Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (391)

Search Parameters:
Keywords = ALS inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1110 KiB  
Article
Environmental Behavior of Novel “Smart” Anti-Corrosion Nanomaterials in a Global Change Scenario
by Mariana Bruni, Joana Figueiredo, Fernando C. Perina, Denis M. S. Abessa and Roberto Martins
Environments 2025, 12(8), 264; https://doi.org/10.3390/environments12080264 - 31 Jul 2025
Viewed by 442
Abstract
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of [...] Read more.
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of these nanomaterials remains largely unknown, particularly in the context of global changes. The present study aims to assess the environmental behavior of four anti-corrosion nanomaterials in an ocean acidification scenario (IPCC SSP3-7.0). Three different concentrations of the nanostructured CIs (1.23, 11.11, and 100 mg L−1) were prepared and maintained at 20 °C and 30 °C in artificial salt water (ASW) at two pH values, with and without the presence of organic matter. The nanomaterials’ particle size and the release profiles of Al3+, Zn2+, and anions were monitored over time. In all conditions, the hydrodynamic size of the dispersed nanomaterials confirmed that the high ionic strength favors their aggregation/agglomeration. In the presence of organic matter, dissolved Al3+ increased, while Zn2+ decreased, and increased in the ocean acidification scenario at both temperatures. CIs were more released in the presence of humic acid. These findings demonstrate the influence of the tested parameters in the nanomaterials’ environmental behavior, leading to the release of metals and CIs. Full article
Show Figures

Figure 1

22 pages, 658 KiB  
Article
Integrating Cultivation Practices and Post-Emergence Herbicides for ALS-Resistant False Cleavers (Galium spurium L.) Management in Durum Wheat
by Panagiotis Sparangis, Aspasia Efthimiadou, Nikolaos Katsenios, Kyriakos D. Giannoulis and Anestis Karkanis
Agronomy 2025, 15(8), 1786; https://doi.org/10.3390/agronomy15081786 - 24 Jul 2025
Viewed by 685
Abstract
False cleavers (Galium spurium L.) is a broadleaf weed species that affects wheat productivity because of its strong competition for resources. It has developed resistance to acetolactate synthase (ALS) inhibitors, such as sulfonylureas and triazolopyrimidines, which are herbicides widely used in durum [...] Read more.
False cleavers (Galium spurium L.) is a broadleaf weed species that affects wheat productivity because of its strong competition for resources. It has developed resistance to acetolactate synthase (ALS) inhibitors, such as sulfonylureas and triazolopyrimidines, which are herbicides widely used in durum wheat. Integrated weed management programs can contribute to the control of this species and delay the evolution of herbicide resistance. Thus, a two-year field experiment was conducted to evaluate the effects of sowing time, variety, and herbicides on crop yield, density, and dry weight of a false cleavers population with resistance to ALS inhibitors. In both growing seasons, a split-split-plot design was used with three replicates. The sowing date was chosen as the main plot factor, durum wheat varieties as the subplot factor, and herbicides as the sub-subplot factor. The herbicide treatments were: (1) metsulfuron-methyl/bensulfuron-methyl (4/50 g a.i. ha−1), (2) aminopyralid/florasulam (9.9/4.95 g a.i. ha−1), (3) pyroxsulam and florasulam/2,4-D (18.75 + 4.725/225 g a.i. ha−1), (4) 2,4-D/bromoxynil (633.15/601.2 g a.i. ha−1), non-treated control, and hand-weeded control for the first season, while in the second season one more herbicide treatment (halauxifen-methyl/florasulam, 5.6/5.15 g a.i. ha−1) was added. Herbicide application was performed on 10 March 2021 and 28 March 2022, when the crop was at the end of tillering and the beginning of stem elongation. The results showed that the density of false cleavers was not affected by the variety or sowing time. However, its dry weight was 17.3–23.4% higher in early sowing (16 November in 2020 and 8 November 2021) than in late sowing (24 December 2020 and 2 December 2021). Among the herbicides tested, 2,4-D/bromoxynil and halauxifen-methyl/florasulam effectively controlled false cleavers, showing greater efficacy in late sowing (>88%), which ultimately led to a higher yield. In conclusion, our two-year findings demonstrate that delayed sowing as part of an integrated weed management strategy can contribute to controlling resistant populations of false cleavers to ALS-inhibiting herbicides without affecting the quantity and quality of durum wheat yield in areas with a Mediterranean climate. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Figure 1

4 pages, 3729 KiB  
Correction
Correction: Afjei et al. A New Nrf2 Inhibitor Enhances Chemotherapeutic Effects in Glioblastoma Cells Carrying p53 Mutations. Cancers 2022, 14, 6120
by Rayhaneh Afjei, Negar Sadeghipour, Sukumar Uday Kumar, Mallesh Pandrala, Vineet Kumar, Sanjay V. Malhotra, Tarik F. Massoud and Ramasamy Paulmurugan
Cancers 2025, 17(14), 2408; https://doi.org/10.3390/cancers17142408 - 21 Jul 2025
Viewed by 208
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

13 pages, 3049 KiB  
Article
Preparation of Foamed Ceramic from Cr Slag and MSWI Fly Ash and Its Cr Leaching Inhibition
by Hesong Li, Cheng Liu, Yikun Tang and Shilin Zhao
Materials 2025, 18(14), 3372; https://doi.org/10.3390/ma18143372 - 18 Jul 2025
Viewed by 237
Abstract
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2 [...] Read more.
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2, and (NH4)2HPO4—on material properties and Cr leaching behavior. Experimental analysis, chemical thermodynamic calculations, and material characterization were all employed. Results show that the prepared foamed ceramics meet the JG/T 511-2017 standard for building materials, exhibiting excellent physical properties but significant Cr leaching. Among the inhibitors, (NH4)2HPO4 with a molar ratio of n(P)/n(Cr) = 1 shows the best performance, achieving a bulk density of 205 kg/m3, compressive strength of 0.850 MPa, Cr leaching concentration of 188 μg/L, and a 70.0% of Cr leaching inhibition rate. The improvement is attributed to the AlPO4 formation that enhancing the strength, and Ca2P2O7 that stabilizing Cr during sintering. This work provides a feasible method for the safe resource utilization of Cr-containing waste. Full article
Show Figures

Figure 1

19 pages, 3398 KiB  
Article
Synthesis and Evaluation of [18F]AlF-NOTA-iPD-L1 as a Potential Theranostic Pair for [177Lu]Lu-DOTA-iPD-L1
by Guillermina Ferro-Flores, Myrna Luna-Gutiérrez, Blanca Ocampo-García, Nallely Jiménez-Mancilla, Nancy Lara-Almazán, Rigoberto Oros-Pantoja, Clara Santos-Cuevas, Erika Azorín-Vega and Laura Meléndez-Alafort
Pharmaceutics 2025, 17(7), 920; https://doi.org/10.3390/pharmaceutics17070920 - 16 Jul 2025
Viewed by 385
Abstract
Background/Objective: Programmed cell death ligand-1 (PD-L1), which is overexpressed in certain tumors, inhibits the body’s natural immune response by providing an “off” signal that enables cancer cells to evade the immune system. It has been demonstrated that [177Lu]Lu-DOTA-iPD-L1 (PD-L1 inhibitor [...] Read more.
Background/Objective: Programmed cell death ligand-1 (PD-L1), which is overexpressed in certain tumors, inhibits the body’s natural immune response by providing an “off” signal that enables cancer cells to evade the immune system. It has been demonstrated that [177Lu]Lu-DOTA-iPD-L1 (PD-L1 inhibitor cyclic peptide) promotes immune responses. This study aimed to synthesize and evaluate [18F]AlF-NOTA-iPD-L1 as a novel radiotracer for PD-L1 positron emission tomography (PET) imaging and as a potential theranostic pair for [177Lu]Lu-DOTA-iPD-L1. Methods: The NOTA-iPD-L1 peptide conjugate was synthesized and characterized by U.V.-vis, I.R.-FT, and UPLC-mass spectroscopies. Radiolabeling was performed using [18F]AlF as the precursor, and the radiochemical purity (HPLC), partition coefficient, and serum stability were assessed. Cellular uptake and internalization (in 4T1 triple-negative breast cancer cells), binding competition, immunofluorescence, and Western blot assays were applied for the radiotracer in vitro characterization. Biodistribution in mice bearing 4T1 tumors was performed, and molecular imaging (Cerenkov images) of [18F]AlF-NOTA-iPD-L1 and [177Lu]Lu-DOTA-iPD-L1 in the same mouse was obtained. Results: [18F]AlF-NOTA-iPD-L1 was prepared with a radiochemical purity greater than 97%, and it demonstrated high in vitro and in vivo stability, as well as specific recognition by the PD-L1 protein (IC50 = 9.27 ± 2.69 nM). Biodistribution studies indicated a tumor uptake of 6.4% ± 0.9% ID/g at 1-hour post-administration, and Cerenkov images showed a high tumor uptake of both [18F]AlF-NOTA-iPD-L1 and 177Lu-iPD-L1 in the same mouse. Conclusions: These results warrant further studies to evaluate the clinical usefulness of [18F]AlF-NOTA-iPD-L1/[177Lu]Lu-DOTA-iPD-L1 as a radiotheranostic pair in combination with anti-PD-L1/PD1 immunotherapy. Full article
Show Figures

Figure 1

18 pages, 4872 KiB  
Article
Computational Study of Catalytic Poisoning Mechanisms in Polypropylene Polymerization: The Impact of Dimethylamine and Diethylamine on the Deactivation of Ziegler–Natta Catalysts and Co-Catalysts
by Joaquín Alejandro Hernández Fernández, Katherine Liset Ortiz Paternina and Heidis Cano-Cuadro
Polymers 2025, 17(13), 1834; https://doi.org/10.3390/polym17131834 - 30 Jun 2025
Viewed by 370
Abstract
In this study, density functional theory (DFT) was used to analyze the processes that govern the interactions among triethylaluminum (TEAL), the Ziegler–Natta (ZN) catalyst, and the inhibitory compounds dimethylamine (DMA) and diethylamine (DEA) during olefin polymerization. The structural and charge characteristics of these [...] Read more.
In this study, density functional theory (DFT) was used to analyze the processes that govern the interactions among triethylaluminum (TEAL), the Ziegler–Natta (ZN) catalyst, and the inhibitory compounds dimethylamine (DMA) and diethylamine (DEA) during olefin polymerization. The structural and charge characteristics of these inhibitors were examined through steric maps and DFT calculations. Combined DFT calculations (D3-B3LYP/6-311++G(d,p)) and IR spectroscopic analysis show that the most efficient way to deactivate the ZN catalyst is via the initial formation of the TEAL·DMA complex. This step has a kinetic barrier of only 27 kcal mol−1 and a negative ΔG, in stark contrast to the >120 kcal mol−1 required to form TEAL·DEA. Once generated, TEAL·DMA adsorbs onto the TiCl4/MgCl2 cluster with adsorption energies of −22.9 kcal mol−1 in the gas phase and −25.4 kcal mol−1 in n-hexane (SMD model), values 5–10 kcal mol−1 more favorable than those for TEAL·DEA. This explains why, although dimethylamine is present at only 140 ppm, its impact on productivity (−19.6%) is practically identical to that produced by 170 ppm of diethylamine (−20%). The persistence of the ν(Al–N) band at ~615 cm−1, along with a >30% decrease in the Al–C/Ti–C bands between 500 and 900 cm−1, the downward shift of the N–H stretch from ~3300 to 3200 cm−1, and the +15 cm−1 increase in ν(C–N) confirm Al←N coordination and blockage of alkyl transfer, establishing the TEAL·DMA → ZN pathway as the dominant catalytic poisoning mechanism. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

12 pages, 3731 KiB  
Article
Research on Corrosion Protection of TETA-Modified Li–Al LDHs for AZ31 Magnesium Alloy in Simulated Seawater
by Sifan Tu, Liyan Wang, Sixu Wang, Haoran Chen, Qian Huang, Ning Hou, Zhiyuan Feng and Guozhe Meng
Metals 2025, 15(7), 724; https://doi.org/10.3390/met15070724 - 28 Jun 2025
Viewed by 699
Abstract
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. [...] Read more.
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. Electrochemical tests, SEM, FT-IR, XPS, and 3D depth-of-field microscopy were employed to evaluate TETA-modified Li–Al LDH coatings at varying concentrations. Among them, the Li–Al LDHs without the addition of a TETA corrosion inhibitor decreased significantly at |Z|0.01 Hz after immersion for 4 h. However, the Li–Al LDHs coating of 23.5 mM TETA experienced a sudden drop at |Z|0.01 Hz after holding for about 60 h, and the Li–Al LDHs coating of 70.5 mM TETA also experienced a sudden drop at |Z|0.01 Hz after holding for about 132 h. By contrast, at the optimal concentration (47 mM), after 24 h of immersion, the maximum |Z|0.01 Hz reached 7.56 × 105 Ω∙cm2—three orders of magnitude higher than pure Li–Al LDH coated AZ31 (2.55 × 102 Ω∙cm2). After 300 h of immersion, the low-frequency impedance remained above 105 Ω∙cm2, demonstrating superior long-term protection. TETA modification significantly improved the durability of Li–Al LDHs coatings, addressing the short-term protection limitation of standalone Li–Al LDHs. Li–Al LDHs themselves have a layered structure and effectively capture corrosive Cl ions in the environment through ion exchange capacity, reducing the corrosion of the interface. Furthermore, TETA exhibits strong adsorption on Li–Al LDHs layers, particularly at coating defects, enabling rapid barrier formation. This inorganic–organic hybrid design achieves defect compensation and enhanced protective barriers. Full article
(This article belongs to the Special Issue Metal Corrosion Behavior and Protection in Service Environments)
Show Figures

Figure 1

2 pages, 143 KiB  
Correction
Correction: Ssengonzi et al. Inhibitor of DNA Binding Protein 2 (ID2) Mediates the Anti-Proliferative and Pro-Differentiation Effects of Insulin-like Growth Factor-1 (IGF-1). Life 2024, 14, 1663
by Rebecca Ssengonzi, Yuye Wang, Jiayi Zhou, Yukako Kayashima, W. H. Davin Townley-Tilson, Balaji Rao, Qing Ma, Nobuyo Maeda-Smithies and Feng Li
Life 2025, 15(7), 1016; https://doi.org/10.3390/life15071016 - 26 Jun 2025
Viewed by 257
Abstract
In the original publication [...] Full article
15 pages, 879 KiB  
Article
Double Mutations Drive Multiple Resistances to Herbicides in Greek Rigid Ryegrass (Lolium rigidum Gaudin)
by Dimitra Doulfi, Garyfallia Economou, Panagiotis Madesis, Lefkothea Karapetsi and Ilias G. Eleftherohorinos
Agronomy 2025, 15(7), 1532; https://doi.org/10.3390/agronomy15071532 - 24 Jun 2025
Viewed by 252
Abstract
Based on the complaints of malt barley growers about the insufficient control of rigid ryegrass (Lolium rigidum Gaudin) after applying the ACCase inhibitor pinoxaden, a survey was conducted during the early spring growing season of 2019/20; 20 barley fields located in Thessaloniki [...] Read more.
Based on the complaints of malt barley growers about the insufficient control of rigid ryegrass (Lolium rigidum Gaudin) after applying the ACCase inhibitor pinoxaden, a survey was conducted during the early spring growing season of 2019/20; 20 barley fields located in Thessaloniki and 20 fields in Serres were marked with poor weed control levels. Before the barley harvest, representative weed seeds were collected from all 40 fields. After performing seed germination tests, fourteen populations (six from Thessaloniki and eight from Serres) with the highest seed germination ability were selected for further study. The whole-plant dose–response assays conducted in 2019–2020 indicated that most of the populations were multi-resistant to ACCase and ALS inhibitors. The estimated GR50 values (the herbicide dose required to reduce the fresh weight of treated plants by 50%) for pinoxaden and mesosulfuron-methyl + iodosulfuron-methyl-sodium ranged from 1.15 to 52.41 g ai ha−1 and 4.75 to 31.25 g ai ha−1, respectively. Furthermore, the sequencing of acccase gene fragments from plants that survived pinoxaden application revealed that 11 out of 14 plant populations had a double accase point mutation at Ile1781 and Ile2041 codons. In addition, the sequencing of als gene fragments from the plants that survived mesosulfuron-methyl + iodosulfuron-methyl-sodium application revealed that 11 out of 14 plant populations had a point mutation at the Pro197 codon and 2 of them had a second als mutation at the Trp574 codon. These findings indicate that L. rigidum populations are multi-resistant to ACCase and ALS inhibitors, with individuals exhibiting either double accase or double als mutations. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

22 pages, 4653 KiB  
Article
Recycled Clay Brick Powder as a Dual-Function Additive: Mitigating the Alkali–Silica Reaction (ASR) and Enhancing Strength in Eco-Friendly Mortar with Hybrid Waste Glass and Clay Brick Aggregates
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2838; https://doi.org/10.3390/ma18122838 - 16 Jun 2025
Viewed by 461
Abstract
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica [...] Read more.
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica reaction (ASR) inhibitor in hybrid mortar systems incorporating recycled glass (RG) and recycled clay brick (RCB) aggregates. Leveraging the pozzolanic activity of RCBP’s residual aluminosilicate phases, the research quantifies its influence on mortar durability and mechanical performance under varying substitution scenarios. Experimental findings reveal a nonlinear relationship between RCBP dosage and mortar properties. A 30% cement replacement with RCBP yields a 28-day activity index of 96.95%, confirming significant pozzolanic contributions. Critically, RCBP substitution ≥20% effectively mitigates ASRs induced by RG aggregates, with optimal suppression observed at 25% replacement. This threshold aligns with microstructural analyses showing RCBP’s Al3+ ions preferentially reacting with alkali hydroxides to form non-expansive gels, reducing pore solution pH and silica dissolution rates. Mechanical characterization reveals trade-offs between workability and strength development. Increasing RCBP substitution decreases mortar consistency and fluidity, which is more pronounced in RG-RCBS blends due to glass aggregates’ smooth texture. Compressively, both SS-RCBS and RG-RCBS mortars exhibit strength reduction with higher RCBP content, yet all specimens show accelerated compressive strength gain relative to flexural strength over curing time. Notably, 28-day water absorption increases with RCBP substitution, correlating with microstructural porosity modifications. These findings position recycled construction wastes and glass as valuable resources in circular economy frameworks, offering municipalities a pathway to meet recycled content mandates without sacrificing structural integrity. The study underscores the importance of waste synergy in advancing sustainable mortar technology, with implications for net-zero building practices and industrial waste valorization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 1641 KiB  
Review
Hypertrophic Cardiomyopathy and Phenocopies: New Therapies for Old Diseases—Current Evidence and Future Perspectives
by Maria Alfarano, Federico Ciccarelli, Giulia Marchionni, Federico Ballatore, Jacopo Costantino, Antonio Lattanzio, Giulia Pecci, Silvia Stavagna, Leonardo Iannelli, Gioacchino Galardo, Carlo Lavalle, Fabio Miraldi, Carmine Dario Vizza and Cristina Chimenti
J. Clin. Med. 2025, 14(12), 4228; https://doi.org/10.3390/jcm14124228 - 13 Jun 2025
Viewed by 666
Abstract
The hypertrophic cardiomyopathy (HCM) clinical phenotype includes sarcomeric HCM, which is the most common form of inherited cardiomyopathy with a population prevalence of 1:500, and phenocopies such as cardiac amyloidosis and Anderson–Fabry disease, which are considered rare diseases. Identification of cardiac and non-cardiac [...] Read more.
The hypertrophic cardiomyopathy (HCM) clinical phenotype includes sarcomeric HCM, which is the most common form of inherited cardiomyopathy with a population prevalence of 1:500, and phenocopies such as cardiac amyloidosis and Anderson–Fabry disease, which are considered rare diseases. Identification of cardiac and non-cardiac red flags in the context of multi-organ syndrome, multimodality imaging, including echocardiography, cardiac magnetic resonance, and genetic testing, has a central role in the diagnostic pathway. Identifying the specific disease underlying the hypertrophic phenotype is very important since many disease-modifying therapies are currently available, and phase 3 trials for new treatments have been completed or are ongoing. In particular, many chemotherapy agents (alkylating agents, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies targeting clonal cells) allowing one to treat AL amyloidosis, transthyretin stabilizers (tafamidis and acoramidis), and gene silencers (patisiran and vutrisiran) are available in transthyretin cardiac amyloidosis, and enzyme replacement therapies (agalsidase-alpha, agalsidase-beta, and pegunigalsidase-alpha) or oral chaperone therapy (migalastat) can be used in Anderson–Fabry disease. In addition, the introduction of cardiac myosin inhibitors (mavacamten and aficamten) has deeply modified the treatment of hypertrophic obstructive cardiomyopathy. The aim of this review is to describe the new disease-modifying treatments available in HCM and phenocopies in light of current scientific evidence. Full article
(This article belongs to the Special Issue What’s New in Cardiomyopathies: Diagnosis, Treatment and Management)
Show Figures

Graphical abstract

13 pages, 831 KiB  
Article
Blood Serum from Patients with Acute Leukemia Inhibits the Growth of Bone Marrow Multipotent Mesenchymal Stromal Cells
by Nataliya Petinati, Aleksandra Sadovskaya, Irina Shipounova, Alena Dorofeeva, Nina Drize, Anastasia Vasilyeva, Olga Aleshina, Olga Pokrovskaya, Larisa Kuzmina, Sofia Starchenko, Valeria Surimova, Yulia Chabaeva, Sergey Kulikov and Elena Parovichnikova
Biomedicines 2025, 13(5), 1265; https://doi.org/10.3390/biomedicines13051265 - 21 May 2025
Viewed by 537
Abstract
Background/Objectives: Acute leukemia (AL) alters both hematopoiesis and the bone marrow stromal microenvironment. Attempts to develop a culture of multipotent mesenchymal stromal cells (MSCs) from AL patients’ bone marrow are not always successful, as opposed to healthy donors’ bone marrow. Methods: [...] Read more.
Background/Objectives: Acute leukemia (AL) alters both hematopoiesis and the bone marrow stromal microenvironment. Attempts to develop a culture of multipotent mesenchymal stromal cells (MSCs) from AL patients’ bone marrow are not always successful, as opposed to healthy donors’ bone marrow. Methods: To unveil the reason, healthy donors’ MSCs were cultured in the presence of sera from healthy donors (control group) or AL patients at the onset of the disease, in short- and long-term remission, and before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Results: The cell yield in the presence of patient sera was lower than in the control, regardless of the AL stage. It was assumed that the patients either lacked growth factors to sustain MSCs, or there were inhibitors of MSC growth present. The serum’s ability to support MSC growth correlated with platelet count and albumin and calcium concentrations in patients’ blood. Platelet-derived growth factors—PDGFA and PDGFB—are known to induce MSC growth. Their concentration in the serum of AL patients and healthy donors was analyzed. A decrease in PDGFA concentration was found in the sera of patients compared to healthy donors. PDGFB concentration was lower at disease onset, increased during remission and decreased again during relapse. PDGFB concentration correlated with platelet count, while PDGFA concentration did not. AL patients’ sera reflected systemic disturbances affecting MSC growth. So far, decreases in PDGFs, albumin and calcium concentration, as well as platelet count, are the parameters that might be among the causes of this observation. Full article
(This article belongs to the Special Issue Role of Bone Marrow Niche in Haematological Cancers)
Show Figures

Figure 1

16 pages, 3933 KiB  
Article
Resistance to Amino Acid Biosynthesis Inhibiting-Herbicides in Amaranthus palmeri Populations from Aragon (Spain)
by Eneko Trebol-Aizpurua, Mikel V. Eceiza, Clara Jimenez-Martinez, Ana I. Marí, Mercedes Royuela, Ana Zabalza and Miriam Gil-Monreal
Plants 2025, 14(10), 1505; https://doi.org/10.3390/plants14101505 - 17 May 2025
Viewed by 617
Abstract
Amaranthus palmeri is a highly problematic agricultural weed due to its rapid growth, high seed production, and strong tendency to develop herbicide resistance. In Spain, the initial colonization of A. palmeri began in 2007, when populations were detected at various locations in the [...] Read more.
Amaranthus palmeri is a highly problematic agricultural weed due to its rapid growth, high seed production, and strong tendency to develop herbicide resistance. In Spain, the initial colonization of A. palmeri began in 2007, when populations were detected at various locations in the province of Lleida (Catalonia). Since then, new infestations have been reported in other regions of the country, primarily infesting maize fields. Although resistance to glyphosate or to acetolactate synthase (ALS) inhibitors has been documented in several populations from Catalonia and Extremadura, little is known about the resistance profile of populations from Aragon. The main objective of this study was to characterize the putative resistance of five populations from Aragon to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors (glyphosate) and ALS inhibitors (nicosulfuron and imazamox). Sensitivity to both mechanisms of action was measured by root growth in vertical plates and shikimate accumulation for glyphosate. Target-site resistance was evaluated by analyzing EPSPS and ALS gene copy numbers and ALS gene mutations. The populations showed high variability, with no multiple resistance detected. The Bujaraloz population showed moderate resistance to glyphosate due to EPSPS gene amplification. In three populations, mutations in the ALS gene conferring resistance were detected. The Trp574Leu mutation was detected in approximately half of the individuals from the Albelda, Tamarite de Litera, and Caspe populations. In the latter, the Pro197Thr mutation was also present. This study reveals significant genetic variability within each population and provides evidence for the spread of herbicide resistance across different regions of Spain. Full article
(This article belongs to the Special Issue Mechanisms of Herbicide Resistance in Weeds)
Show Figures

Figure 1

13 pages, 2240 KiB  
Article
Yucasin Alleviates Aluminum Toxicity Associated with Regulating Reactive Oxygen Species Homeostasis in Tomato Seedlings
by Huabin Liu, Chuangyang Bai, Jiahui Cai, Yue Wu and Changwei Zhu
Toxics 2025, 13(5), 406; https://doi.org/10.3390/toxics13050406 - 17 May 2025
Viewed by 602
Abstract
The phytotoxicity of aluminum (Al) to plants is well known. Auxin accumulation and reactive oxygen species (ROS) burst induced by Al toxicity are the key factors in root growth inhibition. Yucasin, an auxin synthesis inhibitor, effectively ameliorates Al phytotoxicity in tomato seedlings. However, [...] Read more.
The phytotoxicity of aluminum (Al) to plants is well known. Auxin accumulation and reactive oxygen species (ROS) burst induced by Al toxicity are the key factors in root growth inhibition. Yucasin, an auxin synthesis inhibitor, effectively ameliorates Al phytotoxicity in tomato seedlings. However, the physiological mechanisms by which yucasin alleviates Al phytotoxicity in tomatoes remain elusive. Here, we examined the regulatory mechanisms of yucasin involved in tomato seedling growth under Al conditions through phenotypic, plant physiology analysis, and cellular experiments. Exogenous indole-3-acetic acid (IAA) application increased Al accumulation in tomato seedling roots, while yucasin decreased Al accumulation. Yucasin application reduced Al-induced ROS accumulation, lipid peroxidation, and cell death, enhanced root viability, and promoted tomato seedling root growth. Further, yucasin enhanced the antioxidant enzyme activities of superoxide dismutase, catalase, and peroxidase in plants under Al conditions. The results suggest that yucasin improves the scavenging capacity of ROS by maintaining the activities of antioxidative enzymes. This study elucidates the physiological mechanism by which yucasin alleviates Al phytotoxicity, highlighting its potential to enhance plant tolerance under acidic Al conditions. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

39 pages, 23859 KiB  
Article
Computational Search for Inhibitors of SOD1 Mutant Infectivity as Potential Therapeutics for ALS Disease
by Marco Carnaroli, Marco Agostino Deriu and Jack Adam Tuszynski
Int. J. Mol. Sci. 2025, 26(10), 4660; https://doi.org/10.3390/ijms26104660 - 13 May 2025
Viewed by 691
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective degeneration of motor neurons. Among the main genetic causes of ALS, over 200 mutations have been identified in the Cu/Zn superoxide dismutase (SOD1) protein, a dimeric metalloenzyme essential for [...] Read more.
Familial amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective degeneration of motor neurons. Among the main genetic causes of ALS, over 200 mutations have been identified in the Cu/Zn superoxide dismutase (SOD1) protein, a dimeric metalloenzyme essential for converting superoxides from cellular respiration into less toxic products. Point mutations in SOD1 monomers can induce protein misfolding, which spreads to wild-type monomers through a prion-like mechanism, leading to dysfunctions that contribute to the development of the disease. Understanding the structural and functional differences between the wild-type protein and its mutated variants, as well as developing drugs capable of inhibiting the propagation of misfolding, is crucial for identifying new therapeutic strategies. In this work, seven SOD1 mutations (A4V, G41D, G41S, D76V, G85R, G93A, and I104F) were selected, and three-dimensional models of SOD1 dimers composed of one wild-type monomer and one mutated monomer were generated, along with a control dimer consisting solely of wild-type monomers. Molecular dynamics simulations were conducted to investigate conformational differences between the dimers. Additionally, molecular docking was performed using a library of ligands to identify compounds with high affinity for the mutated dimers. The study reveals some differences in the mutated dimers following molecular dynamics simulations and in the docking of the selected ligands with the various dimers. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

Back to TopTop