Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (683)

Search Parameters:
Keywords = AMPK-α

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

35 pages, 6006 KiB  
Review
Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
by Dhienda C. Shahannaz, Tadahisa Sugiura and Brandon E. Ferrell
BioChem 2025, 5(3), 23; https://doi.org/10.3390/biochem5030023 - 31 Jul 2025
Viewed by 241
Abstract
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and [...] Read more.
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and pathway modulation to enhance energy production and cellular resilience. Additionally, we examine the role of extracellular matrix stiffness and mechanical stimulation in mitochondrial adaptation, given their influence on metabolism and maturation. Methods: A comprehensive analysis of recent advancements in iPSC-CM maturation was conducted, focusing on metabolic interventions that enhance mitochondrial structure and function. Studies employing metabolic preconditioning, lipid and amino acid supplementation, and modulation of key signaling pathways, including PGC-1α, AMPK, and mTOR, were reviewed. Computational modeling approaches predicting optimal metabolic shifts were assessed, alongside insights into reactive oxygen species (ROS) signaling, calcium handling, and the impact of electrical pacing on energy metabolism. Results: Evidence indicates that metabolic preconditioning with fatty acids and oxidative phosphorylation enhancers improves mitochondrial architecture, cristae density, and ATP production. Substrate manipulation fosters a shift toward adult-like metabolism, while pathway modulation refines mitochondrial biogenesis. Computational models enhance precision, predicting interventions that best align iPSC-CM metabolism with native cardiomyocytes. The synergy between metabolic and biomechanical cues offers new avenues for accelerating maturation, bridging the gap between in vitro models and functional cardiac tissues. Conclusions: Strategic metabolic optimization is essential for overcoming mitochondrial immaturity in iPSC-CMs. By integrating biochemical engineering, predictive modeling, and biomechanical conditioning, a robust framework emerges for advancing iPSC-CM applications in regenerative therapy and disease modeling. These findings pave the way for more physiologically relevant cell models, addressing key translational challenges in cardiovascular medicine. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

17 pages, 2131 KiB  
Article
Investigating Neuroprotective Effects of Berberine on Mitochondrial Dysfunction and Autophagy Impairment in Parkinson’s Disease
by Hae-Rim Cha, Jin-Seok Kim, Jin-Hyeob Ryu and Hyun-Jeong Cho
Int. J. Mol. Sci. 2025, 26(15), 7342; https://doi.org/10.3390/ijms26157342 - 29 Jul 2025
Viewed by 669
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. In this study, we investigated the therapeutic potential and underlying mechanisms of berberine in both cellular and animal models of PD. In vitro, SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) exhibited decreased viability and increased oxidative stress, both of which were significantly alleviated by berberine treatment based on cell viability assays and DCFH-DA staining. Western blot analysis revealed that berberine modulated the AMPK–PGC-1α–SIRT1 signaling pathway and restored the expression of autophagy-related proteins LC3B and P62, suggesting that berberine could improve mitochondrial function and autophagy balance. In vivo studies using a 6-OHDA-induced PD mouse model further confirmed these effects, showing that berberine could improve motor function and lead to molecular changes consistent with in vitro studies. Additionally, safety evaluations indicated no significant hepatotoxicity based on AST and ALT levels. Body weight also remained stable throughout treatment. Collectively, our findings suggest that berberine can not only alleviate PD-related symptoms but also target key pathological mechanisms, supporting its potential as a therapeutic candidate for PD and other neurodegenerative diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 4900 KiB  
Review
Non-Canonical Functions of Adenosine Receptors: Emerging Roles in Metabolism, Immunometabolism, and Epigenetic Regulation
by Giovanni Pallio and Federica Mannino
Int. J. Mol. Sci. 2025, 26(15), 7241; https://doi.org/10.3390/ijms26157241 - 26 Jul 2025
Viewed by 219
Abstract
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and [...] Read more.
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and A2B, modulate glucose and lipid metabolism, mitochondrial activity, and energy homeostasis. In immune cells, AR signaling influences metabolic reprogramming and polarization through key regulators such as mTOR, AMPK, and HIF-1α, contributing to immune tolerance or activation depending on the context. Additionally, ARs have been implicated in epigenetic modulation, affecting DNA methylation, histone acetylation, and non-coding RNA expression via metabolite-sensitive mechanisms. Therapeutically, AR-targeting agents are being explored for cancer and chronic inflammatory diseases. While clinical trials with A2A antagonists in oncology show encouraging results, challenges remain due to receptor redundancy, systemic effects, and the need for tissue-specific selectivity. Future strategies involve biased agonism, allosteric modulators, and combination therapies guided by biomarker-based patient stratification. Overall, ARs are emerging as integrative hubs connecting extracellular signals with cellular metabolic and epigenetic machinery. Understanding these non-canonical roles may unlock novel therapeutic opportunities across diverse disease landscapes. Full article
Show Figures

Figure 1

24 pages, 1055 KiB  
Review
Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes
by Przemysław Niziński, Anna Hawrył, Paweł Polak, Adrianna Kondracka, Tomasz Oniszczuk, Jakub Soja, Mirosław Hawrył and Anna Oniszczuk
Molecules 2025, 30(15), 3096; https://doi.org/10.3390/molecules30153096 - 24 Jul 2025
Viewed by 499
Abstract
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of [...] Read more.
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of diabetes mellitus. QE improves glycemic control by enhancing insulin sensitivity, stimulating glucose uptake, and preserving pancreatic beta cell function. These effects are mediated by the modulation of key molecular pathways, including AMPK, PI3K/Akt, and Nrf2/ARE, as well as by the suppression of oxidative stress and pro-inflammatory cytokines, such as TNF-α and IL-6. Furthermore, QE mitigates the progression of diabetic complications such as nephropathy, retinopathy, and vascular dysfunction, reducing lipid peroxidation and protecting endothelial function. However, the clinical application of quercetin is limited by its low water solubility, poor bioavailability, and extensive phase II metabolism. Advances in formulation strategies, including the use of nanocarriers, co-crystals, and phospholipid complexes, have shown promise in improving its pharmacokinetics. This review elucidates the mechanistic basis of QE quercetin antidiabetic action and discusses strategies to enhance its therapeutic potential in clinical settings. Full article
Show Figures

Figure 1

20 pages, 2847 KiB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 333
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

21 pages, 594 KiB  
Review
PEDF and Its Role in Metabolic Disease, Angiogenesis, Cardiovascular Disease, and Diabetes
by Crispin R. Dass
Biomedicines 2025, 13(7), 1780; https://doi.org/10.3390/biomedicines13071780 - 21 Jul 2025
Viewed by 441
Abstract
This review highlights recent findings on the potent anti-angiogenic serpin protein, pigment epithelium-derived factor (PEDF) as it relates to metabolic disease, diabetes, angiogenesis and cardiovascular disease (CVD), listing a majority of all the publicly available studies reported to date. PEDF is involved in [...] Read more.
This review highlights recent findings on the potent anti-angiogenic serpin protein, pigment epithelium-derived factor (PEDF) as it relates to metabolic disease, diabetes, angiogenesis and cardiovascular disease (CVD), listing a majority of all the publicly available studies reported to date. PEDF is involved in various physiological roles in the body, and when awry, it triggers various disease states clinically. Biomarkers such as insulin, AMP-activated protein kinase alpha (AMPK-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ) are involved in PEDF effects on metabolism. Wnt, insulin receptor substate (IRS), Akt, extracellular signal-regulated kinase (ERK), and mitogen-activated protein kinase (MAPK) are implicated in diabetes effects displayed by PEDF. For CVD, oxidised LDL, Wnt/β-catenin, and reactive oxygen species (ROS) are players intertwined with PEDF activity. The review also presents an outlook on where efforts could be devoted to bring this serpin closer to clinical trials for these diseases and others in general. Full article
Show Figures

Figure 1

18 pages, 4436 KiB  
Article
Liraglutide Attenuates Atorvastatin-Induced Hepatotoxicity by Restoring GLP-1R Expression and Activating Nrf2 and Autophagy Pathways in Wistar Rats
by Engy A. Elsiad, Hayat A. Abd El Aal, Hesham A. Salem, Mohammed F. El-Yamany and Mostafa A. Rabie
Toxics 2025, 13(7), 594; https://doi.org/10.3390/toxics13070594 - 16 Jul 2025
Viewed by 504
Abstract
HMG-CoA reductase inhibitors, statins, are extensively used to treat hyperlipidemia, coronary artery disease, and other atherosclerotic disorders. However, one of the common side effects of statin therapy is a mild elevation in liver aminotransferases, observed in less than 3% of patients. Atorvastatin and [...] Read more.
HMG-CoA reductase inhibitors, statins, are extensively used to treat hyperlipidemia, coronary artery disease, and other atherosclerotic disorders. However, one of the common side effects of statin therapy is a mild elevation in liver aminotransferases, observed in less than 3% of patients. Atorvastatin and simvastatin, in particular, are most frequently associated with statin-induced liver injury, leading to treatment discontinuation. Recent research has highlighted the antioxidant and anti-inflammatory properties of glucagon-like peptide-1 receptor (GLP-1R) activation in protecting against liver injury. Nonetheless, the potential protective effects of liraglutide (LIRA), a GLP-1R agonist, against atorvastatin (ATO)-induced liver dysfunction have not been fully elucidated. In this context, the present study aimed to investigate the protective role of LIRA in mitigating ATO-induced liver injury in rats, offering new insights into managing statin-associated hepatotoxicity. Indeed, LIRA treatment improved liver function enzymes and attenuated histopathological alterations. LIRA treatment enhanced antioxidant defenses by increasing Nrf2 content and superoxide dismutase (SOD) activity, while reducing NADPH oxidase. Additionally, LIRA suppressed inflammation by downregulating the HMGB1/TLR-4/RAGE axis and inhibiting the protein expression of pY323-MAPK p38 and pS635-NFκB p65 content resulting in decreased proinflammatory cytokines (TNF-α and IL-1β). Furthermore, LIRA upregulated GLP-1R gene expression and promoted autophagic influx via the activation of the pS473-Akt/pS486-AMPK/pS758-ULK1/Beclin-1 signaling cascade, along with inhibiting apoptosis by reducing caspase-3 content. In conclusion, LIRA attenuated ATO-induced oxidative stress and inflammation via activation of the Nrf-2/SOD cascade and inhibition of the HMGB1/TLR-4/RAGE /MAPK p38/NFκB p65 axis. In parallel, LIRA stimulated autophagy via the AMPK/ULK1/Beclin-1 axis and suppressed apoptosis, thus restoring the balance between autophagy and apoptosis. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

26 pages, 5899 KiB  
Article
Sex-Specific Cardiovascular Protection in Developing Metabolic Syndrome: The Role of AMPK
by Miroslava Kvandova, Anna Zemancikova, Andrea Berenyiova, Iveta Waczulikova, Silvia Magyarova, Andrea Micurova, Jozef Torok, Marian Grman, Lenka Tomasova, Anton Misak, Zuzana Vysoka, Martina Manikova, Milan Zvarik, Patrick Mydla, Jana Vlkovicova, Peter Balis and Angelika Puzserova
Antioxidants 2025, 14(7), 843; https://doi.org/10.3390/antiox14070843 - 9 Jul 2025
Viewed by 465
Abstract
Metabolic syndrome (MetS) increases the risk of cardiovascular disease development, with sex differences playing a significant role. AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, becomes dysregulated in MetS, making it a potential therapeutic target. Therefore, we aimed to investigate [...] Read more.
Metabolic syndrome (MetS) increases the risk of cardiovascular disease development, with sex differences playing a significant role. AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, becomes dysregulated in MetS, making it a potential therapeutic target. Therefore, we aimed to investigate the role of AMPK in the development of cardiovascular comorbidities in male and female rats with MetS. MetS was induced in young Wistar–Kyoto (WKY) rats through a high-fat diet (HFD; 10 weeks), and the function of AMPK was studied using Compound C (Cmpd C; 1.5 mg/kg, twice per week, during the last 4 weeks). An HFD induced MetS in males, but, in females, it did not affect body weight, blood pressure, or glycemia until AMPK inhibition occurred. Endothelial dysfunction, oxidative stress, and inflammation developed in both HFD male groups, while, in females, these arose only with AMPK inhibition. In both sexes, α1-AMPK activation decreased with eNOS and Nrf2 protein levels after HFD + Cmpd C treatment. Estradiol levels significantly dropped in HFD and Cmpd C females, whereas testosterone levels remained unchanged. Our results suggest that MetS and related cardiovascular comorbidities in males are driven by oxidative stress, inflammation, and endothelial dysfunction, with minimal additive effect of AMPK. In females, MetS arose only when inhibition of AMPK impaired estrogen signalling, emphasising their protective roles. Targeting AMPK-estrogen pathways may provide a therapeutic strategy, particularly for high-risk cardiovascular females and menopausal women. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

17 pages, 1596 KiB  
Article
Flavonoids of Mao Jian Green Tea Ameliorate Glycemic Metabolism in Type-2-Diabetic Rats via AMPK Signaling Pathways and Gut Microbiota Regulation
by Lei Wu, Yao Niu, Fei Liu, Jiongling Tian, Zhilin Ma, Jiahui Yang, Xiaomeng Guo and Yaogui Sun
Foods 2025, 14(13), 2402; https://doi.org/10.3390/foods14132402 - 7 Jul 2025
Viewed by 399
Abstract
Mao Jian Green Tea flavonoids (MJGT_F) contain luteolin, luteolin-7-O-glucoside, eriodictyol, and eriodictyol-7-O-glucoside, among which the first three components have hypoglycemic effects; however, the overall hypoglycemic potential of MJGT_F remains unclear. This study demonstrated that MJGT_F inhibited α-glucosidase in vitro and improved metabolic parameters [...] Read more.
Mao Jian Green Tea flavonoids (MJGT_F) contain luteolin, luteolin-7-O-glucoside, eriodictyol, and eriodictyol-7-O-glucoside, among which the first three components have hypoglycemic effects; however, the overall hypoglycemic potential of MJGT_F remains unclear. This study demonstrated that MJGT_F inhibited α-glucosidase in vitro and improved metabolic parameters in a dose-dependent manner in T2DM (type 2 diabetes mellitus) rats (reducing blood glucose, triglyceride, total cholesterol, low-density lipoprotein, insulin, and the homeostatic model assessment of insulin resistance; increasing high-density lipoprotein, insulin sensitivity index, and glucagon-like peptide-1). High-dose MJGT_F (MJGT_F_H) showed optimal efficacy. Mechanistically, MJGT_F_H activated the AMPK pathway, evidenced by a significant increase in the p-AMPK/AMPK ratio and downregulation of hepatic gluconeogenic enzymes G6Pase and PEPCK. These coordinated effects collectively suggest enhanced hepatic glucose utilization and suppression of glucose overproduction. MJGT_F_H also modulated gut microbiota by enriching beneficial taxa (e.g., Akkermansia muciniphila, 11.17-fold vs. metformin) and reducing pathogens like Enterobacteriaceae. These findings highlight MJGT_F’s dual regulatory roles in glucose metabolism and microbiota, supporting its potential for diabetes management. Full article
Show Figures

Figure 1

28 pages, 7888 KiB  
Article
Estradiol Prevents Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity in Alzheimer’s Disease via AMPK-Dependent Suppression of NF-κB Signaling
by Pranav Mishra, Ehsan K. Esfahani, Paul Fernyhough and Benedict C. Albensi
Int. J. Mol. Sci. 2025, 26(13), 6203; https://doi.org/10.3390/ijms26136203 - 27 Jun 2025
Viewed by 700
Abstract
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the [...] Read more.
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the critical roles of mitochondrial dysfunction and neuroinflammation in disease progression. Aβ impairs mitochondrial function, which, in part, can subsequently trigger inflammatory cascades, creating a vicious cycle of neuronal damage. Estrogen receptors (ERs) are widely expressed throughout the brain, and the sex hormone 17β-estradiol (E2) exerts neuroprotection through both anti-inflammatory and mitochondrial mechanisms. While E2 exhibits neuroprotective properties, its mechanisms against Aβ toxicity remain incompletely understood. In this study, we investigated the neuroprotective effects of E2 against Aβ-induced mitochondrial dysfunction and neuroinflammation in primary cortical neurons, with a particular focus on the role of AMP-activated protein kinase (AMPK). We found that E2 treatment significantly increased phosphorylated AMPK and upregulated the expression of mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α), leading to improved mitochondrial respiration. In contrast, Aβ suppressed AMPK and PGC-1α signaling, impaired mitochondrial function, activated the pro-inflammatory nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and reduced neuronal viability. E2 pretreatment also rescued Aβ-induced mitochondrial dysfunction, suppressed NF-κB activation, and, importantly, prevented the decline in neuronal viability. However, the pharmacological inhibition of AMPK using Compound C (CC) abolished these protective effects, resulting in mitochondrial collapse, elevated inflammation, and cell death, highlighting AMPK’s critical role in mediating E2’s actions. Interestingly, while NF-κB inhibition using BAY 11-7082 partially restored mitochondrial respiration, it failed to prevent Aβ-induced cytotoxicity, suggesting that E2’s full neuroprotective effects rely on broader AMPK-dependent mechanisms beyond NF-κB suppression alone. Together, these findings establish AMPK as a key mediator of E2’s protective effects against Aβ-driven mitochondrial dysfunction and neuroinflammation, providing new insights into estrogen-based therapeutic strategies for AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

27 pages, 1739 KiB  
Review
The Link Between Dietary Timing and Exercise Performance Through Adipocyte AMPKα2 Signaling
by Sohyun Kim, Jihyun Baek and Man S. Kim
Int. J. Mol. Sci. 2025, 26(13), 6061; https://doi.org/10.3390/ijms26136061 - 24 Jun 2025
Viewed by 629
Abstract
Emerging evidence suggests that the timing of eating and exercise over the course of the day is paramount to metabolism and physical function. This review highlights seminal studies showing that adipocyte AMPKα2 signaling controls circadian adipose tissue–skeletal muscle communication. Day-restricted feeding has been [...] Read more.
Emerging evidence suggests that the timing of eating and exercise over the course of the day is paramount to metabolism and physical function. This review highlights seminal studies showing that adipocyte AMPKα2 signaling controls circadian adipose tissue–skeletal muscle communication. Day-restricted feeding has been shown to improve exercise performance via adipocyte-specific activation of AMPKα2, which controls fat–muscle crosstalk in a time-of-day dependent manner. This review also discusses corroborating experimental studies designating mesenchymal stem cells as key cellular mediators, showing that exercise in the afternoon leads to better metabolic effects in humans, and illustrating how incorrect timing of food intake leads to leptin resistance and metabolic dysregulation. Multi-omics strategies have shed light on the molecular mechanisms underlying such effects of time, showing the circadian control of metabolic processes across tissues. These results advance our knowledge of chronometabolism and offer exciting temporal intervention treatments for metabolic diseases, such as time-restricted feeding, timed exercise, and chronopharmacological targeting of AMPK. Fat–muscle crosstalk, physical performance, and metabolic health outcomes can possibly be optimized by synchronizing dietary and exercise timing with endogenous circadian rhythms. Full article
(This article belongs to the Special Issue The Role of Protein Kinase in Health and Diseases)
Show Figures

Figure 1

33 pages, 8266 KiB  
Article
An In Vitro Gut–Liver–Adipose Axis Model to Evaluate the Anti-Obesity Potential of a Novel Probiotic–Polycosanol Combination
by Simone Mulè, Rebecca Galla, Francesca Parini, Mattia Botta, Sara Ferrari and Francesca Uberti
Foods 2025, 14(11), 2003; https://doi.org/10.3390/foods14112003 - 5 Jun 2025
Viewed by 3296
Abstract
The gut-liver-adipose axis plays a pivotal role in metabolic regulation, and its dysregulation contributes to obesity and metabolic syndrome. Probiotics and polycosanol have shown potential in modulating gut barrier integrity, lipid metabolism, and inflammation. This study aimed to evaluate their combined effects using [...] Read more.
The gut-liver-adipose axis plays a pivotal role in metabolic regulation, and its dysregulation contributes to obesity and metabolic syndrome. Probiotics and polycosanol have shown potential in modulating gut barrier integrity, lipid metabolism, and inflammation. This study aimed to evaluate their combined effects using an in vitro model of the gut-liver-adipose axis. Transwell® system was used to recreate the interaction between intestinal (CaCo-2), hepatic (HepG2), and adipose (3T3-L1) cells. Cells were treated with Bifidobacterium bifidum GM-25, Bifidobacterium infantis GM-21, Lacticaseibacillus rhamnosus GM-28, and polycosanols. The effects were assessed by analyzing intestinal barrier integrity (TEER, tight junction proteins), hepatic and adipose lipid accumulation (Oil Red O staining), oxidative stress (ROS production, lipid peroxidation), inflammation (TNF-α) and lipid metabolism (CD36, PPARγ, AMPK and SREBP-1 levels). Probiotics and polycosanols improved intestinal integrity, increased butyrate production, and reduced ROS levels. Hepatic lipid accumulation was significantly decreased, with enhanced PPARγ and AMPK activation. In adipocytes, probiotic-polycosanols treatment suppressed SREBP-1 expression, enhanced lipid oxidation, and promoted UCP1 and PGC-1α expression, suggesting activation of thermogenic pathways. These findings underline a possible biological relevance of probiotics and polycosanols in modulating metabolic pathways, improving gut barrier integrity, and reducing inflammation, supporting their role as functional ingredients for metabolic health. Full article
(This article belongs to the Special Issue Dietary Fiber and Gut Microbiota)
Show Figures

Graphical abstract

25 pages, 6477 KiB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Viewed by 776
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

21 pages, 2536 KiB  
Article
Lactobacillus rhamnosus GG Modulates Mitochondrial Function and Antioxidant Responses in an Ethanol-Exposed In Vivo Model: Evidence of HIGD2A-Dependent OXPHOS Remodeling in the Liver
by Celia Salazar, Marlen Barreto, Alfredo Alfonso Adriasola-Carrasco, Francisca Carvajal, José Manuel Lerma-Cabrera and Lina María Ruiz
Antioxidants 2025, 14(6), 627; https://doi.org/10.3390/antiox14060627 - 23 May 2025
Viewed by 838
Abstract
The gut microbiota plays a central role in host energy metabolism and the development of metabolic disorders, partly through its influence on mitochondrial function. Probiotic supplementation, particularly with Lactobacillus rhamnosus GG, has been proposed as a strategy to modulate the microbiota and improve [...] Read more.
The gut microbiota plays a central role in host energy metabolism and the development of metabolic disorders, partly through its influence on mitochondrial function. Probiotic supplementation, particularly with Lactobacillus rhamnosus GG, has been proposed as a strategy to modulate the microbiota and improve host metabolic health. Adolescent binge-like alcohol consumption is a critical public health issue known to induce neuroinflammation, oxidative stress, mitochondrial dysfunction, and intestinal dysbiosis, contributing to disorders such as alcoholic liver disease (ALD). This study aimed to evaluate the effects of L. rhamnosus GG supplementation on mitochondrial physiology in Sprague Dawley rats exposed to binge-like ethanol (BEP group) or saline (SP group) during adolescence (postnatal days 30–43). Starting on postnatal day 44, L. rhamnosus GG was administered orally for 28 days. Fecal colonization was confirmed by qPCR, and mitochondrial function was assessed in the liver, heart, and bone marrow through quantification of NADH, ATP, ADP/ATP ratio, total antioxidant capacity, and the expression of mitochondrial genes Higd2a, MnSOD1, and AMPKα1. L. rhamnosus GG supplementation induced tissue-specific mitochondrial adaptations. In the liver, it increased Higd2a expression and restored antioxidant and energy balance in ethanol-exposed rats. In the bone marrow, it reversed ethanol-induced metabolic stress and enhanced AMPKα1 expression. In contrast, in the heart, L. rhamnosus GG had minimal impact on mitochondrial energy markers but increased antioxidant capacity, indicating a more limited, redox-focused effect. These findings suggest that L. rhamnosus GG exerts context-dependent, tissue-specific benefits on mitochondrial physiology, primarily through the modulation of antioxidant defenses, activation of AMPKα1, and remodeling of respiratory complexes. This probiotic may represent a promising therapeutic strategy to mitigate mitochondrial dysfunction associated with early-life alcohol exposure. Full article
(This article belongs to the Special Issue Interplay of Microbiome and Oxidative Stress)
Show Figures

Figure 1

Back to TopTop