Liraglutide Attenuates Atorvastatin-Induced Hepatotoxicity by Restoring GLP-1R Expression and Activating Nrf2 and Autophagy Pathways in Wistar Rats
Abstract
1. Introduction
1.1. Drugs and Chemicals
1.2. Animals
1.2.1. Ethical Approval
1.2.2. Source and Housing Conditions
1.2.3. Induction of Liver Injury
1.2.4. Experimental Design
Preliminary Study: Assessment of ATO-Induced Liver Dysfunction and Dose Selection
Main Study: Evaluation of LIRA’s Protective Effects Against ATO-Induced Liver Dysfunction
1.3. Biochemical Evaluation
1.3.1. Assessment of Liver Enzymes
1.3.2. Evaluation of Hepatic S536 NFκB p65, Nrf2, IL-1β, NADPH Oxidase, SOD, Beclin-1, TNF-α, and Caspase-3 Using ELISA Kits
1.3.3. Quantitative Real Time PCR Assessment of HMGB1, TLR-4, RAGE, and GLP-1R
1.3.4. Western Blot Analysis of p-AMPK, p-Akt, p-MAPK p38, and p-ULK-1
1.4. Histopathological Examination
1.5. Statistical Analysis
2. Results
2.1. Preliminary Study: Assessment of ATO-Induced Liver Dysfunction and Dose Selection
2.1.1. Effect of ATO Dose Regimens (7.5, 15, 30, 60, and 120 mg/kg) on Liver Function Tests
2.1.2. Effect of ATO Dose Regimens (30, 60, and 120 mg/kg) on Histopathological Investigation
2.2. Main Study: Evaluation of LIRA’s Protective Effects Against ATO-Induced Liver Dysfunction
2.2.1. Effect of LIRA (0.6 and 1.2 mg/kg) on ALT and AST Levels in ATO-Induced Liver Dysfunction
2.2.2. Effect of LIRA (0.6 and 1.2 mg/kg) on Histopathological Investigation in ATO-Induced Liver Dysfunction
2.3. Effect of HD LIRA (1.2 mg/kg) on Biochemical Parameters
2.3.1. HD LIRA Mitigated ATO-Induced Oxidative Stress in Liver
2.3.2. HD LIRA Ameliorated ATO-Induced Inflammation in Liver
2.3.3. HD LIRA Restored the Imbalance Between Autophagy and Apoptosis in ATO-Induced Liver Injury
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
Akt | protein kinase B; |
ALT | alanine aminotransferase; |
AMPK | AMP activated protein kinase; |
AST | aspartate aminotransferase; |
ATO | atorvastatin; |
GLP-1 | glucagon like peptide-1; |
HMGB-1 | high-mobility group box-1; |
IL-4 | interleukin-4; |
MAPK | mitogen activated protein kinase; |
NADPH | nicotinamide adenine dinucleotide phosphate oxidase; |
NFκB | nuclear factor kappa-B; |
Nrf 2 | Nuclear factor erythroid 2-related factor 2; |
SOD | superoxide dismutase; |
TLR-4 | toll like receptor 4; |
TNF-α | tumor necrosis factor alpha |
References
- Heeba, G.H.; Abd-Elghany, M.I. Effect of combined administration of ginger (Zingiber officinale Roscoe) and atorvastatin on the liver of rats. Phytomedicine 2010, 17, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Shehab, A.M.; Gaballah, I.F. The Biochemical effects of Atorvastatin toxicity on the liver and muscles of adult albino rats. Egypt J. Forensic Sci. Appl. Toxicol. 2014, 14, 37–47. [Google Scholar]
- Gao, H.; Zeng, Z.; Zhang, H.; Zhou, X.; Guan, L.; Deng, W.; Xu, L. The glucagon-like peptide-1 analogue liraglutide inhibits oxidative stress and inflammatory response in the liver of rats with diet-induced non-alcoholic fatty liver disease. Biol. Pharm. Bull. 2015, 38, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, A.I.; Mantawy, E.M.; Gad, A.M.; Fawzy, H.M.; Azab, S.S. Activation of pCREB/Nrf-2 signaling mediates re-positioning of liraglutide as hepato-protective for methotrexate-induced liver injury (MILI). Food Chem. Toxicol. 2019, 132, 110719. [Google Scholar] [CrossRef] [PubMed]
- Mm, B. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Milani, L.; Galindo, C.M.; de Oliveira, N.M.T.; Corso, C.R.; Adami, E.R.; Stipp, M.C.; Beltrame, O.C.; Acco, A. The GLP-1 analog liraglutide attenuates acute liver injury in mice. Ann. Hepatol. 2019, 18, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Liu, Z. Atorvastatin induces hepatotoxicity in diabetic rats via oxidative stress, inflammation, and anti-apoptotic pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 6165. [Google Scholar] [CrossRef] [PubMed]
- Ponroy, N. Statins Inhibit Cytomegalovirus Replication by Interfering with the Isoprenoid Arm of the Mevalonate Pathway; University of Zurich: Zürich, Switzerland, 2014. [Google Scholar]
- Zhou, Z.; Rahme, E.; Abrahamowicz, M.; Tu, J.V.; Eisenberg, M.J.; Humphries, K.; Austin, P.C.; Pilote, L. Effectiveness of statins for secondary prevention in elderly patients after acute myocardial infarction: An evaluation of class effect. CMAJ 2005, 172, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Laufs, U.; Liao, J.K. Isoprenoid metabolism and the pleiotropic effects of statins. Curr. Atheroscler. Rep. 2003, 5, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Govitrapong, P.; Sharma, S.; Muralikrishnan, D.; Shavali, S.; Pellett, L.; Schafer, R.; Albano, C.; Eken, J. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Neurosignals 2001, 10, 224–253. [Google Scholar] [CrossRef] [PubMed]
- Bedard, K.; Krause, K.-H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.L.; Wilhelmus, M.M.; de Vries, H.E.; Drukarch, B.; Hoozemans, J.J.; van Horssen, J. Antioxidative defense mechanisms controlled by Nrf2: State-of-the-art and clinical perspectives in neurodegenerative diseases. Arch. Toxicol. 2014, 88, 1773–1786. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Zhao, Z.M.; Zhang, L.; He, J.; Zhang, T.F.; Guo, J.B.; Yu, L.; Zhao, J.; Yuan, X.Y.; Peng, S.Q. Atorvastatin induces mitochondrial dysfunction and cell apoptosis in HepG2 cells via inhibition of the Nrf2 pathway. J. Appl. Toxicol. 2019, 39, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. Oxidative stress, inflammation, and disease. In Oxidative Stress and Biomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 35–58. [Google Scholar]
- Bianchi, M.E.; Manfredi, A.A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 2007, 220, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Nogueira-Machado, J.A.; Volpe, C.M.d.O.; Veloso, C.A.; Chaves, M.M. HMGB1, TLR and RAGE: A functional tripod that leads to diabetic inflammation. Expert Opin. Ther. Targets 2011, 15, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Li, X.; Zhou, S.; Jiang, P.; Liu, X.; Ouyang, M.; Nie, Y.; Chen, X.; Zhang, L.; Liu, Y. Interplay between RAGE and TLR4 regulates HMGB1-induced inflammation by promoting cell surface expression of RAGE and TLR4. J. Immunol. 2020, 205, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Katsargyris, A.; Klonaris, C.; Alexandrou, A.; Giakoustidis, A.E.; Vasileiou, I.; Theocharis, S. Toll like receptors in liver ischemia reperfusion injury: A novel target for therapeutic modulation? Expert Opin. Ther. Targets 2009, 13, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Liu, Y.; Li, M. The role of CD14 and Toll-like receptor 4 of Kupffer cells in hepatic ischemia-reperfusion injury in rats. Proc. Transplant. 2012, 44, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Lavrik, I.N.; Golks, A.; Krammer, P.H. Caspases: Pharmacological manipulation of cell death. J. Clin. Investig. 2005, 115, 2665–2672. [Google Scholar] [CrossRef] [PubMed]
- Dirks, A.J.; Jones, K.M. Statin-induced apoptosis and skeletal myopathy. Am. J. Physiol. Cell Physiol. 2006, 291, C1208–C1212. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.S.; Jun, H.-S. Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int. J. Mol. Sci. 2017, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Fontanella, R.A.; Scisciola, L.; Pesapane, A.; Taktaz, F.; Franzese, M.; Puocci, A.; Ceriello, A.; Prattichizzo, F.; Rizzo, M.R. Targeting redox imbalance in neurodegeneration: Characterizing the role of GLP-1 receptor agonists. Theranostics 2023, 13, 4872. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhao, Y.; Xu, L.; Li, W.; Zhang, H.; Ping, F.; Li, Y. Liraglutide Attenuates Hepatic Oxidative Stress, Inflammation, and Apoptosis in Streptozotocin-Induced Diabetic Mice by Modulating the Wnt/β-Catenin Signaling Pathway. Mediat. Inflamm. 2023, 2023, 8974960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-Y.; Hu, X.-F.; Wan, N.; Zhang, J.-F.; Yang, P.; Wen, Q.; Chen, W.-J.; Zhu, F.; Liang, M.-L.; Cheng, L.-X. Protective effect of the glucagon-like peptide-1 analogue liraglutide on carbon tetrachloride-induced acute liver injury in mice. Biochem. Biophys. Res. Commun. 2019, 514, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Athauda, D.; Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action. Drug Discov. Today 2016, 21, 802–818. [Google Scholar] [CrossRef] [PubMed]
- El Tabaa, M.M.; El Tabaa, M.M.; Anis, A.; Elgharabawy, R.M.; El-Borai, N.B. GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB pathway. Int. Immunopharmacol. 2022, 110, 108995. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, B.; Yang, J.; Wang, L.; Tan, X.; Hu, X.; Sun, L.; Chen, S.; Zhu, L.; Chen, X. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol. Res. 2021, 173, 105867. [Google Scholar] [CrossRef] [PubMed]
- Quoyer, J.; Longuet, C.; Broca, C.; Linck, N.; Costes, S.; Varin, E.; Bockaert, J.; Bertrand, G.; Dalle, S. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a β-arrestin 1-mediated ERK1/2 activation in pancreatic β-cells. J. Biol. Chem. 2010, 285, 1989–2002. [Google Scholar] [CrossRef] [PubMed]
- Carling, D.; Thornton, C.; Woods, A.; Sanders, M.J. AMP-activated protein kinase: New regulation, new roles? Biochem. J. 2012, 445, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-D.; He, S.-S.; Wan, T.-T.; Li, Y.-B. Liraglutide protects palmitate-induced INS-1 cell injury by enhancing autophagy mediated via FoxO1. Mol. Med. Rep. 2021, 23, 147. [Google Scholar] [CrossRef] [PubMed]
- Rabanal-Ruiz, Y.; Otten, E.G.; Korolchuk, V.I. mTORC1 as the main gateway to autophagy. Essays Biochem. 2017, 61, 565–584. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007, 8, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Huang, L.; Chen, J.; Chen, T.; Kong, D.; Wei, Q.; Chen, Q.; Deng, B.; Li, Y.; Zhong, S. Liraglutide improves nonalcoholic fatty liver disease in diabetic mice by activating autophagy through AMPK/mTOR signaling pathway. Diabetes Metab. Syndr. Obes. 2024, 17, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.L.; Moncada, S. AMPKα1 regulates the antioxidant status of vascular endothelial cells. Biochem. J. 2009, 421, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Paiva, M.A.; Rutter-Locher, Z.; Gonçalves, L.M.; Providência, L.A.; Davidson, S.M.; Yellon, D.M.; Mocanu, M.M. Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2123–H2134. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.W.; Ho, W.Y.; Su, Y.T.; Lu, P.J.; Chen, B.Z.; Cheng, W.H.; Lu, W.H.; Sun, G.C.; Yeh, T.C.; Hsiao, M. Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism. Br. J. Pharmacol. 2014, 171, 2739–2750. [Google Scholar] [CrossRef] [PubMed]
- Passos, P.R.C.; Filho, V.O.C.; Noronha, M.M.; Hyppolito, E.B.; Saldanha, E.F.; Motta, R.V. Influence of glucagon-like peptide-1 receptor agonists on hepatic events in type 2 diabetes: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2025, 40, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Okerson, T.; Chilton, R.J. The cardiovascular effects of GLP-1 receptor agonists. Cardiovasc. Ther. 2012, 30, e146–e155. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, S.; Zvibel, I.; Shnell, M.; Shlomai, A.; Chepurko, E.; Halpern, Z.; Barzilai, N.; Oren, R.; Fishman, S. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J. Hepatol. 2011, 54, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Shojaei, S.; Soleimani, H.; Semirani-Nezhad, D.; Ebrahimi, P.; Zafari, A.; Ebrahimi, R.; Roozbehi, K.; Harrison, A.; Syed, M.A. Safety, efficacy, and cardiovascular benefits of combination therapy with SGLT-2 inhibitors and GLP-1 receptor agonists in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2025, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Sajja, A.P.; Dey, A.K.; Guha, A.; Elnabawi, Y.; Joshi, A.A.; Kalra, A. SGLT-2 inhibitors and GLP-1 agonists: First-line therapy for diabetes with established cardiovascular disease. J. Cardiovasc. Pharmacol. Ther. 2019, 24, 422–427. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession Number | Primer Sequence |
---|---|---|
HGMB-1 | NM_012963.3 | F: 5′-AGGCTG ACAAGGCTCGTTATG-3′ R: 5′-TGTCATCCGCAGCAG TGTTG-3′ |
TLR-4 | NC_005104.4 | F: 5′-GCTTGAATCCCTGCATAGAGG-3′ R: 5′-TGTCTCCACAGCCACCAGATTCTC-3 |
RAGE | NM_053336.2 | F: 5′-CTGCCTCTGAACTCACAGCCAATG-3′ R: 5′-GTGCCTCCTGGTCTCCTCCTTC-3′ |
GLP1-R | NC_086038.1 | F: 5′-GACCTGCCCTTGGAACCTCA-3′ R: 5′-AATGGCGGCACTCCAGATG-3′ |
β-Actin | NM_031144.3 | F: 5′-TATCCTGGCCTCACTGTCCA-3′ R: 5′-AACGCAGCTCAGTAACAGTC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsiad, E.A.; Abd El Aal, H.A.; Salem, H.A.; El-Yamany, M.F.; Rabie, M.A. Liraglutide Attenuates Atorvastatin-Induced Hepatotoxicity by Restoring GLP-1R Expression and Activating Nrf2 and Autophagy Pathways in Wistar Rats. Toxics 2025, 13, 594. https://doi.org/10.3390/toxics13070594
Elsiad EA, Abd El Aal HA, Salem HA, El-Yamany MF, Rabie MA. Liraglutide Attenuates Atorvastatin-Induced Hepatotoxicity by Restoring GLP-1R Expression and Activating Nrf2 and Autophagy Pathways in Wistar Rats. Toxics. 2025; 13(7):594. https://doi.org/10.3390/toxics13070594
Chicago/Turabian StyleElsiad, Engy A., Hayat A. Abd El Aal, Hesham A. Salem, Mohammed F. El-Yamany, and Mostafa A. Rabie. 2025. "Liraglutide Attenuates Atorvastatin-Induced Hepatotoxicity by Restoring GLP-1R Expression and Activating Nrf2 and Autophagy Pathways in Wistar Rats" Toxics 13, no. 7: 594. https://doi.org/10.3390/toxics13070594
APA StyleElsiad, E. A., Abd El Aal, H. A., Salem, H. A., El-Yamany, M. F., & Rabie, M. A. (2025). Liraglutide Attenuates Atorvastatin-Induced Hepatotoxicity by Restoring GLP-1R Expression and Activating Nrf2 and Autophagy Pathways in Wistar Rats. Toxics, 13(7), 594. https://doi.org/10.3390/toxics13070594