Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (239)

Search Parameters:
Keywords = APP/PS1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5446 KB  
Article
TUDCA Ameliorates Cognitive Impairment in APP/PS1 Mice by Modulating the Microbiota–Gut–Brain Axis
by Minxia Zhan, Hui Chen, Xunzhong Fu, Shijin Tang, Xiaoxian Song, Henghua Li, Liancai Zhu and Bochu Wang
Curr. Issues Mol. Biol. 2026, 48(1), 87; https://doi.org/10.3390/cimb48010087 - 15 Jan 2026
Viewed by 170
Abstract
Tauroursodeoxycholic acid (TUDCA), a bile acid conjugate, has been suggested to improve cognition in models of Alzheimer’s disease (AD), although its underlying mechanisms remain unclear. This study aimed to evaluate the effects of TUDCA and its potential pathways in APP/PS1 mice. Behavioral tests, [...] Read more.
Tauroursodeoxycholic acid (TUDCA), a bile acid conjugate, has been suggested to improve cognition in models of Alzheimer’s disease (AD), although its underlying mechanisms remain unclear. This study aimed to evaluate the effects of TUDCA and its potential pathways in APP/PS1 mice. Behavioral tests, assessments of amyloid-β (Aβ) deposition, neuroinflammation, peripheral inflammatory responses, intestinal barrier integrity, and gut microbiota composition were performed, along with pseudo-sterile mouse experiments and fecal microbiota transplantation (FMT). The expression of genes related to the TLR4/NF-κB/NLRP3 pathway was also examined. TUDCA significantly ameliorated cognitive impairments, reduced Aβ accumulation, and suppressed inflammatory responses in both the central nervous system and peripheral tissues. It improved intestinal barrier function and reshaped gut microbial composition by reducing pro-inflammatory taxa. FMT demonstrated that TUDCA-modulated microbiota contributed to improved learning and memory in AD mice, whereas antibiotic-induced pseudo-sterility indicated that TUDCA also exerted cognitive benefits independent of gut flora. Moreover, TUDCA inhibited the activation of the TLR4/NF-κB/NLRP3 pathway. In conclusion, TUDCA alleviates AD-related cognitive deficits partly through modulation of the microbiota–gut–brain axis while also acting via microbiota-independent mechanisms, supporting its potential as a promising therapeutic strategy for AD. Full article
Show Figures

Graphical abstract

17 pages, 3195 KB  
Article
Aberrant Cell Cycle Gene Expression in a Transgenic Mouse Model of Alzheimer’s Disease
by Marika Lanza, Michele Scuruchi, Alessandra Saitta, Rossella Basilotta, Federica Aliquò, Giovanna Casili, Emanuela Esposito, Agata Copani, Salvatore Oddo and Antonella Caccamo
Cells 2026, 15(2), 132; https://doi.org/10.3390/cells15020132 - 12 Jan 2026
Viewed by 475
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a disorder that extends beyond amyloid-β (Aβ) and tau pathology. To this end, growing evidence suggests that aberrant neuronal cell cycle re-entry (CCR) may contribute to neurodegeneration. To investigate this mechanism, we profiled the expression of [...] Read more.
Alzheimer’s disease (AD) is increasingly recognized as a disorder that extends beyond amyloid-β (Aβ) and tau pathology. To this end, growing evidence suggests that aberrant neuronal cell cycle re-entry (CCR) may contribute to neurodegeneration. To investigate this mechanism, we profiled the expression of 84 cell cycle-related genes in the brains of aged APP/PS1 mice, a widely used transgenic model of AD, and compared them with age-matched non-transgenic littermates. Our analysis revealed 32 differentially expressed genes (DEGs), 8 of which exhibited significant changes (fold change > 2, p < 0.05). Several of these DEGs, including CDC7 and CCNC, displayed consistent dysregulation in human AD brains as assessed using the AMP-AD knowledge portal, supporting their translational relevance. Furthermore, integration with miRNA prediction analyses identified candidate post-transcriptional regulators of these DEGs, highlighting novel layers of regulation. Collectively, our results provide the first systematic overview of cell cycle gene dysregulation in aged APP/PS1 mice, establish cross-species concordance with human AD, and propose miRNA–gene interactions as potential contributors to neuronal vulnerability. These findings underscore the importance of cell cycle pathways in AD pathogenesis and point to new avenues for therapeutic exploration. Full article
Show Figures

Figure 1

15 pages, 505 KB  
Article
DonnaRosa Project: Exploring Informal Communication Practices Among Breast Cancer Specialists
by Antonella Ferro, Flavia Atzori, Catia Angiolini, Michela Bortolin, Laura Cortesi, Alessandra Fabi, Elena Fiorio, Ornella Garrone, Lorenzo Gianni, Monica Giordano, Laura Merlini, Marta Mion, Luca Moscetti, Donata Sartori, Maria Giuseppa Sarobba, Simon Spazzapan, Roberto Lusardi and Enrico Maria Piras
Curr. Oncol. 2025, 32(12), 704; https://doi.org/10.3390/curroncol32120704 - 14 Dec 2025
Viewed by 368
Abstract
Background: Healthcare communication often relies on complex digital infrastructures, yet clinicians increasingly adopt general-purpose Instant Messaging Apps (IMAs) such as WhatsApp® to meet unmet needs. DonnaRosa, an Italian community of breast cancer specialists founded in 2017, is a Community of Practice [...] Read more.
Background: Healthcare communication often relies on complex digital infrastructures, yet clinicians increasingly adopt general-purpose Instant Messaging Apps (IMAs) such as WhatsApp® to meet unmet needs. DonnaRosa, an Italian community of breast cancer specialists founded in 2017, is a Community of Practice (CoP), where experts exchange second opinions, guidelines, and trial opportunities. This paper examines its origins, practices, and implications. Methods: A mixed-methods design was applied: (1) qualitative analysis of chat logs to identify interaction patterns and rules; (2) a 2024 online survey of 54 members (92.5% response rate) exploring demographics, usage, and perceived value; (3) ongoing semi-structured interviews with founders and participants to reconstruct history, recruitment, and professional impact. Results: The group has grown through personal invitations, creating a friendly network of oncologists. Communication is concise, colloquial, and collegial. Activities focus on case discussions, reassurance, interpretation of guidelines, and exchange of research opportunities. This article presents data from an online survey conducted in 2024, showing that the group is widely used for second opinions, often consulted even on weekends and holidays, and perceived as a source of professional support and learning. Members report that participation frequently changes or refines their clinical judgement, especially when guidelines are incomplete or ambiguous. The community also promotes resilience, reduces professional isolation, supports informal collaboration in research projects, and encourages interaction on organisational and healthcare management issues. Conclusions:DonnaRosa illustrates how informal IMAs can evolve into robust infrastructures of care and professional solidarity, complementing formal systems. In the era of artificial intelligence, CoPs like DonnaRosa may become even more relevant: AI tools, especially large language models, can accelerate literature retrieval and data synthesis, while the CoP provides the critical, experience-based interpretation needed for safe and meaningful application. Such a dual infrastructure—technological and human—offers a promising path for oncology, where complexity requires both computational breadth and the depth of expert clinical judgement. Taken together, these findings and the evolving role of AI in clinical communication underscore the need for oncology societies to develop governance frameworks that ensure the safe, accountable, and clinically appropriate use of instant-messaging tools in professional practice. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

18 pages, 7426 KB  
Article
Luteolin in Safflower Leaves Suppresses Microglial Inflammation Through FOXO3-Mediated Trem2 Transcription
by Tiantian Zhang, Shuangxi Zhang, Jiayang Ma, Dmitrii Atiakshin, Shujun Han, Mami Noda, Midori Hiramatsu, Jiankang Liu, Yunhua Peng and Jiangang Long
Antioxidants 2025, 14(12), 1495; https://doi.org/10.3390/antiox14121495 - 12 Dec 2025
Viewed by 732
Abstract
Neuroinflammation driven by microglial activation is a hallmark of Alzheimer’s disease (AD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial inflammation, yet strategies to modulate its expression remain limited. Safflower leaves, a vegetable rich in flavonoids—particularly luteolin—were [...] Read more.
Neuroinflammation driven by microglial activation is a hallmark of Alzheimer’s disease (AD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial inflammation, yet strategies to modulate its expression remain limited. Safflower leaves, a vegetable rich in flavonoids—particularly luteolin—were previously shown to attenuate neuroinflammation, reduce oxidative stress, and ameliorate cognitive impairment in APP/PS1 mice. Here, we demonstrated that safflower leaves inhibit microglial inflammation and upregulate TREM2 in APP/PS1 mice. Luteolin, the major active flavonoid in safflower leaves, exerted anti-inflammatory effects in lipopolysaccharides (LPS)-activated microglia. Mechanistically, luteolin enhanced Trem2 transcription by activating forkhead box protein O3 (FOXO3), a novel transcriptional regulator of Trem2 identified through promoter analysis. FOXO3 binding to the Trem2 promoter was essential for this regulation, and luteolin further promoted FOXO3 nuclear translocation. Crucially, Trem2 knockdown attenuated luteolin’s anti-inflammatory effects, confirming TREM2 as a key mediator. Overall, our study reveals the FOXO3-TREM2 axis as a potential therapeutic target for neuroinflammation and highlights luteolin present in safflower leaves as a candidate dietary intervention for AD, providing new mechanistic insights into the anti-inflammatory activity of this natural antioxidant. Full article
Show Figures

Graphical abstract

22 pages, 5264 KB  
Article
RXR-Mediated Remodeling of Transcriptional and Chromatin Landscapes in APP Mouse Brain: Insights from Integrated Single-Cell RNA and ATAC Profiling
by Yi Lu, Xuebao Wang, Carolina Saibro-Girardi, Nicholas Francis Fitz, Radosveta Koldamova and Iliya Lefterov
Cells 2025, 14(24), 1970; https://doi.org/10.3390/cells14241970 - 11 Dec 2025
Viewed by 624
Abstract
Ligand-activated Retinoid X Receptors (RXRs) regulate gene networks essential for neural development, neuroinflammation, and metabolism. Understanding how RXR activation influences chromatin architecture and gene expression may reveal mechanisms relevant to neurodegenerative diseases. We used Bexarotene-treated APP/PS1ΔE9 mice to study RXR-mediated regulatory mechanisms by [...] Read more.
Ligand-activated Retinoid X Receptors (RXRs) regulate gene networks essential for neural development, neuroinflammation, and metabolism. Understanding how RXR activation influences chromatin architecture and gene expression may reveal mechanisms relevant to neurodegenerative diseases. We used Bexarotene-treated APP/PS1ΔE9 mice to study RXR-mediated regulatory mechanisms by integrating single-nucleus ATAC-seq (snATAC-seq) with single-cell RNA-seq (scRNA-seq) and validating differentially accessible chromatin peaks using RXR ChIP-seq. Transcription factor (TF) footprinting analysis mapped regulatory networks activated by ligand-bound RXR. Our integrated analyses revealed a multilayered transcriptional cascade initiated by RXR signaling. We identified RXR-centered regulatory circuits involving heterodimer activation, upregulation of downstream TFs, and induction of metabolic pathways relevant to neural function. Detailed analysis of neuronal TF networks revealed that Bexarotene modulates RXR’s role through existing regulatory scaffolds rather than creating new ones. This study demonstrates that combining scRNA-seq, snATAC-seq, and ChIP-seq enables comprehensive analysis of RXR-mediated transcriptional regulation. RXR activation orchestrates cell-type-specific chromatin remodeling of gene networks controlling neuroinflammation, lipid metabolism, and synaptic signaling, providing mechanistic insights into RXR-dependent transcriptional programs in Alzheimer’s disease pathology. Full article
Show Figures

Figure 1

21 pages, 18536 KB  
Article
PPARα-Mediated Fatty Acid Catabolism in Astrocytes Was Involved in Improvement of Cognitive Dysfunction by Phlorizin in APP/PS1 Mice
by Yan Fu, Xuya Zhang, Lingling Li, Hong Jiang, Qiaozhi Ren, Tianxing Yi, Yali Zhang and Yi Lu
Antioxidants 2025, 14(11), 1321; https://doi.org/10.3390/antiox14111321 - 31 Oct 2025
Viewed by 996
Abstract
Central lipid metabolism disorders are crucial for the development of Alzheimer’s disease (AD). Phlorizin (PHZ) improved lipid metabolism abnormalities in AD nematodes, but its mechanism of action in improving AD-related symptoms and whether it can alleviate AD cognitive impairment remain unclear. To elucidate [...] Read more.
Central lipid metabolism disorders are crucial for the development of Alzheimer’s disease (AD). Phlorizin (PHZ) improved lipid metabolism abnormalities in AD nematodes, but its mechanism of action in improving AD-related symptoms and whether it can alleviate AD cognitive impairment remain unclear. To elucidate the effects and mechanisms of PHZ on lipid metabolism disorders in an AD model, gavage administration of PHZ for 8 weeks improved cognitive dysfunction and lipid disorders in APPswe/PSEN1dE9 (APP/PS1) mice. Concurrently, in astrocytes induced by palmitic acid (PA)- mediated lipid metabolic disorder, PHZ treatment improved astrocytic lipid accumulation by upregulating the target peroxisome proliferator-activated receptor α (PPARα) and its downstream pathways, thereby promoting astrocytic fatty acid oxidation. We validated PHZ’s strong in vitro binding affinity with PPARα. Co-culture systems of lipid-metabolically disordered astrocytes and neurons further demonstrated that PHZ significantly improved neuronal cell viability and reduced intracellular lipid accumulation, thereby decreasing the expression of enzymes associated with β-amyloid protein (Aβ) production. This study demonstrates that gavage administration of PHZ for 2 months improves cognitive deficits and pathological markers in AD mice. Furthermore, at the cellular level, PHZ may exert its effects by enhancing astrocytic lipid metabolism, thereby preventing neuronal lipotoxicity and mitigating AD progression. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 12979 KB  
Article
Pathological and Structural Alterations of the Visual Pathway in APP/PS1 Mice: A Spatiotemporal Analysis
by Jingan Chen, Yang Xia, Ke Chen and Dezhong Yao
Diagnostics 2025, 15(21), 2768; https://doi.org/10.3390/diagnostics15212768 - 31 Oct 2025
Viewed by 958
Abstract
Background/Objectives: Visual dysfunction emerges during the mild cognitive impairment stage of early Alzheimer’s disease (AD). While previous studies have primarily focused on retinal pathology, the early pathological progression across central nodes of the visual pathway remains inadequately characterized. This study examined regional [...] Read more.
Background/Objectives: Visual dysfunction emerges during the mild cognitive impairment stage of early Alzheimer’s disease (AD). While previous studies have primarily focused on retinal pathology, the early pathological progression across central nodes of the visual pathway remains inadequately characterized. This study examined regional pathological and structural alterations throughout the visual pathway at different disease stages in APP/PS1 transgenic mice aged 3, 6, and 9 months. Methods: Cognitive function was first assessed using novel object recognition and Y-maze tests to stage disease progression. Subsequently, Histological staining was employed to systematically analyze pathological features in the retina, lateral geniculate nucleus (LGN), and primary visual cortex (V1). Evaluated parameters encompassed β-amyloid (Aβ) deposition levels, microglial activation status, total neuronal counts, parvalbumin (PV)-positive neuron numbers, and tissue thickness measurements of the retina and V1. Results: At 6 months, mice exhibited an early symptomatic phenotype with selective spatial working memory deficits while long-term memory remained intact. Pathological analysis revealed concurrent Aβ deposition and microglial activation in V1, retina, and hippocampus by 6 months, whereas comparable LGN changes manifested only at 9 months, demonstrating regional heterogeneity in disease progression. V1 neuronal populations remained stable through 6 months but showed significant reduction by 9 months, though PV-positive neurons were selectively preserved. The LGN exhibited no neuronal loss even at 9 months. Gross structural thickness of both retina and V1 remained unchanged across all timepoints. Conclusions: These findings demonstrate that early visual system pathology in this AD model extends beyond the retina. The primary visual cortex exhibits early pathological changes (Aβ deposition and neuroinflammation) concurrent with hippocampal involvement, progressing to selective neuronal loss in later stages. The severity and selectivity of V1 pathology surpass those observed in other visual pathway nodes, including the LGN. Thus, V1 could represent not merely an affected region but a promising site for elucidating early cortical AD mechanisms and developing novel diagnostic biomarkers. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

17 pages, 5573 KB  
Article
Effects of Dietary Vitamin D Levels on Markers Related to Amyloidogenesis and Neuroinflammation in db/db Mice
by Jisu Kim, Dain Wi, Sung Nim Han and Chan Yoon Park
Nutrients 2025, 17(21), 3339; https://doi.org/10.3390/nu17213339 - 24 Oct 2025
Viewed by 817
Abstract
Background/Objectives: Low vitamin D levels are associated with an elevated risk of Alzheimer’s disease (AD). Given the rising prevalence of diabetes and its association with AD, this study investigated whether vitamin D modulates amyloidogenesis and inflammation in the brains of diabetic mice. Methods: [...] Read more.
Background/Objectives: Low vitamin D levels are associated with an elevated risk of Alzheimer’s disease (AD). Given the rising prevalence of diabetes and its association with AD, this study investigated whether vitamin D modulates amyloidogenesis and inflammation in the brains of diabetic mice. Methods: Five-week-old male C57BLKS/J-m+/m+(con) and C57BLKS/J-db/db (db) mice received diets with low or high vitamin D (LVD or HVD) for 8 weeks. Hippocampal neuronal morphology was assessed using H&E and Nissl staining, and Aβ levels, along with the mRNA expression of genes related to amyloidogenesis, amyloid degradation, inflammation, antioxidation, and neurotrophic factors, were measured in the hippocampus and prefrontal cortex (PFC). Results: High dietary vitamin D levels attenuated neuronal necrosis in db/db mice. Hippocampal App and Bace1 expression levels were higher in db/db mice; however, amyloidogenic gene (App, Bace1, Ps1) expression levels in both the hippocampus and PFC were significantly lower in db_HVD group compared with those in db_LVD group (all p < 0.05). Among control mice, PFC App and Ps1 expression levels were lower in con_HVD group than in con_LVD group. Nonetheless, Aβ42 protein levels were not affected by either diabetes or dietary vitamin D levels. Furthermore, lower hippocampal Iκbα and PFC Mcp-1 expression levels in db_HVD group than those in db_LVD group were observed, both upregulated in diabetic mice. Amyloid degradation-related gene or Vdr expression was not altered by dietary vitamin D levels. Conclusions: These findings suggest that vitamin D may exert neuroprotective effects on the hippocampus and PFC in diabetic mice by mitigating neuronal damage and suppressing amyloidogenic and inflammatory gene expression. Full article
(This article belongs to the Special Issue Vitamin D and Age-Related Diseases)
Show Figures

Graphical abstract

19 pages, 3243 KB  
Article
PF-04691502, a PI3K/mTOR Dual Inhibitor, Ameliorates AD-like Pathology in a Mouse Model of AD
by Marika Lanza, Rossella Basilotta, Antonella Caccamo, Giovanna Casili, Alberto Repici, Salvatore Oddo and Emanuela Esposito
Cells 2025, 14(18), 1474; https://doi.org/10.3390/cells14181474 - 21 Sep 2025
Viewed by 1340
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that significantly impacts the lives of patients and their families. The pathological features of AD include the accumulation of amyloid-β (Aβ) and Tau, which disrupt neuronal function and communication, ultimately leading to neuronal loss and brain [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder that significantly impacts the lives of patients and their families. The pathological features of AD include the accumulation of amyloid-β (Aβ) and Tau, which disrupt neuronal function and communication, ultimately leading to neuronal loss and brain atrophy. Efforts to understand the molecular mechanisms underlying these pathological changes have led to advancements in diagnostic techniques and potential therapeutic interventions. However, the complexity of AD necessitates further research to develop more effective treatments and, ideally, preventive measures. Extensive research suggests that diminishing mTOR signaling increases lifespan and health span across various species. Increased PI3K/mTOR signaling has been linked to the progression of AD pathology, leading to neuronal degeneration and impairments in cognitive function. In this study, we explored the therapeutic potential of PF-04691502, a dual PI3K/mTOR inhibitor, in Alzheimer’s disease (AD)-like pathology using male and female B6.Cg-Tg(APPswe, PSEN1dE9)85Dbo/Mmjax mice (APP/PS1), a well-established transgenic model of AD. Eighteen-month-old APP/PS1 and wild-type mice received oral administration of PF-04691502 at a dose of 1 mg/kg for 12 weeks. Following the treatment period, spatial learning and memory were evaluated using the Morris water maze. Subsequently, the mice brains were collected for neuropathological and biochemical assessments. Our findings showed that PF-04691502 enhanced cognitive performance in APP/PS1 mice and significantly reduced insoluble Aβ accumulation in the brain. Mechanistically, these effects were associated with enhanced autophagy induction. Treatment with PF-04691502 increased the LC3-II/LC3-I ratio, upregulated Beclin-1, and elevated LAMP-2 levels, indicative of stimulated autophagosome formation and lysosomal activity. Overall, these preclinical results suggest that PF-04691502 holds promise as a potential therapeutic agent for AD and other aging-related neurodegenerative diseases involving mTOR pathway dysregulation. Full article
(This article belongs to the Special Issue Ageing and Neurodegenerative Diseases, Second Edition)
Show Figures

Graphical abstract

25 pages, 2729 KB  
Article
Therapeutic Effects of Neuro-Cells on Amyloid Pathology, BDNF Levels, and Insulin Signalling in APPswe/PSd1E9 Mice
by Johannes P. J. M. de Munter, Andrey Tsoy, Kseniia Sitdikova, Erik Ch. Wolters, Kirill Chaprov, Konstantin B. Yenkoyan, Hamlet Torosyan, Sholpan Askarova, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(16), 1293; https://doi.org/10.3390/cells14161293 - 20 Aug 2025
Cited by 1 | Viewed by 1520
Abstract
Stem cell therapies, including mesenchymal (MSCs) and haematopoietic stem cells (HSCs), have shown promise in neurodegenerative diseases. Here, we investigated the therapeutic effects of a defined combination of unmanipulated MSCs and CD34+ HSCs, termed Neuro-Cells (NC), in a murine model of Alzheimer’s [...] Read more.
Stem cell therapies, including mesenchymal (MSCs) and haematopoietic stem cells (HSCs), have shown promise in neurodegenerative diseases. Here, we investigated the therapeutic effects of a defined combination of unmanipulated MSCs and CD34+ HSCs, termed Neuro-Cells (NC), in a murine model of Alzheimer’s disease (AD), the APPswe/PS1dE9 mouse. At 12 months of age, mice received intracisternal injections of NC (1.39 × 106 MSCs + 5 × 105 HSCs) or vehicle. After 45 days, behavioural testing, immunohistochemical analyses of amyloid plaque density (APD), and cortical gene expression profiling were conducted. NC-treated APP/PS1 mice exhibited preserved object recognition memory and reduced anxiety-like behaviours, contrasting with deficits observed in untreated transgenic controls. Histologically, NC treatment significantly reduced the density of small amyloid plaques (<50 μm2) in the hippocampus and thalamus, and total plaque burden in the thalamus. Gene expression analysis revealed that NC treatment normalised or reversed disease-associated changes in insulin receptor (IR) signalling and neurotrophic pathways. Specifically, NC increased expression of Bdnf, Irs2, and Pgc-1α, while attenuating aberrant upregulation of Insr, Igf1r, and markers of ageing and AD-related pathology (Sirt1, Gdf15, Arc, Egr1, Cldn5). These findings indicate that NC therapy mitigates behavioural and molecular hallmarks of AD, potentially via restoration of BDNF and insulin receptor-mediated signalling. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

18 pages, 3414 KB  
Article
Identification of Key Genes and Pathways Associated with Frailty and Exercise Effects Using a Network and Evolutionary Approach
by Kyoko Naito, Hiromichi Akahori, Yoshinori Muto and Tomoyoshi Terada
Genes 2025, 16(8), 976; https://doi.org/10.3390/genes16080976 - 19 Aug 2025
Viewed by 1079
Abstract
Background: Frailty is an aging-associated syndrome involving a loss of physiological reserve and function, with decreased ability to recover from physical and psychosocial stress. However, the etiology and pathogenesis of frailty remain largely unknown. Aim: This study aimed to investigate key genes involved [...] Read more.
Background: Frailty is an aging-associated syndrome involving a loss of physiological reserve and function, with decreased ability to recover from physical and psychosocial stress. However, the etiology and pathogenesis of frailty remain largely unknown. Aim: This study aimed to investigate key genes involved in frailty pathogenesis, exercise effects, and their contributions. Methods: We performed a weighted gene co-expression network analysis using a microarray dataset. By using the positive selection (PS), human accelerated region (HAR), and aging gene sets, we identified key genes for frailty and exercise-related genes. Results: We identified magenta and pink modules that have the most significant enrichments for the evolutionally elaborated genes. A functional enrichment analysis (FEA) revealed that genes related to redox-process regulation and extracellular-matrix organization were enriched in magenta and pink modules, respectively. We observed that six of the evolutionarily imprinted genes in the modules (MEOX2, PLCB4, LPAR6, SH3KBP1, APP and SPON1) were highly connected and showed signs of hub properties, which might play crucial roles in frailty- and exercise-related mechanisms. Conclusions: Further investigation into the functions of the identified modules and their member genes could aid in identifying diagnostic biomarkers and therapeutic targets for frailty. Full article
(This article belongs to the Special Issue Genetics and Genomics of Heritable Pediatric Disorders)
Show Figures

Figure 1

22 pages, 1830 KB  
Review
Animal Models for the Study of Neurological Diseases and Their Link to Sleep
by Carmen Rubio, Emiliano González-Sánchez, Ángel Lee, Alexis Ponce-Juárez, Norma Serrano-García and Moisés Rubio-Osornio
Biomedicines 2025, 13(8), 2005; https://doi.org/10.3390/biomedicines13082005 - 18 Aug 2025
Viewed by 2686
Abstract
Sleep is a vital biological function governed by neuronal networks in the brainstem, hypothalamus, and thalamus. Disruptions in these circuits contribute to the sleep disturbances observed in neurodegenerative disorders, including Parkinson’s disease, epilepsy, Huntington’s disease, and Alzheimer’s disease. Oxidative stress, mitochondrial dysfunction, neuroinflammation, [...] Read more.
Sleep is a vital biological function governed by neuronal networks in the brainstem, hypothalamus, and thalamus. Disruptions in these circuits contribute to the sleep disturbances observed in neurodegenerative disorders, including Parkinson’s disease, epilepsy, Huntington’s disease, and Alzheimer’s disease. Oxidative stress, mitochondrial dysfunction, neuroinflammation, and abnormal protein accumulation adversely affect sleep architecture in these conditions. The interaction among these pathological processes is believed to modify sleep-regulating circuits, consequently worsening clinical symptoms. This review examines the cellular and molecular mechanisms that impair sleep regulation in experimental models of these four disorders, emphasizing how oxidative stress, neuroinflammation and synaptic dysfunction contribute to sleep fragmentation and alterations in rapid eye movement (REM) sleep and slow-wave sleep (SWS) phases. In Parkinson’s disease models (6-OHDA and MPTP), dopaminergic degeneration and damage to sleep-regulating nuclei result in daytime somnolence and disrupted sleep patterns. Epilepsy models (kainate, pentylenetetrazole, and kindling) provoke hyperexcitability and oxidative damage, compromising both REM and SWS. Huntington’s disease models (R6/2 and 3-NP) demonstrate reduced sleep duration, circadian irregularities, and oxidative damage in the hypothalamus and suprachiasmatic nucleus. In Alzheimer’s disease (AD) models (APP/PS1, 3xTg-AD, and Tg2576), early sleep problems include diminished SWS and REM sleep, increased awakenings, and circadian rhythm disruption. These changes correlate with β-amyloid and tau deposition, glial activation, chronic inflammation, and mitochondrial damage in the hypothalamus, hippocampus, and prefrontal cortex. Sleep disturbances across these neurodegenerative disease models share common underlying mechanisms like oxidative stress, neuroinflammation, and mitochondrial dysfunction. Understanding these pathways may reveal therapeutic targets to improve both motor symptoms and sleep quality in neurodegenerative disorders. Full article
(This article belongs to the Special Issue Animal Models for Neurological Disease Research)
Show Figures

Figure 1

15 pages, 2248 KB  
Article
Effects of Treadmill Exercise on Gut Microbiota in Alzheimer’s Disease Model Mice and Wild-Type Mice
by Zhe Zhao, Xingqing Wu, Wenfeng Liu, Lan Zheng and Changfa Tang
Microorganisms 2025, 13(8), 1765; https://doi.org/10.3390/microorganisms13081765 - 29 Jul 2025
Viewed by 1157
Abstract
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through [...] Read more.
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through this study, we aimed to investigate the differences in the diversity of gut microorganisms between AD model mice and wild-type mice and the effect that treadmill exercise has on the composition of the gut microbiota in both types of mice. C57BL/6 wild-type mice were randomly divided into a sedentary control group (WTC) and an exercise group (WTE); APP/PS1 double transgenic mice were also randomly divided into a sedentary control group (ADC) and an exercise group (ADE). After the control group remained sedentary for 12 weeks and a 12-week treadmill exercise intervention was adopted for the exercise group, the rectal contents were collected so that they could undergo V3-V4 16S rDNA sequencing, and a comparative analysis of the microbial composition and diversity was also performed. The alpha diversity of the gut microbiota in AD mice was lower than that in wild-type mice, but exercise increased the gut microbial diversity in both types of mice. At the phylum level, the dominant microorganisms in all four groups of mice were Bacteroidetes and Firmicutes. There was an increase in the Bacteroidetes phylum in AD mice. Treadmill exercise reduced the abundance of Bacteroidetes in both groups of mice, whereas the abundance of Firmicutes increased. At the genus level, Muribaculaceae, the Lachnospiraceae_NK4A136_group, Alloprevotella, and Alistipes were in relatively high abundance. Muribaculaceae and Alloprevotella were in greater abundance in AD mice than in wild-type mice, but both decreased after treadmill exercise. Through performing linear discriminant analysis effect size (LEfSe), we found that the dominant strains in AD mice were Campilobacterota, Helicobacteraceae, Escherichia–Shigella, and other malignant bacteria, whereas exercise resulted in an increase in probiotics among the dominant strains in both types of mice. Although gut microbial diversity decreases and malignant bacteria increase in AD mice, treadmill exercise can increase gut microbial diversity and lead to the development of dominant strains of probiotics in both types of mice. These findings provide a basis for applying exercise as a treatment for AD. Full article
Show Figures

Figure 1

8 pages, 206 KB  
Comment
Gender-Dependent Modulation of Alzheimer’s Disease by Brain Ischemia. Comment on Lohkamp et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333
by Ryszard Pluta
Life 2025, 15(7), 1146; https://doi.org/10.3390/life15071146 - 21 Jul 2025
Cited by 2 | Viewed by 943
Abstract
This comment focuses on the contribution of experimental brain ischemia to the overwhelming incidence of Alzheimer’s disease in women as presented by Lohkamp et al. in Life 2025, 15, 333. The authors showed that in Alzheimer’s disease and ischemic stroke there are sex-dependent [...] Read more.
This comment focuses on the contribution of experimental brain ischemia to the overwhelming incidence of Alzheimer’s disease in women as presented by Lohkamp et al. in Life 2025, 15, 333. The authors showed that in Alzheimer’s disease and ischemic stroke there are sex-dependent adaptations in the form of cross-links and vice versa. It was emphasized that the high longevity of women in itself does not explain the mechanisms underlying the biological differences between the sexes causing a female predominance in the development of Alzheimer’s disease. Differences were demonstrated between males and females: female APP/PS1 mice had greater amyloid deposition, hyperactivity, lower body weight, and reduced cerebral blood flow, as well as less neuroinflammation, which the authors suggest may have potential neuroprotection. It should be noted that some of the information presented in the article by Lohkamp et al. raises more questions than answers. Therefore, future studies should consider, for example, studies using single-cell technologies that can provide insight into the timing and sequence of cellular dysfunctions across sexes and analyze the continuity of changes over time, starting from short-term observations of a few days and ending with long-term observations of a year or more, to assess the continuity and differentiation of changes. Full article
(This article belongs to the Section Medical Research)
27 pages, 3139 KB  
Article
Distinctive Effects of Fullerene C60 and Fullerenol C60(OH)24 Nanoparticles on Histological, Molecular and Behavioral Hallmarks of Alzheimer’s Disease in APPswe/PS1E9 Mice
by Sholpan Askarova, Kseniia Sitdikova, Aliya Kassenova, Kirill Chaprov, Evgeniy Svirin, Andrey Tsoy, Johannes de Munter, Anna Gorlova, Aleksandr Litavrin, Aleksei Deikin, Andrey Nedorubov, Nurbol Appazov, Allan Kalueff, Anton Chernopiatko and Tatyana Strekalova
Antioxidants 2025, 14(7), 834; https://doi.org/10.3390/antiox14070834 - 8 Jul 2025
Cited by 1 | Viewed by 3611
Abstract
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity [...] Read more.
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity AD models. Female APPswe/PS1E9 (APP/PS1) mice and their wild-type (WT) littermates were orally administered with fullerene C60 (0.1 mg/kg/day) or fullerenol C60(OH)24 (0.15 mg/kg/day) for 10 months starting at 2 months of age. Behavioral assessments were performed at 12 months of age. Amyloid plaque density and size were analyzed in the brain regions using Congo red staining. The expression of genes related to inflammation and plasticity was examined, and an in vitro assay was used to test the toxicity of fullerenol and its effect on amyloid β peptide 42 (Aβ42)-induced reactive oxygen species (ROS) production. Fullerenol reduced the maximum plaque size in the cortex and hippocampus, decreased the small plaque density in the hippocampus and thalamus, and prevented an increase in glial fibrillary acidic protein (GFAP) positive cell density in the mutants. Both treatments improved cognitive and emotional behaviors and reduced Il1β and increased Sirt1 expression. In vitro, fullerenol was non-toxic across a range of concentrations and reduced Aβ42-induced ROS production in brain endothelial cells and astrocytes. Long-term administration of fullerene or fullerenol improved behavioral and molecular markers of AD in APP/PS1 mice, with fullerenol showing additional benefits in reducing amyloid burden. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

Back to TopTop