Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,018)

Search Parameters:
Keywords = ANS fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3151 KiB  
Article
Towards a Consensus for the Analysis and Exchange of TFA as a Counterion in Synthetic Peptides and Its Influence on Membrane Permeation
by Vanessa Erckes, Alessandro Streuli, Laura Chamera Rendueles, Stefanie Dorothea Krämer and Christian Steuer
Pharmaceuticals 2025, 18(8), 1163; https://doi.org/10.3390/ph18081163 - 5 Aug 2025
Abstract
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as [...] Read more.
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as a cleavage agent and ion-pairing reagent, respectively, resulting in peptides being obtained as TFA salts. Although TFA has excellent properties for peptide production, numerous studies highlight the negative impact of using peptides from TFA salts in biological assays. Methods: Investigated peptides were synthesized via SPPS and the TFA counterion was exchanged for Cl via freeze-drying in different concentrations of HCl. Detection and quantification of residual TFA were carried out via FT-IR, 19F-NMR, and HPLC using an evaporative light-scattering detector (ELSD). A liposomal fluorescence assay was used to test for the influence of the counterion on the peptides’ passive membrane permeability. Results: All TFA detection methods were successfully validated according to ICH guidelines. TFA removal with 10 mM HCl was determined to be the optimal condition. No impact on peptide purity was observed at all HCl concentrations. Influences on permeability coefficients depending on peptide sequence and salt form were found. Conclusions: This study presents a systematic investigation of the removal of TFA counterions from synthetic peptides and their replacement with Cl counterions. Detected counterion contents were used to understand the impact of sequence differences, especially positive charges, on the amount and potential localization of counterions. Our findings emphasize the importance of counterion quantification and specification in assays with synthetic peptides. Full article
Show Figures

Graphical abstract

17 pages, 1246 KiB  
Article
Simultaneous Determination of Reducing Sugars in Honey by Capillary Zone Electrophoresis with LIF Detection Using Low-Toxicity 2-Picoline Borane and APTS for Pre-Capillary Derivatization
by Joanna Bulesowska, Michał Pieckowski, Piotr Kowalski, Tomasz Bączek and Ilona Olędzka
Int. J. Mol. Sci. 2025, 26(15), 7569; https://doi.org/10.3390/ijms26157569 (registering DOI) - 5 Aug 2025
Abstract
This study aimed to develop a reliable method for profiling reducing sugars in honey using capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF). Reducing sugars were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in the presence of 2-picoline borane, a safer alternative to sodium cyanoborohydride. [...] Read more.
This study aimed to develop a reliable method for profiling reducing sugars in honey using capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF). Reducing sugars were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in the presence of 2-picoline borane, a safer alternative to sodium cyanoborohydride. Key parameters influencing the derivatization efficiency—temperature, pH, incubation time, and reagent concentrations—were systematically optimized. The highest labeling efficiency for glucose, mannose, and maltose was achieved at 50 °C in 0.5 M citric acid with 0.1 M APTS, while fructose showed low reactivity due to its ketose structure. To reduce the background signal from excess reagents, three cleanup strategies were evaluated. Liquid–liquid extraction with ethyl acetate effectively removed unreacted APTS without significant analyte loss, whereas solid-phase extraction and microextraction caused substantial losses of hydrophilic sugars. The method showed good linearity (0.5–10 mM, R2 > 0.994), precision (RSD 0.81–13.73%), and accuracy (recoveries 93.47–119.75%). Stability studies indicated that sugar standards should be stored at –20 °C. The method was successfully applied to the analysis of four nectar honeys—rapeseed, acacia, phacelia, and dandelion—revealing differences in glucose and fructose content related to botanical origin. The results confirm the suitability of CZE-LIF for sensitive and selective carbohydrate analyses in complex food matrices. Full article
Show Figures

Figure 1

10 pages, 5588 KiB  
Article
Anti-Viral Activity of Conessine Against Influenza A Virus
by Won-Kyung Cho and Jin Yeul Ma
Int. J. Mol. Sci. 2025, 26(15), 7572; https://doi.org/10.3390/ijms26157572 (registering DOI) - 5 Aug 2025
Abstract
Conessine is a steroidal alkaloid found in many plants. The pharmacological efficacies of conessine on various ailments, including antiviral effects against Zika, Herpes, and Coronavirus, were reported. However, the effect of conessine on the influenza virus was still unknown. In this study, conessine [...] Read more.
Conessine is a steroidal alkaloid found in many plants. The pharmacological efficacies of conessine on various ailments, including antiviral effects against Zika, Herpes, and Coronavirus, were reported. However, the effect of conessine on the influenza virus was still unknown. In this study, conessine exhibited a strong inhibitory effect against influenza A virus (IAV) infection. We examined the effect of conessine on IAV using green fluorescent protein (GFP)-expressing Influenza A/PR8/34 and wild-type A/PR8/34. The fluorescence-activated cell sorting, fluorescence microscopy, cytopathic effect analysis, and plaque assay demonstrated that conessine significantly inhibits IAV infection. Consistently, immunofluorescence results showed that conessine strongly reduces the expression of IAV proteins. The time-of-drug-addition assay revealed that conessine could affect the viral attachment and entry into the cells upon IAV infection. Further, conessine eradicated the virus before binding to the cells in the early stage of viral infection. Our results suggest that conessine has strong anti-viral efficacy against IAV infection and could be developed as an anti-influenza viral agent. Full article
Show Figures

Figure 1

14 pages, 1563 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
15 pages, 1507 KiB  
Article
Determination of Fumonisins B1 and B2 in Food Matrices: Optimisation of a Liquid Chromatographic Method with Fluorescence Detection
by Óscar Cebadero-Domínguez, Santiago Ruiz-Moyano, Alberto Martín and Elisabet Martín-Tornero
Toxins 2025, 17(8), 391; https://doi.org/10.3390/toxins17080391 - 5 Aug 2025
Abstract
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a [...] Read more.
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the quantification of fumonisin B1 (FB1) and B2 (FB2) in various food matrices. In contrast with conventional protocols employing potassium phosphate buffers as the mobile phase, the proposed method utilises formic acid, offering enhanced compatibility with liquid chromatography systems. An automated online precolumn derivatisation with o-phthaldialdehyde (OPA) was optimised through experimental design and response surface methodology, enabling baseline separation of FB1 and FB2 derivatives in less than 20 min. The method demonstrated high sensitivity, with limits of detection of 0.006 µg mL−1 for FB1 and 0.012 µg mL−1 for FB2, and excellent repeatability (intraday RSD values of 0.85% and 0.83%, respectively). Several solid-phase extraction (SPE) strategies were evaluated to enhance sample clean-up using a variety of food samples, including dried figs, raisins, dates, corn, cornmeal, wheat flour, and rice. FumoniStar Inmunoaffinity columns were the only clean-up method that provided optimal recoveries (70–120%) across all tested food matrices. However, the MultiSep™ 211 column yielded good recoveries for both fumonisins in dried figs and raisins. Additionally, the C18 cartridge achieved acceptable recoveries for both fumonisins in dried figs and wheat flour. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

18 pages, 1602 KiB  
Article
Interacting Effects of Heat and Nanoplastics Affect Wheat (Triticum turgidum L.) Seedling Growth and Physiology
by Debora Fontanini, Stefania Bottega, Monica Ruffini Castiglione and Carmelina Spanò
Plants 2025, 14(15), 2426; https://doi.org/10.3390/plants14152426 - 5 Aug 2025
Abstract
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that [...] Read more.
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that their interaction may exacerbate the effects observed under each stressor individually, we investigated the response of seedlings of Triticum turgidum to treatments with fluorescent polystyrene nanoplastics under optimal (25 °C) and elevated (35 °C) temperature conditions. We evaluated seedling growth, photosynthetic pigment content, and oxidative stress markers using both biochemical and histochemical techniques. In addition, we assessed enzymatic and non-enzymatic antioxidant responses. The use of fluorescently labeled nanoplastics enabled the visualization of their uptake and translocation within plant tissues. Elevated temperatures negatively affect plant growth, increasing the production of proline, a key protective molecule, and weakly activating secondary defense mechanisms. Nanoplastics disturbed wheat seedling physiology, with these effects being amplified under high temperature conditions. Combined stress enhances nanoplastic uptake in roots, increases oxidative damage, and alters antioxidant responses, reducing defense capacity in leaves while triggering compensatory mechanisms in roots. These findings underscore a concerning interaction between plastic pollution and climate warming in crop plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 1786 KiB  
Article
Lycopene Inhibits PRRSV Replication by Suppressing ROS Production
by Ying-Xian Ma, Ya-Qi Han, Pei-Zhu Wang, Bei-Bei Chu, Sheng-Li Ming and Lei Zeng
Int. J. Mol. Sci. 2025, 26(15), 7560; https://doi.org/10.3390/ijms26157560 (registering DOI) - 5 Aug 2025
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel antiviral therapeutics. This study aimed to investigate the molecular mechanisms by which lycopene inhibits PRRSV replication. Initial assessments confirmed that lycopene did not adversely affect cellular viability, cell cycle progression, or apoptosis. Using fluorescence microscopy, flow cytometry, immunoblotting, quantitative real-time PCR (qRT-PCR), and viral titration assays, lycopene was shown to exhibit potent antiviral activity against PRRSV. Mechanistic studies revealed that lycopene suppresses reactive oxygen species (ROS) production, which is critical for PRRSV proliferation. Additionally, lycopene attenuated PRRSV-induced inflammatory responses, as demonstrated by immunoblotting, ELISA, and qRT-PCR assays. These findings suggest that lycopene inhibits PRRSV replication by modulating ROS levels and mitigating inflammation, offering a promising avenue for the development of antiviral therapeutics. This study provides new insights and strategies for combating PRRSV infections, emphasizing the potential of lycopene as a safe and effective antiviral agent. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

11 pages, 1741 KiB  
Article
Magnetic Properties of Commercial Cornflakes
by Francisco A. Cholico, Aldo A. Orozco, Luis H. Quintero, Peter Knauth, Zaira López, José A. Paz, Celso A. Velásquez, Jose de Jesús Bernal and Mario E. Cano
Appl. Sci. 2025, 15(15), 8652; https://doi.org/10.3390/app15158652 (registering DOI) - 5 Aug 2025
Abstract
This study reports on the magnetic properties of commercial cornflakes, which are primarily influenced by the iron content. An initial analysis of X-ray fluorescence on a brand of cornflakes evidenced the presence of a high concentration of Cl and up to 10.9 mg/100 [...] Read more.
This study reports on the magnetic properties of commercial cornflakes, which are primarily influenced by the iron content. An initial analysis of X-ray fluorescence on a brand of cornflakes evidenced the presence of a high concentration of Cl and up to 10.9 mg/100 g of Fe. After the extraction of iron from the cornflakes of two different brands, as iron filings, X-ray diffraction measurements indicate the presence of crystals of elemental iron, and no traces of other crystals of iron-derived compounds were found. The Fourier Transform Infrared analysis on the iron filings does not show any binding between iron and oxygen, which further discards the presence of iron oxides. The magnetic hysteresis loops of whole powdered cornflakes exhibit weak Langevin-like magnetizations, which principally correspond to the iron used as a fortification element. The diamagnetic behavior of the higher organic material content significantly attenuates this magnetic response. The hysteresis loops of the iron filings reached magnetic saturations 1% and 5% lower than those of a pure iron sample. Additionally, the indirect measurement of magnetic susceptibility of the iron filings by magneto-thermograms revealed only one Curie transition very close to 771 °C, which corresponds to pure elemental iron. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

12 pages, 1076 KiB  
Article
Rapid Identification of the SNP Mutation in the ABCD4 Gene and Its Association with Multi-Vertebrae Phenotypes in Ujimqin Sheep Using TaqMan-MGB Technology
by Yue Zhang, Min Zhang, Hong Su, Jun Liu, Feifei Zhao, Yifan Zhao, Xiunan Li, Yanyan Yang, Guifang Cao and Yong Zhang
Animals 2025, 15(15), 2284; https://doi.org/10.3390/ani15152284 - 5 Aug 2025
Abstract
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, [...] Read more.
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, Chr7:89393414, C > T) identified through a genome-wide association study (GWAS), a TaqMan-MGB (minor groove binder) genotyping system was developed. the objective was to establish a high-throughput and efficient molecular marker-assisted selection (MAS) tool. Specific primers and dual fluorescent probes were designed to optimize the reaction system. Standard plasmids were adopted to validate genotyping accuracy. A total of 152 Ujimqin sheep were subjected to TaqMan-MGB genotyping, digital radiography (DR) imaging, and Sanger sequencing. the results showed complete concordance between TaqMan-MGB and Sanger sequencing, with an overall agreement rate of 83.6% with DR imaging. For individuals with T/T genotypes (127/139), the detection accuracy reached 91.4%. This method demonstrated high specificity, simplicity, and cost-efficiency, significantly reducing the time and financial burden associated with traditional imaging-based approaches. the findings indicate that the TaqMan-MGB technique can accurately identify the T/T genotype at the SNP site and its strong association with the multi-vertebrae phenotypes, offering an effective and reliable tool for molecular breeding of Ujimqin sheep. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 4241 KiB  
Article
Evaluation of the Synthesis and Skin Penetration Pathway of Folate-Conjugated Polymeric Micelles for the Dermal Delivery of Irinotecan and Alpha-Mangostin
by Thanchanok Sirirak and Thirapit Subongkot
Pharmaceutics 2025, 17(8), 1014; https://doi.org/10.3390/pharmaceutics17081014 - 5 Aug 2025
Abstract
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: [...] Read more.
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: Poloxamer 188 and poloxamer 184 were synthesized with folate by esterification. The in vitro skin penetration enhancement of irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles was evaluated. The skin penetration pathway of folate-conjugated polymeric micelles was investigated by colocalization of multiple fluorescently labeled particles using confocal laser scanning microscopy (CLSM). Results: Folate-conjugated poloxamer 188 and poloxamer 184 were successfully synthesized. The prepared irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles from poloxamer 188 and poloxamer 184 had particle sizes of approximately 180 and 150 nm, respectively, indicating a positive charge with a narrow size distribution which could be easily taken up into cells. An in vitro skin penetration study revealed that folate-conjugated polymeric micelles from poloxamer 184 significantly enhanced the skin penetration of irinotecan and alpha-mangostin to a greater extent than the solution. CLSM visualization revealed that folate-conjugated polymeric micelles penetrated through the skin by the transfollicular pathway as the major penetration pathway, whereas penetration by the intercluster pathway, transcellular pathway and intercellular pathway constituted a minor pathway. Conclusions: Folate-conjugated poloxamer 184 polymeric micelles are promising candidates for the dermal delivery of anticancer drugs by the transfollicular pathway as the major skin penetration pathway. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

12 pages, 1169 KiB  
Article
Field-Compatible Cytometric Assessment of Epididymal Alpaca Sperm Viability and Acrosomal Integrity Using Fluorochrome
by Alexei Santiani, Miguel Cucho, Josselyn Delgado, Javier Juárez, Luis Ruiz and Shirley Evangelista-Vargas
Animals 2025, 15(15), 2282; https://doi.org/10.3390/ani15152282 - 5 Aug 2025
Abstract
In remote alpaca breeding regions, access to advanced sperm analysis laboratories is limited. This study validates a practical cytometric method for evaluating sperm viability and acrosomal integrity in epididymal alpaca sperm using early fluorochrome staining, formaldehyde fixation, and intermediate storage. Thirty-two testes were [...] Read more.
In remote alpaca breeding regions, access to advanced sperm analysis laboratories is limited. This study validates a practical cytometric method for evaluating sperm viability and acrosomal integrity in epididymal alpaca sperm using early fluorochrome staining, formaldehyde fixation, and intermediate storage. Thirty-two testes were transported at 5 °C, and spermatozoa were collected from the cauda epididymis. After morphometric screening, 26 samples were included. Aliquots were stained with Zombie Green (viability) and FITC–PSA (acrosomal integrity), at time zero. Each aliquot was divided for cytometric analysis at T0 (immediately), T24 (24 h after formaldehyde fixation) and T1w (1 week post-fixation). Fixed samples showed higher viability and acrosomal integrity values (T24: 70.75%, 97.24%; T1w: 71.80%, 97.21%) than T0 (67.63%, 95.89%). This may reflect fluorescence alterations associated with fixation. Strong correlations and Bland–Altman analysis confirmed consistency across time points. This method enables accurate sperm quality evaluation up to one week after collection, offering a useful tool for reproductive monitoring in field conditions without immediate analysis. Further research on ejaculated semen and field protocols is recommended. Full article
(This article belongs to the Special Issue Advances in Camelid Reproduction)
Show Figures

Figure 1

20 pages, 4676 KiB  
Article
Multifunctional, Biocompatible Hybrid Surface Coatings Combining Antibacterial, Hydrophobic and Fluorescent Applications
by Gökçe Asan and Osman Arslan
Polymers 2025, 17(15), 2139; https://doi.org/10.3390/polym17152139 - 5 Aug 2025
Abstract
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles [...] Read more.
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles can be embedded together with inorganic and organic surface coatings and silicon quantum dots for symbiotic antibacterial character and UV-excited visible light fluorescent features. Additionally, fluorosilane material can be coupled with this prepolymeric structure to add the hydrophobic feature, showing water contact angles around 120°, providing self-cleaning features. Optical properties of the components and the final material were investigated by UV-Vis spectroscopy and PL analysis. Atomic investigations and structural variations were detected by XPS, SEM, and EDX atomic mapping methods, correcting the atomic entities inside the coating. FT-IR tracked surface features, and statistical analysis of the quantum dots and nanoparticles was conducted. Multifunctional final materials showed antibacterial properties against E. coli and S. aureus, exhibiting self-cleaning features with high surface contact angles and visible light fluorescence due to the silicon quantum dot incorporation into the sol-gel-produced nanocomposite hybrid structure. Full article
(This article belongs to the Special Issue Polymer Coatings for High-Performance Applications)
Show Figures

Figure 1

26 pages, 1978 KiB  
Article
Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
by Daniel Castellar-Almonacid, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda and Ricardo Fierro-Medina
Antibiotics 2025, 14(8), 793; https://doi.org/10.3390/antibiotics14080793 (registering DOI) - 4 Aug 2025
Abstract
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine [...] Read more.
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine B, were obtained. RP-HPLC analysis revealed that the palindromic peptide conjugated to Rhodamine B (RhB-RWQWRWQWR) exhibited the presence of isomers, likely corresponding to the open-ring and spiro-lactam forms of the fluorescent probe. This equilibrium is dependent on the peptide sequence, as the RP-HPLC analysis of dimeric peptide (RhB-RRWQWR-hF-KKLG)2K-Ahx did not reveal the presence of isomers. The antibacterial activity of the fluorescent peptides depends on the probe attached to the sequence and the bacterial strain tested. Notably, some fluorescent peptides showed activity against reference strains as well as sensitive, resistant, and multidrug-resistant clinical isolates of E. coli, S. aureus, and E. faecalis. Fluorolabeled peptides 1-Abz (MIC = 62 µM), RhB-1 (MIC = 62 µM), and Abz-1 (MIC = 31 µM) exhibited significant activity against clinical isolates of E. coli, S. aureus, and E. faecalis, respectively. The RhB-1 (IC50 = 61 µM), Abz-1 (IC50 = 87 µM), and RhB-2 (IC50 = 35 µM) peptides exhibited a rapid, significant, and concentration-dependent cytotoxic effect on HeLa cells, accompanied by morphological changes characteristic of apoptosis. RhB-1 (IC50 = 18 µM) peptide also exhibited significant cytotoxic activity against breast cancer cells MCF-7. These conjugates remain valuable for elucidating the possible mechanisms of action of these novel anticancer peptides. Rhodamine-labeled peptides displayed cytotoxicity comparable to that of their unlabeled analogues, suggesting that cellular internalization constitutes a critical early step in their mechanism of action. These findings suggest that cell death induced by both unlabeled and fluorolabeled peptides proceeds predominantly via apoptosis and is likely contingent upon peptide internalization. Functionalization at the N-terminal end of the palindromic sequence can be evaluated to develop systems for transporting non-protein molecules into cancer cells. Full article
Show Figures

Figure 1

21 pages, 6387 KiB  
Article
Carbon Dot-Enhanced Doxorubicin Liposomes: A Dual-Functional Nanoplatform for Cancer Therapy
by Corina-Lenuta Logigan, Cristian Peptu, Corneliu S. Stan, Gabriel Luta, Crina Elena Tiron, Mariana Pinteala, Aleksander Foryś, Bogdan Simionescu, Constanta Ibanescu, Adrian Tiron and Catalina A. Peptu
Int. J. Mol. Sci. 2025, 26(15), 7535; https://doi.org/10.3390/ijms26157535 (registering DOI) - 4 Aug 2025
Abstract
Liposomes (LPs) represent one of the most effective nanoscale platforms for drug delivery in cancer therapy due to their favorable pharmacokinetic and various body tissue compatibility profiles. Building on recent findings showing that carbon dots derived from N-hydroxyphthalimide (CDs-NHF) possess intrinsic antitumor activity, [...] Read more.
Liposomes (LPs) represent one of the most effective nanoscale platforms for drug delivery in cancer therapy due to their favorable pharmacokinetic and various body tissue compatibility profiles. Building on recent findings showing that carbon dots derived from N-hydroxyphthalimide (CDs-NHF) possess intrinsic antitumor activity, herein, we investigate the possibility of preparing complex nano-platforms composed of LPs encapsulating CDs-NHF and/or doxorubicin (DOX) for breast and lung cancer. Various LP formulations were prepared and characterized using Cryo-TEM and Cryo-SEM for morphological analysis, while zeta potential and fluorescence assessments confirmed their stability and optical properties. Cellular effects were evaluated through immunofluorescence microscopy and proliferation assays. LPs-CDs-NHF significantly reduced cancer cell viability at lower concentrations compared to free CDs-NHF, and this effect was further amplified when combined with doxorubicin. Mechanistically, the liposomal formulations downregulated key signaling molecules including pAKT, pmTOR, and pERK, indicating the disruption of cancer-related pathways. These findings suggest that LPs containing CDs-NHF, either alone or in combination with DOX, exhibit synergistic antitumor activity and hold strong promise as multifunctional nanocarriers for future oncological applications. Full article
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Physiological Mechanisms of the Enhanced UV-B Radiation Triggering Plant-Specific Peroxidase-Mediated Antioxidant Defences
by Yijia Gao, Ling Wei, Chenyu Jiang, Shaopu Shi, Jiabing Jiao, Hassam Tahir, Minjie Qian and Kaibing Zhou
Antioxidants 2025, 14(8), 957; https://doi.org/10.3390/antiox14080957 (registering DOI) - 4 Aug 2025
Abstract
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and [...] Read more.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage. At this stage, the treatment exhibited higher malondialdehyde (MDA) content, indicating increased oxidative stress due to the accumulation of reactive oxygen species (ROS). Despite the inhibition in growth, the treatment showed improvements in the accumulation of organic nutrients as well as the contents of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). Additionally, an increase in POD activity and lignin content was observed in the treatment, especially during the middle period of the rapid growth period. Transcriptome analysis revealed that two POD multigene family members, LOC123198833 and LOC123225298, were significantly upregulated under enhanced UV-B radiation, which was further validated through qPCR. In general, enhanced UV-B radiation triggered a defence response in biological tissue by upregulating POD genes, which can effectively help to scavenge excess ROS. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

Back to TopTop