Enhance Salt Stress Tolerance in Walnut (Juglans regia L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Measurement of Morphological Observation and Stomatal Indexes
2.3. Determination of Photosynthetic Parameters
2.4. Determination of Oxidative Stress Biomarkers
2.5. RNA Isolation and Transcriptomics Analysis
2.6. Metabolome Analysis
2.7. Real-Time Quantitative PCR Assay
2.8. Statistical Analysis
3. Results
3.1. Concentration Screening of MeJA
3.2. Effects of Exogenous MeJA on the Biomass and LRWC Under Salt Stress
3.3. Effects of Exogenous MeJA on the Stomatal Characteristics, Fv/Fm, Photosynthetical Pigments and System Under Salt Stress
3.4. Effects of Exogenous MeJA on the Antioxidant Enzymes Activity, MDA, Soluble Sugar, and Endogenous Hormones Under Salt Stress
3.5. Differential Expression, GO and KEGG Pathway Annotation and Enrichment Analysis
3.6. DEGs Involved in Key Metabolic Pathways
3.7. Metabolomics Analysis
3.8. Combined Analysis of Transcriptome and Metabolome
3.9. Effect of Exogenous MeJA on Phenylalanine Metabolism
3.10. Effect of Exogenous MeJA on Tryptophan Metabolism
3.11. Effect of Exogenous MeJA on α-Linolenic Acid Metabolism
4. Discussion
4.1. MeJA Mitigates Salt Stress and Enhances Plant Growth
4.2. Phenylalanine Metabolism Mediates MeJA-Induced Antioxidant Defense
4.3. Tryptophan Metabolism Mediates MeJA-Induced Antioxidant Defense
4.4. MeJA Alleviates Salt Stress Through the α-Linolenic Acid Metabolism Pathway
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.J.; Xu, X.X.; Zhang, R.D.; Chen, X.F.; Xing, Y.F.; Li, B.; Liu, C.; Zhou, Y.F. Effect of short-term combined alkaline stress on antioxidant metabolism, photosynthesis, and leaf-air temperature difference in sorghum. Photosynthetica 2022, 60, 200–211. [Google Scholar] [CrossRef]
- Ji, X.Y.; Tang, J.L.; Zheng, X.; Li, A.; Zhang, J.P. The regulating mechanism of salt tolerance of black walnut seedlings was revealed by the physiological and biochemical integration analysis. Plant Physiol. Biochem. 2024, 210, 108548. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Nie, R.N.; Li, A.; Wu, C.X.; Ji, X.Y.; Tang, J.L.; Zhang, J.P. Integrated physio biochemical and transcriptomic analysis reveals mechanism underlying salt tolerance in walnut. Plant Growth Regul. 2024, 104, 727–743. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, S.; Li, P.; Zhang, Y.; Ma, B.; Wang, Y. Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr. Physiol. Plant. 2021, 172, 162–175. [Google Scholar] [CrossRef]
- Peng, Q.; Zhou, Q. Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress. Biol. Trace Elem. Res. 2009, 127, 69–80. [Google Scholar] [CrossRef]
- Daniel, B.R.; Stanislav, R.S.; Rafal, G.; Mike, C.; Cosmin, N.F.; David, D.; Phillip, C. Assessing the Impact of Drought-Induced Abiotic Stress on the Content and Composition of Douglas-Fir Lignin. ACS Sustain. Chem. Eng. 2023, 11, 13519–13526. [Google Scholar]
- Liu, W.C.; Song, R.F.; Zheng, S.Q.; Li, T.T.; Zhang, B.L.; Gao, X.; Lu, Y.T. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Mol. Plant 2022, 15, 973–990. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Bao, Q.; Shi, H.; Zhang, Y. Integrating Physiology, Transcriptome, and Metabolome Analyses Reveals the Drought Response in Two Quinoa Cultivars with Contrasting Drought Tolerance. Int. J. Mol. Sci. 2024, 25, 12188. [Google Scholar] [CrossRef]
- Xu, Z.; Ge, Y.; Zhang, W.; Zhao, Y.; Yang, G. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biol. 2018, 18, 19. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; Kyriacou, M.C.; Carillo, P.; Scognamiglio, L.; De Pascale, S.; Rouphael, Y. Morpho-Physiological and Biochemical Responses of Hydroponically Grown Basil Cultivars to Salt Stress. Antioxidants 2022, 11, 2207. [Google Scholar] [CrossRef]
- Gul, N.; Masoodi, K.Z.; Ramazan, S.; Mir, J.I.; Aslam, S. Study on the impact of exogenously applied methyl jasmonate concentrations on Solanum lycopersicum under low temperature stress. BMC Plant Biol. 2023, 23, 437. [Google Scholar] [CrossRef] [PubMed]
- Demiwal, P.; Nabi, S.U.; Mir, J.I.; Verma, M.K.; Yadav, S.R.; Roy, P.; Sircar, D. Methyl jasmonate improves resistance in scab-susceptible Red Delicious apple by altering ROS homeostasis and enhancing phenylpropanoid biosynthesis. Plant Physiol. Biochem. 2024, 207, 108371. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Xing, P.; Zhu, M. Surface functionalization strategies of ROS-scavenging nanozymes for synergistic 578 therapy and efficient delivery. J. Mater. Chem. B 2025, 13, 7653–7667. [Google Scholar] [CrossRef]
- Zhu, S.; Nong, J.; Luo, G.; Li, Q.; Wang, F.; Jiang, D.; Zhao, X. Varied tolerance and different responses of five citrus rootstocks to acid stress by principle component analysis and orthogonal analysis. Sci. Hortic. 2021, 278, 109853. [Google Scholar] [CrossRef]
- Huang, X.Y.; Leng, J.L.; Liu, C.M.; Huang, K.F. Exogenous melatonin enhances the continuous cropping tolerance of Tartary buckwheat (Fagopyrum tataricum) by regulating the antioxidant defense system. Physiol. Plant. 2024, 176, e14524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Yang, C.Y.; Liu, S.X.; Xie, Z.L.; Zhang, J.X.; Ji, F.R. Alleviation of salt toxicity by melatonin supplementation in eggplant involves the up-regulation of ascorbate–glutathione and glyoxalase system. Sci. Hortic. 2024, 326, 112720. [Google Scholar] [CrossRef]
- Ji, X.Y.; Tang, J.L.; Zhang, J.P. Effects of salt stress on the morphology, growth and physiological parameters of Juglans microcarpa L. seedlings. Plants 2022, 11, 2381. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Guo, M.; Wang, X.S.; Guo, H.D.; Bai, S.Y.; Khan, A.; Wang, X.M.; Gao, Y.M.; Li, J.S. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Front. Plant Sci. 2022, 13, 949541. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, A.; Dubugnon, L.; Liechti, R.; Farmer, E.E. Jasmonate biochemical pathway. Sci. Signal. 2010, 3, cm3. [Google Scholar] [CrossRef]
- Zeng, G.H.; Gao, F.F.; Xie, R.; Lei, B.Y.; Wan, Z.W.; Zeng, Q.Q.; Zhang, Z.W. The ameliorative effects of exogenous methyl jasmonate on grapevines under drought stress: Reactive oxygen species, carbon and nitrogen metabolism. Sci. Hortic. 2024, 335, 113354. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, W.; Zhang, Y.; Zhang, X.; Lang, D.; Zhang, X. The roles of methyl jasmonate to stress in plants. Funct. Plant Biol. 2019, 46, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.L.; Na, X.; Yuan, J.M.; Zhang, X.F.; Li, Z.; Zhang, H.W.; Song, W.J.; Li, H.L.; Fan, Z.L.; Lv, Y.D.; et al. Comparative transcriptome analysis reveals photosynthesis divergence in Nicotiana tabacum. Ind. Crops Prod. 2025, 230, 121070. [Google Scholar] [CrossRef]
- Liang, H.; Shi, Q.; Li, X. Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress. Hortic. Plant J. 2024, 10, 461–472. [Google Scholar] [CrossRef]
- Li, A.; Wu, C.X.; Zheng, X.; Nie, R.N.; Tang, J.L.; Ji, X.Y.; Zhang, J.P. Physiological and biochemical responses of arbuscular mycorrhizal fungi in symbiosis with Juglans nigra L. seedlings to alleviate salt stress. Rhizosphere 2024, 31, 100928. [Google Scholar] [CrossRef]
- Nie, G.; Zhou, J.; Jiang, Y. Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application. BMC Plant Biol. 2022, 22, 68. [Google Scholar] [CrossRef]
- Fatma, M.; Iqbal, N.; Sehar, Z.; Alyemeni, M.N.; Kaushik, P.; Khan, N.A.; Ahmad, P. Methyl Jasmonate Protects the PS II System by Maintaining the Stability of Chloroplast D1 Protein and Accelerating Enzymatic Antioxidants in Heat-Stressed Wheat Plants. Antioxidants 2021, 10, 1216. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.F.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Lang, D.; Yong, J.; Zhang, X. Bacillus cereus G2 alleviate salt stress in Glycyrrhiza uralensis Fisch. by balancing the downstream branches of phenylpropanoids and activating flavonoid biosynthesis. Ecotoxicol. Environ. Saf. 2024, 273, 116129. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.L.; Abdullah; Shi, B.; Gao, Y.; Yang, X.; Xang, Z.M.; Zhang, T.T.; Han, L.F.; Tian, X.X. Transcriptomic and metabolomic investigations of methyl jasmonate-mediated enhancement of low temperature stress resistance in Cassia obtusifolia L. Gene Rep. 2024, 37, 102040. [Google Scholar] [CrossRef]
- Haduch, A.; Bromek, E.; Kuban, W.; Daniel, W.A. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martín, J.; Canales, F.J.; Tweed, J.; Lee, M.R.F.; Rubiales, D.; Gómez-Cadenas, A.; Arbona, V.; Mur, L.; Prats, E. Fatty Acid Profile Changes During Gradual Soil Water Depletion in Oats Suggests a Role for Jasmonates in Coping with Drought. Front. Plant Sci. 2018, 9, 1077. [Google Scholar] [CrossRef]
Treatment (1d) | Treatment (7d) | NaCl Concentration (mM) | MeJA Concentration (μM) |
---|---|---|---|
CK | TCK | 0 | 0 |
M | TM | 0 | 50 |
N | TN | 50 | 0 |
MN | TMN | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, R.; Wu, C.; Ji, X.; Li, A.; Zheng, X.; Tang, J.; Sun, L.; Su, Y.; Zhang, J. Methyl Jasmonate Orchestrates Multi-Pathway Antioxidant Defense to Enhance Salt Stress Tolerance in Walnut (Juglans regia L.). Antioxidants 2025, 14, 974. https://doi.org/10.3390/antiox14080974
Nie R, Wu C, Ji X, Li A, Zheng X, Tang J, Sun L, Su Y, Zhang J. Methyl Jasmonate Orchestrates Multi-Pathway Antioxidant Defense to Enhance Salt Stress Tolerance in Walnut (Juglans regia L.). Antioxidants. 2025; 14(8):974. https://doi.org/10.3390/antiox14080974
Chicago/Turabian StyleNie, Ruining, Chengxu Wu, Xinying Ji, Ao Li, Xu Zheng, Jiajia Tang, Leyuan Sun, Yi Su, and Junpei Zhang. 2025. "Methyl Jasmonate Orchestrates Multi-Pathway Antioxidant Defense to Enhance Salt Stress Tolerance in Walnut (Juglans regia L.)" Antioxidants 14, no. 8: 974. https://doi.org/10.3390/antiox14080974
APA StyleNie, R., Wu, C., Ji, X., Li, A., Zheng, X., Tang, J., Sun, L., Su, Y., & Zhang, J. (2025). Methyl Jasmonate Orchestrates Multi-Pathway Antioxidant Defense to Enhance Salt Stress Tolerance in Walnut (Juglans regia L.). Antioxidants, 14(8), 974. https://doi.org/10.3390/antiox14080974